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Abstract

The protein P29 is a potential serological marker for post-treatment monitoring of cystic echinococcosis (CE) especially in
young patients. We now have demonstrated that P29 is encoded in the Echinococcus genus by a single gene consisting of 7
exons spanning 1.2 kb of DNA. Variability of the p29 gene at inter- and intra-species level was assessed with 50 cDNA and
280 genomic DNA clones isolated from different E. granulosus s.l. isolates (E. granulosus sensu stricto (G1), E. equinus (G4), E.
ortleppi (G5), E. canadensis (G6), E. canadensis (G7) and E. canadensis (G10)) as well as four E. multilocularis isolates. Scarce
interspecies polymorphism at the p29 locus was observed and affected predominantly E. granulosus s.s. (G1), where we
identified two alleles (A1 and A2) coding for identical P29 proteins and yielding in three genotypes (A1/A1, A2/A2 and A1/
A2). Genotypic frequencies expected under Hardy-Weinberg equilibrium revealed a high rate of heterozygosity (47%) that
strongly supports the hypothesis that E. granulosus s.s. (G1) is predominantly outbreeding. Comparative sequence analyses
of the complete p29 gene showed that phylogenetic relationships within the genus Echinococcus were in agreement with
those of previous nuclear gene studies. At the protein level, the deduced P29 amino acid (AA) sequences exhibited a high
level of conservation, ranging from 97.9% AA sequence identity among the whole E. granulosus s.l. group to 99.58% identity
among E. multilocularis isolates. We showed that P29 proteins of these two species differ by three AA substitutions without
implication for antigenicity. In Western-blot analyses, serum antibodies from a human CE patient infected with E. canadensis
(G6) strongly reacted with recombinant P29 from E. granulosus s.s. (G1) (recEg(G1)P29). In the same line, human anti-
Eg(G1)P29 antibodies bound to recEcnd(G6)P29. Thus, minor AA sequence variations appear not to impair the prognostic
serological use of P29.
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Introduction

Human echinococcosis is a severe disease caused by infection

with the metacestode stage of tape-worms belonging to the genus

Echinococcus (family Taeniidae) [1]. E. granulosus sensu lato (E.

granulosus s.l.) and E. multilocularis are the most common species

infecting humans, hereby causing cystic echinococcosis (CE) or

alveolar echinococcosis (AE), respectively.

According to the guidelines of the WHO informal echinococosis

working group [2], recommended treatment options for human

echinococcosis include (i) full surgical resection of the parasitic

lesions followed by chemotherapy for operable cases and (ii) long-

term chemotherapy as the only treatment option for inoperable

cases or cases where only partial resection was possible. In the

post-surgical or medical echinococcosis therapy program, the risk

of recurrence represents the major problem [3–5]. In this respect,

post-treatment follow- up of patients for several years is mandatory

to detect potential recurrences as soon as possible. Standardized

and structured follow-up methodology (serological and imaging

procedures) is essential for clinicians to carry out a reliable

prognosis for the patients. Especially for CE, an agreement on

which tests should be used, and how these tests should be applied

and interpreted, is still lacking.

The P29 protein was first described by González et al. [6] as a

novel 29 kDa antigen from E. granulosus protoscoleces, while

looking for parasite antigens distinct from those present in hydatid

cyst fluid. Subsequently, the same protein (EgP29) has been

characterized within E. granulosus s.s. (G1) protoscolex-derived

soluble somatic antigen, as a biomarker for monitoring of CE

patients [7]. A recombinant version of P29 (recEg(G1)P29) has

been generated and appeared to be a prognostically useful tool for

post-surgical monitoring of especially young CE patients, as P29-

specific antibodies assessed against native and recEg(G1)P29

antigen gradually disappeared within approximately six months

after surgery in a high proportion of cured CE patients [8]. This

rapid decrease of antibody concentrations was not observed for
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antibodies raised against other Echinococcus antigens [9], maybe

with the exception of B2t [10], a peptide derived from AgB2, that

showed also a relatively good association between antibody

kinetics and cure of CE. In conclusion, the determination of

anti-P29 antibody levels in the post-surgical follow-up of CE

patients could therefore represent a valuable prognostic tool for

the clinical management of CE cases. Standardization of a

serological test based on recEg(G1)P29 is of high interest for post

treatment follow-up, especially of young CE patients [8].

However, the question that has not been addressed so far is

whether the designed recombinant form originating from E.

granulosus s.s. (G1) will also be recognized by human sera of patients

that are infected with a different species and/or genotype of the E.

granulosus s.l. complex. All recombinant proteins/antigens used for

immunodiagnosis or vaccine development need to be investigated

for their degree of genetic conservation (or diversification).

Antigenic variation based on allelic polymorphisms and/or

multigene family encoding proteins can influence the prognostic

and protective potential of any recombinant antigen. Currently,

ten distinct genotypes (G1-G10) of E. granulosus s.l. have been

documented and were named according to their most commonly

identified intermediate host. The majority of them were known to

infect humans, with exception of the G4 horse strain which has not

been reported to be zoonotic in the literature. Further phyloge-

netic analyses revealed that E. granulosus s.l. was not a uniform

species and has now been split into E. granulosus sensu stricto (s.s.)

(G1/G2/G3), E. equinus (G4), E. ortleppi (G5), and E. canadensis (G6–

G10) [11].

In E. granulosus s.l. several genes that encode diagnostic antigens

have been shown to form part of multigene families. As an

example, recent studies have demonstrated that antigen B (AgB),

which has a high diagnostic value for CE, is encoded by a highly

polymorphic multigene family consisting of at least five (AgB1–

AgB5) variably expressed major gene clusters [12–18]. The

differences between putative isoforms encoded by the five EgAgB

groups can reach 81% at the amino acid (AA) level [19,20], and

comparative studies of antigen B subunits (EgAgB1 and EgAgB2)

derived proteins/peptides revealed remarkable differences in the

diagnostic performances [21]. Thus, on one hand, this large

antigenic variation makes it difficult to standardize a recombinant

antigen B based assay. On the other hand, diversity of this protein

may also limit effectiveness of any application mode as a vaccine

candidate. This potential problem of antigenic variability was

properly assessed for EG95-1G1-vaccine, a promising E. granulosus

vaccine candidate [22,23]. Recombinant EG95-1G1-based vacci-

nation has yielded a very high protection in ruminants against E.

granulosus genotype G1 infection. The corresponding gene, Eg

EG95-1, belongs to a small multigene family including five

members [24]. Variation neutrality was challenged for EG95

genes [22] and theoretically calculated data indicated a genetic

polymorphism of the EG95 antigen-coding genes among different

genetically characterized strains of E. granulosus [23]. Rojas et al.

[25,26] showed that this variability affects the antigenicity of EG95

antigen, by demonstrating that recombinant protein EG95-1G6

(E. canadensis (G6)) was not recognized by antibodies raised by

sheep vaccinated with EG95-1G1. Genetic polymorphism in

diagnostic/vaccine candidates was also reported for other parasites

including protozoa (e.g. Trypanosoma cruzi [27]), trematodes

(Schistosoma japonicum [28]), cestodes (e.g. Taenia saginata [29]) or

nematodes (e.g., Trichostrongylus colubriformis [30]).

In the present study, we experimentally addressed the genetic

polymorphism of the p29 gene within a relatively large selection of

members of the Echinococcus genus, in order to predict the reliability

of this serological tool upon use for CE in humans infected with

different genotypes of E. granulosus sensu lato.

Materials and Methods

Ethical statement
All parasite samples of animal origin were obtained from

existing collections. Respective samples were collected in the frame

of governmentally regulated meat inspection at public abattoirs,

and specimen were sent in to the laboratory of parasitology for

respective parasitological and molecular identification. Parasite

samples from human origin were derived from an existing

collection of Echinococcus DNA biobank at EPS Fattouma

Bourguiba hospital in Monastir/Tunisia, designed and approved

to be used for basic research studies. The parasite samples were

fully anonymized respective to the patients where it came from,

thus requiring no further approval. All parasite samples (animal

and human origin) had already been used in a respectively

approved previous study [32].

All clinical human serum samples were collected as part of

public health and clinical diagnostic activities, were pre-existing

relative to the start of the study, and were examined as anonymous

samples. Furthermore, all patients – in the frame of their follow-up

assessment, have complied, upon request of their treating clinician,

on the use of their serum for experimental serodiagnostic

investigations. Baseline data for all samples include only the

geographical origin of patients, thus no reference to personal data

was recorded. For data evaluation, all samples were anonymized.

All serum samples had already been used in two respectively

approved previous studies [7,8]. Ethical review of the study

protocol was performed and subsequently approved by the IPA

Review Board of the Vetsuisse Faculty of Bern/Switzerland.

Parasite material, DNA/RNA sample preparation and
genotyping

Genomic DNA (gDNA) from E. equinus (G4) (Spain), E. ortleppi

(G5) (Brasil), E. canadensis (G6) (Algeria), E. canadensis (G7)

(Argentina) and E. canadensis (G10) (Estonia) as well as (ii) genomic

DNA from four E. multilocularis isolates originating from different

geographical areas (Switzerland, Germany, St. Lawrence Island

and Canada) were obtained from the institutional DNA-collection

in Bern/Switzerland (See table 1).

These samples were used to sequence the genomic locus of p29

and to identify species- specific differences. Five samples of

protoscoleces derived from different sheep hydatid cysts were

collected in a slaughterhouse in Sousse/Tunisia (sheep origin:

rural regions close to Sousse) and 34 human samples were

harvested from Tunisian patients after surgery (Monastir/Tunisia).

From every cyst of animal or human origin, sedimented

protoscoleces from one single cyst were fixed in 95% (v/v) ethanol

and defined as sample. Genomic DNA was extracted using a

standard phenol-chloroform protocol [31], using RNAse A,

Proteinase K and a subsequent isopropanol precipitation followed

by multiple washes in 75% EtOH prior to drying and dissolving in

ddH2O. For all described samples the genotype was determined as

E. granulosus s.s. (G1) using a recently published multiplex PCR

method [32]. Total RNA was extracted from protoscoleces of 5 E.

granulosus s.s. (G1) and 1 E. canadensis (G6) samples respectively

isolated from 5 sheep and 1 camel hydatid cysts using the phenol

based Peq- Gold RNA Pure kit (peqlab), treated with DNAseI to

remove traces of contaminating DNA and finally transcribed into

cDNA using M-MLV Reverse Transcriptase (New England

Biolabs) and oligo (dT) primers according to the manufacturer’s

instructions. The 5 sheep samples were used to sequence the
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cDNA and the gDNA in an E. granulosus s.s. (G1) background, and

the 34 Tunisian human samples were used to identify allelic

differences via multiplex PCR (MAS-PCR, see below).

p29 cDNA/gDNA PCR-amplification, cloning and
sequencing

To amplify the p29 genomic DNA sequence from different

Echinococcus species, the p29-cDNA sequence (GenBank, accession

no. AF078931) was blasted against the E. granulosus genome

assembly data base at the Sanger Institute BLAST server (http://

www.sanger.ac.uk/cgi-bin/blast/submitblast/Echinococcus). Us-

ing the identified genomic p29 sequence found on the pathogen_-

EgG_scaffold_0007, we designed the forward primer (Echi gP29F

Forward) located at position 247 upstream of the start-ATG and

the reverse Primer (Echi gP29R Reverse) located +55 downstream

of the stop-TAG. The additional primers cP29-forward starting

from the start-ATG of p29 and cP29-reverse located at the TAG-

stop codon of p29, were used to amplify the protein coding cDNA

sequence (732 bp). All used primers are specified in table 2 and all

accession numbers are listed at the end of the material and

methods part. PCRs were performed in a reaction volume of 20 ml

containing 25 ng DNA sample, 0.5 mM primers each (Sigma-

Aldrich), 200 mM dNTPs (Promega) and 0.4 units Phusion High-

Fidelity DNA polymerase in 16 Phusion HF PCR Buffer (both

from New England Biolabs). The cycling conditions were as

follows: an initial denaturation step at 98uC for 2 min, 25 cycles

(98uC–30 s, 58uC–30 s, 72uC–1.5 min) and a final extension step

lasting 5 min at 72uC. The amplified DNA fragments were

separated by electrophoresis in a 1% agarose gel and visualized by

ethidium bromide staining and subsequent UV excitation. The

specific bands were cut from the gel, purified with the high pure

PCR purification kit (Roche) and A-overhangs were added with

Taq polymerase prior TA-cloning into the pGEM-Teasy vector

(Promega). Colonies were screened by colony PCR (Primers: T7-

forward, sp6-reverse) and p29-positives were cultured overnight in

ampicillin containing LB medium prior to plasmid purification

using the plasmid miniprep Kit (Qiagen). Plasmids were sequenced

from the T7- and SP6 primer sites using the big dye terminator kit

on an ABI Prism 3730XL sequencer (Applied Biosystems).

Plasmids containing genomic sequences were additionally se-

quenced with a third primer (Echi P29E5R) designed in the p29-

exon 5 to cover the internal region (see table2).

Trans-splicing is a special mechanism of RNA processing in

eukaryotes where exons from two different primary RNA

transcripts are fused to form mature mRNA molecules. Trans-

splicing was described in Echinococcus and a spliced leader (SL) that

is trans-spliced to echinococcal pre-mRNAs was reported [33]. To

determine whether or not the p29 transcript is transpliced or not

with this SL, we carried out a PCR using forward SL-5PR (59-

CACCGTTAATCGGTCCTTAC-39) [33] and reverse Echi-

P29R primer (59- CTACTCGCCCAGCATCATCATACT-39)

or reverse Echi-P29E5R (59- CTGTTCCGCAGTCTTAG-39).

PCR was performed as described above (see section p29 cDNA/

gDNA PCR amplification) in a reaction volume of 20 ml

containing 2 ml (250 ng) template cDNA. As positive control, we

amplified cDNA of the elp gene encoding a member of the ezrin/

radixin/moesin protein family, that was reported to be trans-

spliced [33]. An additional blast search using the p29 cDNA

sequence (GenBank, accession no. AF078931) on an E. granulosus

spliced-leader cDNA library from the protoscolex stage (http://

www.sanger.ac.uk/cgi-bin/blast/submitblast/Echinococcus) was

also performed.

Multiplex allele-specific PCR (MAS-PCR) for analysis of the
p29 alleles within Tunisian E. granulosus s.s. (G1) samples

Since sequencing results showed that the E. granulosus s.s. (G1)

p29 is present in two allelic forms in Tunisia (A1 and A2), we

aimed to determine the genotype frequency and to investigate its

possible association with CE infection in humans. Thus, we

genotyped a cohort of 34 E. granulosus s.s. (G1) isolates obtained

Table 1. Molecular characterization of p29 genomic sequence within Echinococcus genus.

Sample no. Echinococcus species Sample origin Total no of sequenced clones No. of clones Sequence type

1 E. granulosus s.s. (G1) Sheep 20 12 E.g s.s.(G1) P29A1

8 E.g s.s.(G1) P29A2

2 E. granulosus s.s. (G1) Sheep 20 9 E.g s.s.(G1) P29A1

11 E.g s.s.(G1) P29A2

3 E. granulosus s.s. (G1) Sheep 20 18* E.g s.s.(G1) P29A2

4 E. granulosus s.s. (G1) Sheep 20 20 E.g s.s.(G1) P29A1

5 E. granulosus s.s. (G1) Sheep 20 8 E.g s.s.(G1) P29A1

10* E.g s.s.(G1) P29A2

6 E. equinus (G4) Horse 20 20 E.eq (G4) P29

7 E. ortleppi (G5) Cow 20 19* E.ort (G5) P29

8 E. canadensis (G6) Camel 20 20 E.can (G6) P29

9 E. canadensis (G7) Pig 20 20 E.can (G7) P29

10 E. canadensis (G10) Deer 20 17 E.can (G10) P29

11 E.multilocularis (Switzerland) Human 20 20 E.m P29

12 E.multilocularis (Germany) Human 20 20 E.m P29

13 E.multilocularis (St. Lawrence Island) Human 20 20 E.m P29

14 E.multilocularis (Canada) Human 20 20 E.m P29

*In total five clones were rejected because of the bad quality of their sequences (2 clones from sample 3, 2 from sample 5 and 1 clone from sample 7).
doi:10.1371/journal.pone.0098357.t001
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from Tunisian human patients using a multiplex allele-specific

PCR (MAS-PCR). Primers were designed containing allele-

specific 39-ends to differentiate single nucleotide changes at the

specific loci. For human homozygote E. granulosus s.s. (G1) isolates

(A1/A1 or A2/A2), only one single allele-specific fragment was

amplified, yielding a 195 or a 258 bp band, respectively. In case of

heterozygote samples (A1/A2), both fragments were amplified (See

table 2). All primers used are specified in Table 2, and all accession

numbers are listed in an extra chapter at the end of the material

and methods part.

MAS-PCRs were performed in a reaction volume of 20 ml

containing 20 ng DNA sample, 10 pmol primers each of the allele

A1 specific primers EgG1P29A1F and EgG1P29A1R as well as of

the allele A2 specific primers EgG1P29A2F and EgG1P29A2R,

100 mM dNTPs and 0.05 units ml-1 GoTaq DNA polymerase in

16PCR Buffer. The cycling conditions were as follows: an initial

denaturation step at 94uC for 2 min, 25 cycles (94uC–30 s, 58uC–

30 s, 72uC–30 s) and a final extension step lasting 5 min at 72uC.

The amplified DNA fragments were separated by electrophoresis

in a 2% agarose gel and visualized by ethidium bromide staining

and subsequent UV excitation. Allele frequencies, observed

heterozygosity (HO), and heterozygosity expected from Hardy-

Weinberg (HW) assumptions (HE) for the p29 locus were

calculated.

Recombinant expression of P29 protein
Among the members of the E. granulosus complex, both E.

granulosus s.s. (G1) and E. canadensis (G6) are the main species

involved in human infections worldwide. In this part we tested

whether the three AA differences revealed in the P29 protein

sequence between these two species might have any serological

implications on the use of recombinantly expressed recEg(G1)P29

for the serodiagnosis of CE. The coding sequences for E. granulosus

s.s. (G1) P29 (Eg(G1)P29) and E. canadensis (G6) P29 (Ecnd(G6)P29)

were amplified with the primers CACC-p29-Forward and p29-

Reverse described in table 2. The gel-eluted fragments were

cloned into the vector pET-151 (Invitrogen) according to the

manufacturer’s instructions and sequenced as described above

with the primers T7 and Echi P29R Reverse primer. Positive

plasmids were transfected into E. coli BL21(DE3) and 10 ml of an

ON-culture were diluted in 1 liter LB medium containing 100 mg/

ml carbencillin. At an OD 600 of 0.5, the expression of

Table 2. Information of used primers.

Primer name Primer sequences

Primer position (on
genomic sequence of E.
granulosus (G1) allele 1
(KF528663)

Product size
(bp)

1. Primers to amplify p29
gDNA

Echi gP29F Forward primer
(59-39)

TAAGCTGTGGGAACTAGTT P 247 upstream of the start-
ATG

1302

Echi gP29R Reverse primer
(59-39)

TATGTGAACAAGCTAACAGG P+55 downstream of the stop-
TAG

2. Primers to amplify p29
cDNA

Echi cP29F Forward primer
(59-39)

ATGTCCGGATTTGACGTTACTAAG Exon 1: P1–P24 732

Echi cP29R Reverse primer
(59-39)

CTACTCGCCCAGCATCATCATACT Exon 7: P1201–P1181

3. Primers used for
sequencing

Echi P29E5R Reverse primer
(59-39)

CTGTTCCGCAGTCTTAG Exon 5: P864–P848

T7 Forward TAATACGACTCACTATAGGG

SP6 Reverse ATTTAGGTGACACTATAG

4. MAS-PCR primers

EgG1P29A1F Forward primer
(59-39)

CAGCAAGATCATCACC* Exon2: P179–P194 195

EgG1P29A1R Reverse primer
(59-39)

AAGACAACACCATATCTTAG* Intron 2: P374–P355

EgG1P29A2F Forward primer
(59-39)

ACCCTATTCATTTTTGCT* Intron 3: P525–P542 258

EgG1P29A2R Reverse primer
(59-39)

TTTCTAAGTGGGATAAAGG* Intron 4: P783–P765

5. Primers to amplify p29
cDNA (for protein expression)

CACC-p29-Forward (59-39) CACCATGTCCGGATTTGACGTTACTAAG

p29-Reverse (59-39) CTACTCGCCCAGCATCATCATACT

*Allele specific 39-base in each primer.
doi:10.1371/journal.pone.0098357.t002
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recombinant P29 proteins from E.granulosus s.s. (G1) (re-

cEg(G1)P29) and E. canadensis (G6) (recEcnd(G6)P29) was induced

by addition of 1 mM IPTG. After 3 h of induction, the culture was

centrifuged (4,0006g, 20 min) and the recombinant expressed

proteins were purified under native conditions via their HIS-tags

using a Ni-IDA resin (Protino Ni-IDA; Machery-Nagel according

to the manufacturer’s instructions). Purified recEg(G1)P29 and

recEcnd(G6)P29 were checked on a 12% silver staining-stained

SDS-PAGE gel and subsequently stored at -20uC until use for

serological tests.

Immunoblotting and competition experiments
RecEg(G1)P29 or recEcnd(G6)P29 proteins were solubilized

with SDS loading buffer (1 mol/l Tris HCl, pH 6.8, 2% SDS, 5%

2-b-mercaptoethanol, 10% glycerol) and incubated for 5 min at

95uC. 1 mg RecEgP29 proteins were separated on a 12% SDS-

PAGE mini-gel using a preparative comb (length 7 cm) and

transferred to a nitrocellulose membrane. Blots were blocked with

16PBS containing 5% skimmed milk powder and 0.3% Tween 20

overnight at 4uC. The filter was cut into strips (3 mm width), and

each strip was individually incubated with one of the 34 E.

granulosus s.s. (G1) sera, and one strip was incubated with a serum

obtained from an E. canadensis (G6) CE case (G6 sera are very

difficult to get). The sera were diluted 1/100 in PBS (5% skimmed

milk powder, 0.3% Tween 20). Strips were incubated overnight at

4uC, then washed 3 times for 5 min with 16PBS, 0.1% Tween 20

and finally incubated for 2 h at room temperature with an

alkaline-phosphatase conjugated goat anti-human IgG antibody

(Sigma-Aldrich) diluted 1:1000 in 16PBS containing 0.1%Tween

20. Strips were developed in 1 ml BCIP/NBT alkaline phospha-

tase substrate.

For competition experiments, 1 human E. granulosus s.s. (G1) and

1 human E. canadensis (G6) serum were diluted 1:100 in 16PBS

(5% skimmed milk powder, 0.3% Tween 20) and were individually

pre-incubated for 30 min at 37uC with recEcnd(G6)P29 (1 mg rec-

protein ml21) prior to incubation with the Western-blot strips.

Recombinantly expressed Eg14.3.3, prepared earlier [34] was

used as a negative control in the same concentration. Western-

blots and respective immunological analysis were performed as

described above.

Alignments, phylogenetic tree reconstruction for p29 and
prediction of p29-related gene(s) in Echinococcus
genomes

To detect differences in the cDNA or gDNA sequence of p29,

the p29 sequences of E. granulosus s.s. (G1), E. equinus (G4), E. ortleppi

(G5), E. canadensis (G6), E. canadensis (G7), E. canadensis (G10) and E.

multilocularis were aligned using the ClustalW application of

BioEdit version 7.0.9.0. All accession numbers are listed in an

extra chapter at the end of the material and methods part.

Multiple alignments of genomic p29 sequences were further used

for the phylogenetic tree reconstruction. The conversion of the

alignment format to PHYLIP was also done with BioEdit. The

maximum likelihood was constructed with molecular clock

(version 3.69) phylogenetic tree (http://evolution.genetics.

washington.edu/phylip/doc/dnamlk.html) using the T-REX

web server for inferring, validating and visualizing phylogenetic

trees and networks [35]. To address the question if P29 is encoded

by a single gene, gene prediction was performed using the

sequenced genomes of the Echinococcus species E. granulosus s.s. (G1)

and E. multilocularis. The cDNA sequence encoding for p29 cDNA

(GenBank, accession no. AF078931) was used as a query for

BLAST search at the Echinococcus blast server (available at: http://

www.sanger.ac.uk/cgi-bin/blast/submitblast/Echinococcus).

Accession numbers
The accession number for the known E. granulosus s.s. (G1) p29

cDNA sequence used in this study (Gonzales et al. 2002 [6]) is

AF078931 deposited on GenBank. The nucleotide sequences of

the Echinococcus genus p29 genes identified in this study have been

deposited in GenBank under the following accession numbers:

KF528663 (E. granulosus s.s. (G1) allele 1), KF528664 (E. granulosus

s.s. (G1) allele 2), KF528665 (E. equinus), KF528666 (E. ortleppi),

KF528667 (E. canadensis (G6)), KF528668 (E. canadensis (G7)),

KF528669 (E. canadensis (G10)), KF528670 (E. multilocularis; Swiss

isolate), KF528671 (E. multilocularis; German isolate), KF528672

(E. multilocularis; St. Lawrence Island), KF528673 (E. multilocularis;

Canada).

Results

Molecular characterization of p29
The exon/intron organization of p29 was characterized by

comparing (i) the p29 cDNA sequences isolated from 5 Tunesian

E. granulosus s.s. (G1) sheep isolates (732 nucleotides, deduced

sequence of 238 AA) with (ii) the published genomic sequence.

The coding sequence is composed of 1,200 bp, containing seven

exons and six introns (Figure 1A). The locations of splice donor/

acceptor sites in the introns follow the consensus ‘GT/AG’ rule

[36]. Interestingly two different alleles of p29 were found in the 5

Tunisian sheep-derived E. granulosus s.s. (G1) samples. More

detailed information on the differences between the alleles A1 and

A2 (8 single base mutations) is given below.

The p29 allele A2 sequence obtained herein is identical to the

corresponding sequence of the recently published genome of E.

granulosus s.s. (G1) [37]. In addition, we identified a putative

mRNA initiation site/tataa-box located 552 nucleotides (nt)

upstream of the start ATG. According to E. multilocularis RNA-

Sequencing data [37], the p29 transcription start point is 70 nt

upstream of the ATG initiator codon and in another study [6]

25 nt of 59 N-terminal region (NTR) has been characterized.

Taken together, these information indicate that the transcription

of p29 certainly starts far downstream of the TATA box we found

(P -552). Therefore, examination of the regulatory region revealed

a double TATA box-like motif (TAAATAA) located 51 and 80 bp

upstream of the translated sequence. These two TATA box-like

sequences may serve as initiation site for the transcription of p29.

Two putative polyadenylation signals ATTAAA and AATAAA

located at nt P (+1365) and P (+1510) upstream of the poly (A)

tract (Figure 1A).

A BLASTN search with the E. granulosus p29 DNA sequence on

the genomes of E. granulosus and E. multilocularis revealed that in

both species p29 is present as single copy gene. The p29 gene locus

of E. granulosus is located on the following contig; pathogen_-

EgG_scaffold_0007 (E. granulosus genome assembly database; the

systematic gene name for P29 in E. granulosus genome is

EgrG_000550800) and the p29 gene locus of E. multilocularis is

located on chromosome 07 (EmW Chr 07 from E. multilocularis

genome assembly, version 4; the systematic gene name for P29 in

E. multilocularis genome is EmuJ_000550800) of the current

assembly versions of respective genome sequences deposited in

the Welcome Trust Sanger Institute database (Figure 1B).

To check whether or not p29 is trans-spliced to the first

previously described splicer leader sequence [33], PCR was

carried out, and additionally an E. granulosus protoscolex specific

spliced-leader cDNA library present on the Welcome Trust
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Sanger Institute database was blasted. PCR was negative and no

related sequences were identified in this library.

P29 protein sequence differences within the
Echinococcus genus

The P29 amino acid sequences of the E. granulosus complex

members E. granulosus s.s. (G1), E. equinus (G4), E. ortleppi (G5), E.

canadensis (G6), E. canadensis (G7) and E. canadensis (G10) were

aligned and a comparative analysis revealed a high (97.9%)

conservation of P29 between the species/genotypes (Figure 2).

Three exchanges in the predicted AA sequence discriminate E.

granulosus s.s. (G1) from the following cluster (E. equinus (G4), E.

ortleppi (G5), E. canadensis (G6), E. canadensis (G7) and E. canadensis

(G10)); (i) a substitution of alanine 67 by valine (C-to-T transition

at nt 394 in exon 3), (ii) a substitution of serine 109 by alanine (T-

to-G transition at nt 592 in exon 4) and (iii) a replacement of

asparagine 121 by serine (A-to-G transition at nt 629 in exon 4).

Compared to E. granulosus s.s. (G1), E. ortleppi (G5) showed a single

specific substitution of valine 6 by isoleucine (G-to-A transition at

nt 16 in exon 1) and E. canadensis (G10) showed a single specific

Figure 1. Determination of copy number and molecular structure of the Echinococcus p29 gene. (A) Exon/intron structure analysis of the
Echinococcus p29 gene mapped to the alignments of full-length cDNA with the genomic DNA. The p29 gene is of 1200 base pairs from the ATG start
codon at position +1 to the TAG stop codon at positon +1200 and consists of 7 exons separated by six introns. At position P (2552) upstream of the
start codon, we identified a TATA box and a eukaryotic transcriptional regulatory element. Additionally two possible polyadenylation sites were
identified downstream of the TAG codon on P (+1365) and P (+1510) positions. (B) Graphical output of the BLAST analysis of p29 cDNA (GenBank,
accession no. AF078931) beween E. granulosus s.s. (G1) and E. multilocularis genomes performed at the Echinococcus blast server (available at:
(available at: http://www.sanger.ac.uk/cgi-bin/blast/submitblast/Echinococcus). The diagram shows the reads with significant BLAST scores to p29
cDNA query (+hsps; high score probability). The reads cluster belongs to the same contig; pathogen_EgG_scaffold_0007 and pathogen EmW Chr 07
for E. granulosus and E. multilocualris respectively. Reads from the same cluster are contiguous and overlapping DNA fragments and when assembled
resulted in a single and complete p29 gene sequence.
doi:10.1371/journal.pone.0098357.g001
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substitution of alanine 98 by threonine (G-to-A transition at nt 486

in exon 3).

Compared to E. granulosus s.s. (G1), all four E. multilocularis

isolates presented the two common mutations previously described

(Alanine 67 and Serine 109) and one additional substitution of

isoleucine 199 by valine (A-to-G transition at nt 997 in exon 6),

that specifically differentiates E. multilocularis from the whole E.

granulosus complex. Among most geographically distinct E. multi-

locularis isolates, the P29 AA sequences are highly conserved

(99.58%), except the Canadian E. multilocularis isolate that includes

an additional substitution of threonine 198 by alanine (A to G

transition at nt 994 in exon 6).

P29 Western blot and competition assay
RecP29 derived from E. granulosus s.s. (G1) (RecEg(G1)P29) and

E. canadensis (G6) (recEcnd(G6)P29) were expressed and purified.

The purity of both recombinant proteins was determined by SDS-

PAGE and sub-sequential silver staining to be .90%, as shown in

Figure 3A.

Native and recEg(G1)P29 have earlier yielded promising results

for post-therapy monitoring of treated CE cases [8]. E. granulosus

s.s. (G1) followed by E. canadensis (G6/G7) are responsible for most

human infections worldwide. Thus, a standardized serological test

based on recEg(G1)P29, could be useful for all CE patients either

infected by E. granulosus s.s. (G1) or E. canadensis (G6/G7). Here in

this study we characterized three main AA substitutions between

these two species and we aimed to check whether or not this minor

difference has an implication in terms of antigenicity (antibody

binding activity), and here especially if sera raised against G6/7 do

bind to recEg(G1)P29 and vice-versa.

By Western-blot analysis the serum from a human CE patient

infected with E. canadensis (G6) as well as 29 out of 34 sera (85%)

from humans infected with E. granulosus s.s. (G1) reacted with both,

recEg(G1)P29 and RecEcnd(G6)P29. However, 5 out of the 34 E.

granulosus s.s. (G1) sera were negative in both Western-blot assays.

Furthermore, in a competition assay, in Figure 3B, serum from

an E. granulosus s.s. (G1) patient and serum of another E. canadensis

(G6) infected patient, were pre- incubated with recEcnd(G6)P29.

Subsequently to this prior incubation with recEcnd(G6)P29, these

sera are expected to lose their binding capacities in recEgP29 (G1)

Western blot assay. As shown in Figure 3B (strip 5 and 6), pre-

incubation with recEgP29 (G6) competitor markedly diminished

antibody binding activity, but did not completely abrogate anti-

P29 reactivity. In fact, it is conceivable that in the competition

Figure 2. Alignment of amino acid sequences of the P29 Echinococcus protein. Two alleles within E. granulosus s.s. (G1) for the p29 gene
locus were identified. They code for the same protein and are 100% identical to the published p29 sequence (GenBank accession no. AF078931).
Deduced P29 protein homologs from E. equinus (G4), E. ortleppi (G5), E. canadensis (G6), E. canadensis (G7), E. canadensis (G10) and E. multilocularis
(Four isolates from Switzerland, Germany, St. Lawrence Island and Canada) are aligned. The sequence alignment is numbered and the sequences are
represented in blocks of 10 AAs. Identical residue sequences are presented in points, and substitutions are presented in letters. Numbers to the left of
the sequence corresponds to the AA position at the start of each line.
doi:10.1371/journal.pone.0098357.g002
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assay (i) the used concentration of the competitor (here recEgP29

(G6)) was not sufficient to block all anti-Eg(G1)P29 or anti-

Ecnd(G6)P29 antibodies in human sera or (ii) the reaction

duration (30 min) was too short. In both cases, residual anti-P29

antibodies subsequently reacted with recEg(G1)P29 antigen-

coated nitrocellulose strips. To demonstrate that this cross-

reactivity of human anti-P29 antibodies with recEg(G1)P29 and

recEcnd(G6)P29 is Echinococcus P29 antigen-specific, we addition-

ally performed a control competition assay employing out-group

recEg14-3-3 from E. granulosus s.s. (G1). For the two tested sera, the

human anti-P29 antibody reactivity to the recEg(G1)P29 or

recEcnd(G6)P29 following a pre-incubation with recEg14-3-3

antigen were not affected, indicating that the binding was indeed

specific. Thus, in patients infected with E. granulosus s.s. (G1) or

with E. canadensis (G6), serum anti-P29 antibodies react with both

recEg(G1)P29 and recEcnd(G6)P29, demonstrating that minor AA

substitutions do not have measurable impact on P29 antigenicity

in this test.

Phylogenetic analysis of Echinococcus spp. based on the
p29 gene locus

The phylogenetic relationship among the 7 Echinococcus taxa E.

granulosus s.s. (G1), E. equinus (G4), E. ortleppi (G5), E. canadensis (G6),

E. canadensis (G7), E. canadensis (G10) and E. multilocularis were

assessed mainly by using the multiple nucleotide alignment data

representing all of the p29 genomic sequences. The tree topology

inferred from the maximum-likelihood with molecular clock

analysis is displayed as a cladogram (Figure 4). The phylogenetic

tree identified two major clades (a and b). In the basal position,

clade a included all E. multilocularis isolates from different

geographical areas, whereas clade b consisted of all E. granulosus

complex members as a monophyletic group. Within clade a,

members exhibited a close relationship, particularly between Swiss

and German E. multilocularis isolates. In contrast, in clade b, at least

three divisions became apparent: (i) the first separate E. granulosus

s.s. (G1) (referred as clade b; subgroup 1) from the rest (E. equinus

(G4), E. ortleppi (G5), E. canadensis (G6), E. canadensis (G7) and E.

canadensis (G10)) (referred as clade b; subgroup 2). (ii) The second

separated E. equinus (G4) (referred as clade b; subgroup 3) from the

clade b; subgroup 4 which clusters E. ortleppi (G5), E. canadensis

(G6), E. canadensis (G7) and E. canadensis (G10)). (iii) The third

segregation differentiates E. ortleppi (G5) (referred as clade b;

subgroup 5) from clade b; subgroup 6 which clusters E. canadensis

(G6), E. canadensis (G7) and E. canadensis (G10).

The phylogenetic resolution obtained (Figure 4A) is in

agreement with previous studies, which included other nuclear

genes such as elongation factor 1 alpha (ef1), transforming growth

factor beta receptor kinase (tgf), thioredoxin peroxidase (th),

calreticulin (cal), and ezrin-radixin-moesin-like protein (elp) [38]

(Figure 4B).

Multiplex allele specific polymerase chain reaction (MAS-
PCR) for p29 homo- and heterozygotes genotyping
among E. granulosus s.s. (G1)

Since we observed two different alleles (A1 and A2) for p29 in

Tunisian E. granulosus s.s. (G1) ovine samples, we wanted to assess

whether or not one of these two alleles can be associated with a

higher infection rate in humans through determining of allele

frequency distribution in a in a cohort of patients from Central

Tunisia.

We conducted a BLASTN search of these two alleles using blast

server for Echincoccocus genomes. The BLASTN outputs showed

that allele 2 (A2) is identical to the p29 gene sequence found in the

E. granulosus s.s. (G1) super contig pathogen_EgG_scaffold_007.

The allele A1 differs from A2 by 8 allelic mutations located on

nt positions P157 T/C (silent mutation in exon 2), P355 A/C

(intron 2), P372 A/C (intron 2), P505 A/C (intron 3), P542 T/C

(intron 3), P559 T/A (intron 3), P730 T/C (intron 4) and P765 C/

T (intron 4).

To determine the frequency of homozygotes and heterozygotes

in E. granulosus s.s. (G1) isolates (see table 3), we created a MAS-

PCR. Homozygote A1/A1 and homozygote A2/A2 isolates

resulted each in one DNA band in the agarose gel at 195

(figure 5A lane 1–5) and 258 (figure 5 A lane 9 and 10) base pairs

respectively. Heterozygous A1/A2 shows two bands correspond-

ing to both alleles (figure 5 lane 6–8). In total, 34 E. granulosus s.s.

(G1) human isolates were tested. Out of 34 isolates, 16 (47%) were

characterized by heterozygote genotype, 6 (18%) by homozygote

genotype (A2/A2) and 12 (35%) by homozygote genotype (A1/A1)

(see table 3). The location of patients, according to their MAS-

PCR profile is shown in Figure 5 B. Frequency of allele A1 (0.6)

was higher than the frequency of A2 (0.4).

Genotypic frequencies expected under Hardy-Weinberg equi-

librium were calculated from allelic frequencies. Deviations

observed from expected frequencies were tested by chi-square

and showed that the population of 34 E. granulosus s.s. (G1) human

isolates was in agreement with the Hardy-Weinberg equilibrium

(See table 4).

Discussion

Immunodiagnostic assays based on full-length or truncated

forms (peptides) of recombinant antigens are often hampered by

the occurrence of genetic and antigenic variability. The present

study was designed to evaluate this possibility for the recombinant

E. granulosus antigen recEg(G1)P29, which was previously shown to

have the potential to be used for the follow-up of young CE

patients in view to assess disease evolution and prognosis in post-

treatment situations [8]. We investigated whether small sequence

Figure 3. Competitive Western blot analysis with recEg(G1)P29
expressed from E. granulosus s.s. (G1) and recEcnd(G6) ex-
pressed from E. canadensis (G6). (A) Shows a silver stained gel of
expressed and purified recombinant antigens; recEg(G1)P29 (lane 1)
and recEcnd(G6)P29 (lane 2). (B) Recombinant P29 proteins were
separated by SDS-PAGE under reducing conditions and blotted onto a
nitrocellulose membrane. Human serum from a CE patient either
infected with E. granulosus s.s. (G1) or E. canadensis (G6) were added to
recEg(G1)P29 (strip 1 and 2, respectively) or recEg(G6)P29 (strip 3 and 4,
respectively). In a competition assay nitrocellulose strips loaded with
recEcnd(G1)P29 were incubated with serum from CE patients either
infected with E. granulosus s.s. (G1) or E. canadensis (G6). The sera were
pre-incubated with the recombinant expressed competitor re-
cEcnd(G6)P29 (strip 5 and 6) or as a control with recEg14-3-3 (strip 7
and 8). Immune sera were used at dilutions of 1:100 and competitor/
control at concentrations of 1 mg/mL.
doi:10.1371/journal.pone.0098357.g003
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changes in recP29 expressed from E.granulosus s.s. (G1) have an

impact on serological tests used for monitoring of patients infected

with other species of the E. granulosus complex. As a first step, the

p29 gene locus in different species was characterized with respect

to number of gene copies and polymorphism. Results demon-

strated that EgP29 in both E. multilocularis and E. granulosus s.l. is

encoded by a single gene, whose transcript does not undergo trans-

splicing with the spliced leader reported by Brehm et al. [33].

However, although in this study we did not investigate all 5 SLs

that were reported for E. multilocularis [37], trans-splicing within

p29 pre-mRNA is completely excluded given that p29 is not

included in the list of E. multilocularis trans-spliced genes [37]. This

list was established by considering all characterized SLs in E.

multilocularis [37]. In parasites, antigenic variation often involves

specific multigene families devoted to that function (e.g. antigen B

multigene family [39]). Here, since we showed that a single gene

encodes P29, assumption of antigenic variability in P29 which may

due partially to multigene family phenomena, is unlike. In the case

of the antigen B multigene family of proteins, the corresponding

gene products may represent genetic backgrounds that function for

parasite immune evasion mechanisms. Indeed, it was shown that

antigen B may plays a role in the escape from early immune

response by inhibiting polymorphonuclear cell chemotaxis [40,41]

and by impairing human dendritic cell differentiation. The fact

that the P29 is encoded by single-copy gene and is highly

conserved within the Echinococcus genus (97% identity in AA

sequence) minimizes the possibility that this protein plays a role in

immune evasion, and it may have another, as yet undefined, role

in parasite biology.

An NCBI BLAST search showed that the amino acid sequence

of the E. granulosus P29 (GenBank, accession no. AAD53328.1 [6])

shares 25% identity with endophilin B1 from many species such as

Bos taurus (GenBank, accession no. DAA31329.1), Capitella teleta

(GenBank, accession no. ELT91502.1), Bubalus bubalis (GenBank,

accession no. XP_006080551.1). In addition, we performed a

bioinformatics searches for conserved domains that may be

included in the P29 amino acid sequence using the Conserved

Domain Database (CDD) of the National Center for Biotechnol-

ogy Information (NCBI; http://www.ncbi.nlm.nih.gov/

Structure/cdd/). Results revealed the presence of the bin1/

amphiphysin/Rvs (BAR) domain, which is characteristic of

endophilins. Endophilins are major components of clathrin-

mediated endocytosis, a crucial cellular mechanism, and they

are also involved in other membrane-trafficking events [42]. Thus,

P29 possibly carries out an essential function that is highly

relevant, and this may explain the high degree of AA sequence

conservation among various species of the genus Echinococcus.

In this study, we also examined the conservation of the P29 AA

sequence among Echinococcus spp. The resulting amino acid

alignment of E. granulosus s.s. (G1), E. equinus (G4), E. ortleppi

(G5), E. canadensis (G6), E. canadensis (G7), E. canadensis (G10) and

four isolates of E. multilocularis indicated with 97% a high degree of

homology. In total, we identified seven polymorphic sites among

the 238 AAs of the deduced full length sequence of EgP29.

Western blotting and competition assay analyses suggested that

the three different amino acids in the sequence of the P29 proteins

from E. granulosus s.s. (G1) and E. canadensis (G6) have no impact on

antigenicity, indicating that they are most likely not located in a

major epitopic site and/or antibodies produced against other

epitopes are still sufficient to detect both P29 variants in our test

system. However, currently there is no information on the

structural basis for P29 protein antigenicity and respective epitope

mapping. Ben Nouir et al. [8] reported that a minor portion of CE

patients remained constantly negative against recEg(G1)P29 from

day 0 (before surgery) and until the endpoint of the follow-up

period. According to our results, this phenomenon is not related to

antigenic variability, but most likely it could be explained by other

factors that affect the immune response such as cyst localization.

For instance, lung cysts have been shown to not yield an intense

humoral immune response [43].

The AA sequence of EgP29(G1) differs from its homologue

EcndP29(G6) by 3 AA substitutions, however these minor AA

exchanges do not impact its antigenicity, since sera from patients

infected with E. canadensis (G6) reacted with recEg(G1)P29. The

currently most promising vaccine candidate EG95-1(G1) [44]

differs also from its homologue in the E. canadensis (G6) by few AA

Figure 4. Comparison of phylogenies of Echinococcus inferred by maximum likelihood (ML) analysis using gDNA data. (A) Maximum
likelihood with molecular clock rooted cladogram from this study, based on p29 gene sequence (exons and introns). (B) For comparison a published
cladogram based on the DNA sequences of nuclear protein-coding genes is shown [38].
doi:10.1371/journal.pone.0098357.g004
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variations (5 AA substitutions), but these substitutions result in

conformational changes, which lead to a distinct difference in

antigenicity between EG95-1G1 and EG95-1G6 [25,26]. Indeed,

antibodies from sheep vaccinated with EG95-1G1 did not react

with EG95-1G6 antigen from E. canadensis (G6) [26].

Based on comparative sequence analysis of the complete p29

gene, we investigated the phylogenetic relationships within the

Echinococcus genus. The phylogenetic resolution obtained in the

present analysis is in agreement with previous studies using other

nuclear genes [38]. Thus, two major clades are identified, one

basal corresponding to E. multilocularis isolates and the other one

corresponding to all genotypes of E. granulosus which were grouped

as a monophyletic entity. Therefore, within the Echinococcus genus,

the p29 gene exhibits a similar evolutionary dynamic as ef1, tgf, th,

cal and elp genes, a fact that might be due in part to similar

selective factors.

Knapp et al. [45] evaluated the potential of single-gene analyses

for resolving the taeniid phylogeny by analyzing RNA polymerase

II second largest subunit (rpb2), phosphoenolpyruvate carboxyki-

nase (pepck) and DNA polymerase delta (pold) gene markers.

Phylogenetic trees based on the analyses of those DNA sequences

(rpb2, pepck and pold [45]) yielded low resolutions and were not

consistent with the study of Saarma et al. [38] who had been using

multiple genes (ef1, tgf, th, cal and elp). Thus, the authors suggested

that the application of a single gene is insufficient to reconstruct

phylogeny. However, Knapp et al. analyzed only exons, whereas

both, coding and non-coding regions (exons and introns) of P29

(present study) and the 5 nuclear gene markers ef1, tgf, th, cal and

elp [38] were analyzed. This strengthens the usefulness and value

of intron datasets, as these provide more information that can be

exploited to resolve relationships between the different Echinococcus

species. Chojnowski et al. [46] showed clearly that introns

outperform exons in the analyses of basal avian phylogeny by

studying the genes of clathrin heavy chain.

Within E. granulosus s.s. (G1), we found two alleles that code for

identical P29 proteins. In total, we identified 8 allelic mutations

and except the first silenced mutation P157 T/C located on exon

2, all of the seven variations occur within introns number 2, 3 and

4.

Furthermore, we genotyped 34 human isolates of E. granulosus

s.s. (G1), isolated from 34 young (3–15 years old) patients living in

eight different districts of Central Tunisia. By examining the

Figure 5. Genetic variability of p29 within E. granulosus s.s. (G1) in Central Tunisia. (A) MAS-PCR: p29 genotype profile of the E. granulosus
s.s. (G1) by MAS-PCR. Two alleles encoding the P29 protein within E. granulosus s.s. (G1) were identified. Result of a MAS-PCR showed homozygotes
A1/A1 (lanes 9 and 10), homozygotes A2/A2 (lanes 1–5) and heterozygotes (lanes 6–8), visualized on a 2% agarose gel. M: 100-bp DNA ladder
(Promega). (B) Location of 34 patients used in this study for the p29 multiplex allele specific (MAS)-PCR. The main area for human risk is located in
Central Tunisia and includes Kairouan, Kasserine and Sidi Bouzid. All isolates were first genotyped as E. granulosus s.s. (G1). Samples identified as
homozygote A1/A1 are represented by a black square, homozygotes A2/A2 are signified by a grey triangle and heterozygotes are showed by a white
circle with black border.
doi:10.1371/journal.pone.0098357.g005
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geographical distribution of these two alleles, we observed a

difference: allele A1 is more dominant in Central South (Gafsa,

Gabes and Sidi Bouzid) and allele A2 is more frequent in Central

East (Sousse, Monastir and Mahdia, Figure 5B). However, the

number of samples is too limited to draw definitive conclusions,

and this explorative observation needs to be confirmed or rejected

by including more specimens of defined origin.

A high percentage of heterozygotes (47% (16/34)) comparing to

homozygotes (A1/A1 or A2/A2), evokes a possible outbreeding

system of E. granulosus s.s. (G1) in this part of Central Tunisia, as it

was supported by the test of Hardy-Weinberg equilibrium.

Asexual reproduction of the Echinococcus metacestode stage occurs

in intermediate hosts, however in the definitive host, self-

fertilization has been proposed to be the predominant reproduc-

tion system for adults [47–50]. Indeed within the population of E.

granulosus s.s. (G1), many investigations have not revealed

significant heterozygote deficiencies, and this rather supports the

cross-fertilization hypothesis [49]. Maillard et al. [51] failed to

observe cross-fertilization between the E. granulosus (G1) and E.

canadensis (G6) strains after a mixed experimental infection in dogs.

This effect may be due to the fact that E. granulosus s.s. (G1) and E.

canadensis (G6) are two separated species and differences are

enough to prevent mating between adult worms, leaving

reproduction to self-breeding in this case, and supporting the

‘‘different-species’’ biological theorem.

E. granulosus s.s. (G1) is described as the most polymorphic

species among the E. granulosus (sensu lato) complex, this by using

both nuclear and mitochondrial gene analyses [52,53]. To date, it

is still unknown whether genetic variants of E. granulosus s.s. (G1)

exhibit or not differences in their virulence and infectivity potential

to the human host. Even if such segregation is not yet

characterized, the populations of homozygote A1/A1 or A2/A2

could differ from each other also in other loci by different allelic

combinations, and it can be speculated that both genetic variants

show a difference in their virulence. Intra-specific genotyping of

human E. granulosus s.s. (G1) isolates could contribute to elucidate

this open question and the p29 MAS-PCR assay developed in this

study appears as a suitable tool to tackle this question at least in the

Central Tunisian area, where the two alleles were identified.

Conclusions

In summary, we demonstrated a high degree of conservation in

the P29 protein/antigen among different species and genotypes of

the Echinococcus genus. The P29 protein/antigen is encoded by a

single gene locus, which exhibits low polymorphism especially in

coding regions. Since the recombinant P29 from one species can

be recognized by antibodies directed against another species,

recombinant P29 such as recEg(G1)P29 can be used as common

P29 antigen to detect antibodies derived from P29 of other

Echinococcus species. Therefore, the recombinant P29 antigen

appears useful as a screening tool for post-therapy monitoring in

young CE human patients (for older patients, the serological value

still needs to be elucidated), independently of the Echinococcus

granulosus species that was associated with the infection. In this

study we tested the two major human infective species E. granulosus

s.s. (G1) and E. canadensis (G6), but due to the very high

conservation of P29 between the whole E. granulosus complex all

other species should also be detectable.

Table 3. Human E. granulosus s.s. (G1) allelic frequencies at p29 loci genotyped with MAS-PCR.

Gouvernorat
Total no. of
human cysts

Homozygotes:
alleles A1/A1

Homozygotes:
alleles A2/A2

Heterozygotes:
alleles A1/A2

N N % n % n %

Sousse (East-central) 3 0 0 2 67 1 33

Monastir (East-central) 3 0 0 2 67 1 33

Mahdia (East-central) 3 0 0 2 67 1 33

Kairouan (Central) 10 1 10 4 40 5 50

Sidi bouzid (Central) 9 3 33 1 11 5 56

Kasserine (West-central) 4 0 0 1 25 3 75

Gabes (East-sud) 1 1 100 0 0 0 0

Gafsa (West-sud) 1 1 100 0 0 0 0

Total 34 6 18 12 35 16 47

doi:10.1371/journal.pone.0098357.t003

Table 4. Observed heterozygosity (H obs) and expected heterozygosity under Hardy-Weinberg equilibrium (H exp) in p29 locus.

Genotype H obs H exp

Homozygote A1/A1 6 5.8

Heterozygote A1/A2 16 16.5

Homozygote A1/A1 12 11.8

Var allele freq: 0.59

x2 0.027755102

X2 test P value 0.867686.0.05

doi:10.1371/journal.pone.0098357.t004
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40. Riganò R, Profumo E, Bruschi F, Carulli G, Azzarà A, et al. (2001) Modulation
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