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A B S T R A C T

Background:We aimed to develop and validate a real-time deep convolutional neural networks (DCNNs) sys-
tem for detecting early gastric cancer (EGC).
Methods: All 45,240 endoscopic images from 1364 patients were divided into a training dataset (35823
images from 1085 patients) and a validation dataset (9417 images from 279 patients). Another 1514 images
from three other hospitals were used as external validation. We compared the diagnostic performance of the
DCNN system with endoscopists, and then evaluated the performance of endoscopists with or without refer-
ring to the system. Thereafter, we evaluated the diagnostic ability of the DCNN system in video streams. The
accuracy, sensitivity, specificity, positive predictive value, negative predictive value and Cohen's kappa coeffi-
cient were measured to assess the detection performance.
Finding: The DCNN system showed good performance in EGC detection in validation datasets, with accuracy
(85.1%�91.2%), sensitivity (85.9%�95.5%), specificity (81.7%�90.3%), and AUC (0.887�0.940). The DCNN sys-
tem showed better diagnostic performance than endoscopists and improved the performance of endoscop-
ists. The DCNN system was able to process oesophagogastroduodenoscopy (OGD) video streams to detect
EGC lesions in real time.
Interpretation: We developed a real-time DCNN system for EGC detection with high accuracy and stability.
Multicentre prospective validation is needed to acquire high-level evidence for its clinical application.
Funding: This work was supported by the National Natural Science Foundation of China (grant nos. 81672935
and 81871947), Jiangsu Clinical Medical Center of Digestive System Diseases and Gastrointestinal Cancer
(grant no. YXZXB2016002), and Nanjing Science and Technology Development Foundation (grant no.
2017sb332019).
© 2020 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/4.0/)
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1. Introduction

Gastric cancer (GC) is one of the most common types of cancer
and remains the third leading cause of cancer-related deaths world-
wide [1]. Because the symptoms are minimal in the early stage, GC is
diagnosed at an advanced stage in most patients, with a 5-year sur-
vival rate of h 30% [2]. However, if GC can be detected and diagnosed
at an early stage, then curative resection will be possible, which could
increase the 5-year survival rate to i 95% [2]. Therefore, early detec-
tion is one of the most effective strategies for reducing the mortality
of GC.

Endoscopy with white light imaging (WLI) is considered a stan-
dard modality for the detection of early GC (EGC) worldwide [3].
However, EGC often appears as delicate changes in the mucosa,
making the overall sensitivity of WLI in detecting EGC not entirely
satisfactory (40%�60%) [4]. Several studies have indicated that mag-
nifying endoscopy in combination with image-enhanced endoscopy
techniques, such as narrow-band imaging (NBI), auto-fluorescence
imaging, and blue laser imaging, can remarkably improve the perfor-
mance in detecting EGC [4-6]. However, these advanced devices,
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Research in Context

Evidence before this study

Gastric cancer (GC) is mostly diagnosed at an advanced stage,
with a 5-year survival rate of h 30%. But if GC can be diagnosed
and then curatively resected at an early stage, which could
increase the 5-year survival rate to i 95%. However, detection of
early gastric cancer is a big challenge. White light imaging
(WLI) is the most popular modality for detection of early gastric
cancer, but the overall sensitivity of WLI is relatively low
(40%�60%). Although other image-enhanced endoscopy techni-
ques can improve the diagnostic ability of EGC, these advanced
devices, together with experienced endoscopists, are not
always available. Therefore, novel practical tools in detecting
EGC lesions are needed.

Added value of this study

By using a total 45,240 endoscopic images from 1364 patients,
this study developed and validated a real-time DCNN system
for EGC detection. Another 1514 images from three other hos-
pitals were used as external validation. The DCNN system
showed good performance in EGC detection in different valida-
tion datasets. The DCNN system showed better diagnostic abil-
ity and stability in EGC detection than expert or trainee
endoscopists. Moreover, the DCNN system was able to process
oesophagogastroduodenoscopy (OGD) video streams to detect
EGC lesions in real time. We also developed a website to pro-
vide free access to our DCNN system (http://112.74.182.39),
with the an open-access database containing 300 cancerous
lesions and 300 non-cancerous controls available upon reason-
able request on the website.

Implications of all the available evidence

A real-time DCNN system for EGC detection with high accuracy
and stability is developed and validated here, showing great
potential in assisting endoscopists to detect EGC. Multicentre
prospective validation is needed to acquire high-level evidence
for its clinical application in EGC detection.
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together with experienced endoscopists, are not always available,
especially in rural or undeveloped areas. Whereas the detection rate
of EGC is about 75% of all GCs in Japan, the detection rate in China is
only 5%�20% [7, 8]. Therefore, the development of practical tools that
can assist endoscopists in detecting EGC lesions is of great value.

In recent years, artificial intelligence (AI) systems based on deep
convolutional neural network (DCNN) algorithms have achieved
unprecedented success[9, 10]. In the medical field, AI systems have
shown vast superiority in detecting skin cancers, diagnosing diabetic
retinopathy, and improving the quality of oesophagogastroduodeno-
scopy (OGD) [11-13]. Several preliminary studies have applied AI to
the detection of GC; however, limitations such as low efficiency [14],
selection bias in datasets [15, 16], and applicability only for static
images [14, 15], have compromised the clinical value.

We aimed to develop an efficient AI system based on DCNNs to
detect EGC under WLI in real time.

2. Methods

2.1. Study design and participants

This study was performed at four institutions in China: Endo-
scopic Center of Nanjing University Medical School Affiliated Drum
Tower Hospital (NJDTH), Endoscopic Center of Wuxi People’s Hospi-
tal (WXPH), Endoscopic Center of Taizhou People’s Hospital (TZPH),
and Endoscopic Center of Gaochun People’s Hospital (GCPH). A total
of 1568 patients who underwent endoscopic submucosal dissection
(ESD) according to associated guidelines [17] between January 2016
and January 2019 were retrospectively included in this study. Among
these patients, 1508 were contributed by NJDTH and the remaining
60 were provided by the three other hospitals. The inclusion criteria
were as follows: a diagnosis of EGC; ESD treatment; histologically
proven malignancy; and endoscopic examination before ESD at
NJDTH, WXPH, TZPH, or GCPH. The exclusion criteria were as follows:
history of chemotherapy or radiation to the stomach, lesions adjacent
to the ulcer or ulcer scar, gastric stump cancer, and multiple synchro-
nous cancerous lesions.

2.2. Data preparation

A total of 80,791 endoscopic images from 1482 patients were ret-
rospectively obtained from the imaging database of the NJDTH endo-
scopic center. Five experienced endoscopists from NJDTH (each of
whom had > 5 years of experience and had performed at least 5000
OGD examinations) assessed the quality of all images. A total of
35,551 endoscopic images of NBI, dye-stained imaging, ESD opera-
tion, or poor quality (e.g., less insufflation of air, halation, defocus,
blurs, bubbles, sliding, fuzzy, bleeding) were excluded from the study.
The remaining 45,240 endoscopic images from 1364 patients were
used for the development and temporal validation of the DCNN sys-
tem. The temporal validation dataset was independent of the training
dataset. Another retrospective dataset including 26 OGD videos with
EGC lesions, which were independent of all the 45,240 static images,
was used to assess the performance of the DCNN system in real time.
To conduct external validation, we selected 406 images of 20 patients
fromWXPH, 556 images of 20 patients from TZPH, and 552 images of
20 patients from GCPH. All endoscopic images and videos were
recorded using Olympus endoscopes (GIF-H260, GIF-H260Z, GIF-
HQ290, GIF-H290Z; Olympus Medical Systems, Tokyo, Japan) with
video processors (EVIS LUCERA CV260/CLV260SL, EVIS LUCERA ELITE
CV290/CLV290SL, Olympus Medical Systems). All images were ano-
nymised before inclusion to protect the privacy of the patients.

Specifically, the training and validation datasets were as follows:
1) The training dataset included 35,823 images of 1085 patients from
NJDTH between January 2016 and October 2018 (among these
images, 26,172 contained cancerous lesions). 2) The temporal valida-
tion dataset included 9417 images of 279 patients from NJDTH
between November 2018 and January 2019 (among these images,
4153 contained cancerous lesions). 3) The external validation data-
sets included 406 images of 20 patients fromWXPH (203 images con-
tained malignant lesions), 556 images of 20 patients from TZPH (228
images contained malignant lesions), and 552 images of 20 patients
from GCPH (226 images included cancerous lesions), and all of these
images were obtained and filed between June 2019 and October
2019. 4) The video dataset included 26 videos of 26 patients from
NJDTH between November 2019 and December 2019. 5) The testing
dataset included 300 cancerous images and 300 control images (no
malignant lesions in the images) randomly selected from the tempo-
ral validation dataset to compare the performance of the DCNN sys-
tem and endoscopists. The control images contained several types of
non-cancerous images, including chronic non-atrophic gastritis,
chronic atrophic gastritis, and erosion (Table S1). The sample distri-
bution is shown in Fig. 1.

Two board-certified pathologists determined the pathologic diag-
nosis of EGC using haematoxylin- and eosin-stained tissue slides,
according to the World Health Organization (WHO) Classification of
Tumours 5th edition. The same five experienced endoscopists studied
the guidelines of the European Society of Gastrointestinal Endoscopy
and Japanese Gastric Cancer Association. All selected images were
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Fig. 1. Workflow for the development and validation of the DCNN system for diagnosing EGC. DCNN: Deep convolutional neural networks; EGC: Early gastric cancer.
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categorised into the cancer (31,082 images) and non-cancer (15,672
images) groups. Thereafter, images from the cancer group were inde-
pendently annotated by experienced endoscopists based on the path-
ological diagnosis. Specifically, the endoscopists were asked to
outline the boundary of the actual lesion areas within the images.
Thereafter, the circumscribed rectangles of the outlined regions were
generated by the computer as annotation boxes. Thus, the size of the
annotation boxes was precisely controlled. To avoid individual bias,
the annotations and marks in the images were finalised only when
more than four endoscopists have reached a consensus.
2.3. Training of the DCNN system

During the training process for the DCNN system, the parameters
of the neurones in the network were initially set to random values.
For each annotated image, the location of a lesion computed by the
system was compared with the annotated areas. The parameters of
this mathematical function were then slightly modified to decrease
the error in the same image. The same process was repeated multiple
times for every image in the training set.

The architecture of the deep network mainly comprises two parts:
the backbone structure to extract features from the image and the
detection and decision layers to detect the location of the lesions. The
backbone structure employed in this model was the Darknet-53
model, which contains 53 layers of neurones. This architecture con-
sists of a sequence of non-linear processing modules. Each module
consists of one or more convolutional layers with batch normaliza-
tion and Leaky ReLU non-linearity activation functions. Mainly, the
modules of residual networks are employed in the architectures to
increase the depth of the feature-extracting network. The decision
layers predict four coordinates for each bounding box based on the
features extracted from the convolutional layers. Three different
scales of predictors were employed to detect large, medium, and
small objects (Fig. 2). In the meanwhile, the decision layers will out-
put the confidence of the content in the bounding boxes and classify
the images into certain classes according to the cut-off value. The
confidence of the results contains two parts, the Intersection-over-
Union (IoU) to evaluate the overlap of predicted bounding boxes and
the ground truth bounding boxes, which is defined as:

IoU ¼ area predicted bounding boxesð Þ\ area ground truth bounding boxesð Þ
area predicted bounding boxesð Þ[ area ground truth bounding boxesð Þ
and the probability of classification (Pr(object)), which is the classifi-
cation probability of object in the predicted bounding box.
The total confidence in this detection task is defined as: Confidence ¼
PrðobjectÞ � IoU.

2.4. Validation and testing of the DCNN system and comparison with
endoscopists

First, we evaluated the performance of our DCNN system in the
detection of EGC in patients using the independent temporal valida-
tion dataset. Second, we assessed the robustness of our DCNN system
using the three external validation datasets from WXPH, TZPH, and
GCPH. Third, we evaluated performance of the DCNN system in sub-
groups of EGC lesions with the temporal validation dataset. We
divided the temporal validation dataset into three datasets, including
intraepithelial lesions dataset, intramucosal lesions dataset and sub-
mucosal lesions dataset according to the cases. Then, we analyzed the
diagnostic performance of the DCNN system in the three types of early
gastric cancer lesions. Fourth, we compared the performance of the
DCNN system and endoscopists using the testing dataset. Endoscopists
from the four institutions were assigned to two groups based on level
of expertise: 6 experts (minimum of 10-year experience with 10,000
OGD examinations) and 10 trainees (2-year experience with 2000
OGD examinations). These endoscopists were not involved in the
selection and annotation of the image datasets, and were masked to
the clinical characteristics, endoscopic manifestations, and pathologi-
cal results of all patients. The testing images were all mixed in scram-
bled order and assessed by the endoscopists. Fifth, to assess the
stability of the DCNN system and endoscopists, the same group of test-
ing images was scrambled and assigned to the DCNN system and
endoscopists for re-testing 3 days later. Sixth, we tested the perfor-
mance of our DCNN system using a video dataset. The flowchart of this
study is shown in Fig. 1. We also developed a website to provide free
access to our DCNN system (http://112.74.182.39) (Fig. S4), with an
open-access database containing 300 cancerous lesions and 300 non-
cancerous controls available upon reasonable request on the website.

2.5. Outcomes

The accuracy, sensitivity, specificity, positive predictive value (PPV),
and negative predictive value (NPV) of the diagnosis were the primary
outcomes. Accuracy is defined as the system identifies a predicted box
contains a cancerous lesion when its confidence value output by the

http://112.74.182.39


Fig. 2. Architecture and workflow of the DCNN system. DCNN: Deep convolutional neural networks. .
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DCNN is bigger than a given cut-off value. In this study, the cut-off
value is defined as the value for which the point on the Receiver oper-
ating characteristic (ROC) curve has the minimum distance to the
upper left corner (where sensitivity=1 and specificity=1).
Accuracy = true predictions/total number of cases, Sensitivity = true
positive/total number of positive cases, Specificity = true negative/total
number of negative cases, PPV = true positive/(true positive + false pos-
itive), NPV = true negative/(true negative + false negative).

2.6. Statistical analysis

A two-sided McNemar test was used to compare the differences in
accuracy, sensitivity, specificity, PPV, and NPV of endoscopists before
and after conferring to the results of DCNN. Receiver operating char-
acteristic (ROC) curve analysis was employed, and the area under the
ROC curve (AUC) was calculated to evaluate the diagnostic ability of
the DCNN system in the temporal validation and external validation
datasets. Inter-observer and intra-observer agreement of the endo-
scopists and DCNN were calculated using Cohen’s kappa coefficient.
Statistical analysis was performed using SPSS (version 26.0; IBM Inc.,
Armonk, NY, USA) or R software (version 3.6.3).

2.7. Ethics

The study design was reviewed and approved by the Medical
Ethics Committee of Nanjing University Medical Affiliated Drum
Tower Hospital (approval no. 2020�026�01). The study was regis-
tered in the WHO Registry Network’s Primary Registries
(ChiCTR2000031058). Informed consent was not required from
patients whose images were retrospectively obtained from the image
databases at each hospital involved in this study.
2.8. Role of the funding source

The funders had no role in study design, data collection, data anal-
yses, interpretation, or writing of report. The corresponding authors
had full access to all the data in the study.
3. Results

3.1. Performance of the DCNN system in detecting EGC lesions

The clinical characteristics of the patients enrolled in this study
are shown in Table 1. The diagnostic ability of our DCNN system in
detecting EGC lesions was evaluated using four independent valida-
tion datasets (Table 2). In the NJDTH validation dataset, the diagnostic
accuracy was 87.8% (Fig. S1a). In the three external validation data-
sets, the accuracies were 88.7% for WXPH, 91.2% for TZPH, and 85.1%
for GCPH (Fig. S1b and S1c and S1d). The sensitivity and NPV of our
DCNN system were > 85% for all validation datasets. The specificity
of the DCNN system ranged from 81.7% to 90.3%, and the PPV ranged



Table 1
Clinical characteristics of training and validation datasets.

Characteristics Training dataset
(NJDTH, 1085 cases)
January
2016�October 2018

Temporal validation
dataset (NJDTH, 279
cases) November
2018�January 2019

External validation datasets June 2019�October 2019 Video dataset
(NJDTH, 26 cases)
November
2019�December
2019

WXPH (20 cases) TZPH (20 cases) GCPH (20 cases)

Sex (male/female) 808 / 277 191 / 88 13 / 7 12 / 8 15 / 5 16 / 10
Age (years), mean (range) 63.4 (27�90) 64.0 (34�86) 66.3 (51�78) 61.8 (47�73) 62.6 (54�79) 62.6 (39�77)
Size (cm), mean (range) 2.1 (0.2�4.4) 1.9 (0.3�3.9) 1.9 (0.6�3.5) 1.7 (0.5�3.6) 1.4 (0.5�2.6) 1.7 (0.4�3.5)
Location (gastro-oesophageal junction /

gastric fundus / gastric body / angulus
/ antrum)

340 / 8 / 194 / 164 /
379

92 / 4 / 41 / 40 / 102 12 / 0 / 0 / 3 / 5 8 / 0 / 2 / 4 / 6 7 / 0 / 0 / 4 / 9 8 / 0 / 4 / 6 / 8

Macroscopic type (I / IIa / IIb / IIc /
IIa + IIc / IIc + IIa / IIb + IIc / III)

275 / 183 / 48 / 363 /
150 / 27 / 10 / 29

32 / 68 / 16 / 107 /
45 / 5 / 3 / 3

0 / 4 / 1 / 8 / 4 /
3 / 0 / 0

0 / 6 / 1 / 6 / 3 /
3 / 1 / 0

2 / 4 / 0 / 5 / 4 /
3 / 1 / 1

0 / 3 / 0 / 17 / 5 /
0 / 1 / 0

Degree of differentiation (differenti-
ated / undifferentiated / mixed)

1002 / 14 / 69 256 / 2 / 21 19 / 0 / 1 17 / 1 / 2 19 / 0 / 1 24 / 0 / 2

Invasion depth (LGD + HGD / M / SM) 471 / 368 / 246 99 / 135 / 45 4 / 15 / 1 3 / 17 / 0 6 / 12 / 2 3 / 22 / 1
Atrophy (with / without) 799 / 286 173 / 106 17 / 3 13 / 7 16 / 4 20 / 6

LGD: Low grade dysplasia; HGD: High grad dysplasia; M: Mucosal gastric cancer; SM: Submucosal gastric cancer.

Table 2
. Performance of the DCNN system in validation datasets.

NJDTH validation External validation
Internal validation WXPH TZPH GCPH

Accuracy (95% CI) 87.8 (87.1�88.5) 88.7 (85.2�91.4) 91.2 (88.5�93.3) 85.1 (81.9�87.9)
Sensitivity (95% CI) 95.5 (94.8�96.1) 91.1 (86.1�94.5) 92.1 (88.1�94.9) 85.9 (81.0�89.7)
Specificity (95% CI) 81.7 (80.7�82.8) 86.2(80.5�90.5) 90.3 (86.0�93.4) 84.4 (79.5�88.4)
Positive predictive value (95% CI) 80.5 (79.4�81.6) 86.9 (81.4�90.9) 90.5 (86.3�93.5) 84.6 (79.8�88.6)
Negative predictive value (95% CI) 95.9 (95.2�96.4) 90.7 (85.4�94.2) 91.9 (87.9�94.8) 85.7 (80.8�89.5)
AUC 0.940 0.906 0.925 0.887
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from 80.5% to 90.5%. The specificity and PPV in the NJDTH validation
dataset were the lowest among all the validation datasets. Notably,
the predictive area of EGC lesions with the DCNN system was in high
accordance with the positive pathological tissues (Fig. 3a) and anno-
tation by experts (Fig. 3b). High AUC values (0.887�0.940) indicated
an excellent diagnostic performance of the DCNN system in the four
validation datasets (Fig. 4). Sensitivity analysis showed that the
DCNN system achieved comparable performance in three subgroups
of EGC including intraepithelial lesions, intramucosal lesions and sub-
mucosal lesions (AUC: 0.938 vs 0.946 vs 0.937, Table S2 and Fig. S2
and Fig. S3).

3.2. Comparison between the DCNN system and endoscopists

We compared the diagnostic performance of the DCNN system
and endoscopists using a testing dataset. As shown in Table 3, the
accuracy of the DCNN system (95.3%) was higher than that of expert
(87.3%) and trainee (73.6%) endoscopists. Moreover, the sensitivity,
specificity, PPV, and NPV of the DCNN system were all superior to
those of both groups of endoscopists. Although endoscopists from
the expert and trainee groups achieved rather comparable specificity
and PPV, the sensitivity and NPV were relatively higher in the expert
group. We then combined and analysed the diagnostic ability of the
DCNN system with that of endoscopists. The results showed that in
the expert group, the diagnostic accuracy (87.3% (95% confidence
interval [CI] 85.2%�89.3%) vs. 94.3% (95% CI 91.0%�97.5%), McNemar
test, P = 0.002), sensitivity (82.7% (95% CI 75.5%�89.9%) vs. 97.4%
(95% CI 95.0%�99.8%), McNemar test, P = 0.005), and NPV (85.4% (95%
CI 80.1%�90.7%) vs. 97.9% (95% CI 96.3%�99.4%), McNemar test,
P = 0.002) significantly increased after combining the results of the
DCNN system. The specificity (91.9% (95% CI 87.2%�96.6%) vs. 91.1%
(95% CI 83.1%�99.1%), McNemar test, P = 0.553) and PPV (92.1% (95%
CI 88.4%�95.7%) vs. 92.1% (95% CI 85.6%�98.5%), McNemar test,
P = 1.000) were comparable regardless of the assistance of the DCNN
system. In the trainee group, the accuracy (73.6% (95% CI
71.0%�76.3%) vs. 96.2% (95% CI 95.8%�96.7%), McNemar test, P <

0.001), sensitivity (50.2% (95% CI 44.1%�56.4%) vs. 94.7% (95% CI
93.9%�95.6%), McNemar test, P < 0.001), specificity (97.1% (95% CI
95.6%�98.5%) vs. 97.7% (95% CI 96.8%�98.6%), McNemar test,
P = 0.914), PPV (95.1% (95% CI 93.2%�96.9%) vs. 97.7% (95% CI
96.8%�98.5%), McNemar test, P = 0.039), and NPV (66.7% (95% CI
63.9%�69.5%) vs. 94.9% (95% CI 94.1%�95.7%), McNemar test, P <

0.001) all remarkably increased when combined with the predictive
results of the DCNN system. Thereafter, we investigated the stability
of the DCNN system and endoscopists. The DCNN system was stable
at all circumstances; however, the performance of endoscopists
showed fluctuations. Our results showed that expert endoscopists
achieved much more substantial intra-observer agreement (k:
0.727�0.802) than trainee endoscopists (k: 0.355�0.744) (Table 4).
The inter-observer agreement of experts was also higher than that of
trainees (Table S3 and Table S4).

3.3. OGD videos with EGC lesions detected with the DCNN system

The trainee endoscopists required approximately 6.84 s per image
to make a diagnosis, whereas the experts required 6.13 s per image
(Table S5). The DCNN system needed only 15 ms to diagnose a single
image, indicating that the system can diagnose > 60 images per 1 s in
real time. On the basis of the extremely fast diagnostic speed, we
tested the performance of the DCNN system in diagnosing EGC in a
video dataset (Video 1 and Video 2). The DCNN system detected 23
lesions in 26 OGD videos. The sensitivity of the DCNN system for
detecting lesions in OGD videos was 88.5% (95% confidence interval
[CI]: 71.0%�96.0%). On the basis of the excellent performance of the
DCNN system, we developed an AI-based diagnostic platform to
assist in the detection of EGC in routine OGD examinations. We also



Fig. 3. (a) Predictive results of the DCNN system and corresponding positive pathological tissues. (b) Predictive results of the DCNN system and corresponding annotations of
experts. DCNN: Deep convolutional neural networks. .
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developed a website to provide free access to our DCNN system
(http://112.74.182.39) (Fig. S4). We also made an open-access image
database (the testing dataset) containing 300 cancerous lesions and
300 non-cancerous controls available on the website, which might be
a useful resource for researchers in the field of AI-assisted medical
imaging.
4. Discussion

In this study, we developed an AI system based on DCNNs to assist
endoscopists in detecting EGC during OGD. The DCNN system dem-
onstrated good diagnostic ability in independent validation datasets,
with satisfactory accuracy (85.1%�91.2%), sensitivity (85.9%�95.5%),

http://112.74.182.39


Fig. 4. Receiver operating characteristic curves illustrating the ability of the DCNN sys-
tem to diagnose EGC. Sample size: 4153 cancer images and 5264 non-cancer images in
NJDTH; 203 cancer images and 203 non-cancer images in WXPH; 228 cancer images
and 228 non-cancer images in TZPH; 226 cancer images and 226 non-cancer images in
GCPH. NJDTH: Nanjing University Medical School Affiliated Drum Tower Hospital;
WXPH: Wuxi People’s Hospital; TZPH: Taizhou People’s Hospital; GCPH: Gaochun Peo-
ple’s Hospital; DCNN: Deep convolutional neural networks; EGC: Early gastric cancer.

Table 4
Intra-observer agreement of the testing dataset.

Expert / trainee k

Expert 1 0.802
Expert 2 0.765
Expert 3 0.778
Expert 4 0.727
Expert 5 0.769
Expert 6 0.802
Trainee 1 0.552
Trainee 2 0.534
Trainee 3 0.535
Trainee 4 0.570
Trainee 5 0.419
Trainee 6 0.634
Trainee 7 0.355
Trainee 8 0.744
Trainee 9 0.662
Trainee 10 0.672
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NPV (85.7%�95.9%), and AUC value (0.887�0.940). Sensitivity analy-
sis showed that the DCNN system achieved comparable performance
in three subgroups of EGC lesions including intraepithelial lesions,
intramucosal lesions and submucosal lesions. The performance of the
DCNN system in EGC detection was much better than that of endo-
scopists. The diagnostic performance of trainee endoscopists when
combined with the DCNN system became comparable to that of
expert endoscopists. Moreover, the DCNN system was able to process
OGD videos to detect EGC lesions in real time owing to its extremely
fast diagnostic speed (15 ms per image). To our knowledge, our
DCNN system is the most efficient AI-based system for detecting EGC
lesions worldwide.

Endoscopy with targeted biopsy is the gold standard method for
diagnosing EGC [18]. However, as EGC lesions often appear as subtle
mucosal changes under conventional WLI, the successful detection of
these lesions largely depends on the skills and experience of endo-
scopists [19]. Previous studies have validated the diagnostic efficacy
of WLI in detecting EGC, with rather unsatisfactory sensitivity (48%,
95% CI: 39%�57%) and specificity (67%, 95% CI: 62%�71%) [5].
Recently, several advanced technologies such as magnifying endos-
copy, NBI, auto-fluorescence imaging, and blue laser imaging have
been applied for the detection of EGC [4, 6, 20]. In several studies, the
sensitivity (83%, 95% CI: 79%�87%) and specificity (96%, 95% CI:
95%�97%) of magnifying endoscopy combined with NBI in the diag-
nosis of EGC were superior to those of conventional WLI [5]. How-
ever, NBI has insufficient brightness, making it unsuitable for use in
routine screening. Moreover, achieving sufficient sensitivity with
these high technologies often depends on the expertise of endoscop-
ists [21]. Our DCNN system was much more friendly to endoscopists,
Table 3
Comparison between the DCNN system and endoscopists.

Accuracy (95% CI) Sensitivity (95% CI) Specificity (95% C

DCNN 95.3 (93.3�96.8) 93.0 (89.3�95.5) 97.7 (95.0�99.0)
Experts 87.3 (85.2�89.3) 82.7 (75.5�89.9) 91.9 (87.2�96.6)
Trainees 73.6 (71.0�76.3) 50.2 (44.1�56.4) 97.1 (95.6�98.5)
DCNN + experts 94.3 (91.0�97.5) 97.4 (95.0�99.8) 91.1 (83.1�99.1)
DCNN + trainees 96.2 (95.8�96.7) 94.7 (93.9�95.6) 97.7 (96.8�98.6)
with nearly no requirements for experience and training. With the
assistance of the DCNN system, the performance of trainee endoscop-
ists in EGC detection significantly improved, with a sensitivity from
82.7% to 94.7%. Notably, with the assistance of the DCNN system, the
performance of trainee endoscopists became comparable to that of
experts (sensitivity: 94.7% vs. 97.4%). These results indicate that the
DCNN system has great potential for improving the detection rate of
EGC, especially for endoscopists lacking extensive experience and
training in developing regions.

Several prior studies have reported the application of DCNNs in
assisting in the diagnosis of GC. Toshiaki et al. developed a convolu-
tional neural network (CNN)-based GC diagnostic system [14]. The
sensitivity of this CNN system was 92.2%, but the PPV was only 30.6%.
PPV is used to quantify the detection efficiency. The low PPV indi-
cated that the cancerous lesions detected by this system included
excessive false-positive judgements, which would increase the risk of
bleeding and pose a heavy burden on endoscopists and pathologists
by requiring them to conduct more biopsies and pathological diagno-
ses, respectively. We have given attention to both sensitivity and PPV
in our DCNN system, and achieved an elegant balance with satisfac-
tory sensitivity and acceptable PPV. This could enable the system to
detect more potential EGC lesions and reduce unnecessary biopsies
at the same time. Accordingly, the prediction of our system showed
remarkable consistency with positive pathological tissues and anno-
tation by experts. Hong et al. reported a lesion-based CNN for EGC
detection with a sensitivity of 91.0% and an AUC value of 0.981 [15].
However, the validation dataset was a small subset randomly
selected from the whole collected images, which indicated that sev-
eral images from one patient might exist in both the training and val-
idation datasets. This would, in turn, lead to overfitting. Our training
and validation datasets were collected at different time intervals,
which can simulate the datasets in prospective clinical trials and thus
yield more objective results. Furthermore, the models in the two
studies were only applicable to the detection of still images, which
restrained the clinical application of real-time videos. Our DCNN
I) Positive predictive value (95% CI) Negative predictive value (95% CI)

97.6 (94.8�98.9) 93.3 (89.8�95.7)
92.1 (88.4�95.7) 85.4 (80.1�90.7)
95.1 (93.2�96.9) 66.7 (63.9�69.5)
92.1 (85.6�98.5) 97.9 (96.3�99.4)
97.7 (96.8�98.5) 94.9 (94.1�95.7)
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system is superior because it achieved excellent performance in video
streams. Luo et al. developed an AI-based diagnostic system for upper
gastrointestinal cancer and validated the excellent performance of
this system in detecting the malignancy [16]. However, as their open
data indicated, most of the images that they used contained
advanced-stage GC lesions. This may explain the relatively high accu-
racy, sensitivity, and NPV of trainee endoscopists in their study. The
training and validation datasets we used in developing our DCNN
system were derived from EGC patients treated with ESD and had a
histologically proven malignancy. This ensured that all cancerous
images contained EGC lesions but not advanced GC lesions. Further,
the sensitivity analysis showed that the DCNN system achieved com-
parable performance in three subgroups of EGC lesions, including
intraepithelial lesions, intramucosal lesions and submucosal lesions.
Moreover, because all tissues originated from ESD, the pathological
diagnosis was much more convincing than that from forceps biopsy
specimens. Therefore, our DCNN system is more reliable in EGC
detection than previously reported systems.

To reinforce the diagnostic robustness and stability, we trained
our DCNN system using reliable datasets in which labels were con-
firmed when more than four of five endoscopists have reached a con-
sensus. Benefiting from the validated marks and efficient Darknet-53
model, the diagnostic robustness and stability of the DCNN system
were satisfactory compared with those in previous reports. To evalu-
ate the robustness of the DCNN system, we validated this system in
one temporal validation dataset and three external validation data-
sets. The DCNN system achieved excellent performance in the NJDTH
temporal validation dataset with an accuracy of 87.8%, a sensitivity of
95.5%, a specificity of 81.7%, and an AUC value of 0.940. In addition,
the system also showed a favourable performance in the three exter-
nal validation datasets. Moreover, we used Cohen kappa coefficients
to assess the stability of the DCNN system and endoscopists. Our
results showed that expert endoscopists achieved substantial intra-
observer agreement (k: 0.727�0.802), whereas trainee endoscopists
achieved moderate intra-observer agreement (k: 0.355�0.744). The
results also revealed that the inter-observer agreement of experts
was much higher than that of trainees. However, the DCNN system
exhibited an extremely stable diagnostic ability, which was superior
to that of endoscopists (k: 1.000). This might be explained by the dif-
ferent expertise levels among the endoscopists (inter-observer agree-
ment) and the inevitable mistakes (intra-observer agreement) due to
some subjective factors. On the basis of the remarkable performance
of the DCNN system, we developed an AI-based diagnostic platform
to assist in the detection of EGC in routine OGD examinations. We
believe that this platform could improve the detection rate of EGC
and increase the accordance of diagnosis among endoscopists with
different expertise levels. Multicentre prospective validation is
underwent to further evaluate the assistant role of the DCNN system
in EGC detection.

However, this study had several limitations. First, the DCNN sys-
tem can detect only EGC and precancerous lesions under WLI but not
NBI. A DCNN system that can detect lesions in NBI mode is being
developed. Second, this was a retrospective study, and the excellent
performance of the DCNN system cannot reflect the clinical applica-
tion in the real world. We have designed a prospective randomised
controlled trial to validate the applicability of this DCNN system in
real-world clinical settings. Third, the DCNN system was trained and
validated on images obtained using Olympus devices, which might
restrain the use of other brands (e.g., Fuji) of similar devices. We will
collect more images using Fuji devices in future studies. Fourth, only
high-quality images were used in this project. We will collect more
images with different resolutions to enhance the generalisability.

In conclusion, we have developed an efficient AI system based on
DCNN for detecting EGC in real time. The DCNN system exhibited
excellent performance for EGC detection in independent validation
datasets and enhanced the diagnostic ability of trainee endoscopists
to a level comparable to experts. However, since this study is a
retrospective study, Multicentre prospective validation is needed
to acquire high-level evidence for its clinical application in EGC
detection.
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