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Simple Summary: Arsenic is a chemical element that is toxic, and long-term exposure to it causes
cancers such as lung, skin, liver, and bladder cancers. Over 150 million people around the world
are affected by arsenic exposure. However, the molecular mechanism of how arsenic induces
carcinogenesis is still not clear. As a carcinogen, arsenic has been demonstrated not to cause point
mutations. Hence, the understanding of the dysregulation of epigenetic mechanisms caused by
arsenic may help to unravel the mechanisms by which arsenic induces cancers.

Abstract: Arsenic is a crucial environmental metalloid whose high toxicity levels negatively impact
human health. It poses significant health concerns to millions of people in developed and developing
countries such as the USA, Canada, Bangladesh, India, China, and Mexico by enhancing sensitivity to
various types of diseases, including cancers. However, how arsenic causes changes in gene expression
that results in heinous conditions remains elusive. One of the proposed essential mechanisms that still
has seen limited research with regard to causing disease upon arsenic exposure is the dysregulation
of epigenetic components. In this review, we have extensively summarized current discoveries
in arsenic-induced epigenetic modifications in carcinogenesis and angiogenesis. Importantly, we
highlight the possible mechanisms underlying epigenetic reprogramming through arsenic exposure
that cause changes in cell signaling and dysfunctions of different epigenetic elements.
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1. Arsenic and Mechanisms of Arsenic-Induced Carcinogenesis

Arsenic (As), a chemical element, is classified as a toxic metalloid and is associ-
ated with various human cancers [1], and its toxicity depends on the molecular form
and oxidation state. International Agency for Research on Cancer (IARC) and US En-
vironmental Protection Agency (USEPA) designated arsenic as Group 1 and Group A
human carcinogens, respectively [2,3]. Furthermore, it is graded as first on the sub-
stance priority list in the Agency for Toxic Substances and Disease Registry (ASTDR), USA
(https://www.atsdr.cdc.gov/spl/index.html, accessed on 9 February 2022) [4]. Chronic
exposure to dietary arsenic is linked to skin, bladder, liver, and lung cancer [4–7]. Drink-
ing water contaminated with arsenic has been linked with increased mortality of both
noncancerous diseases and cancers in Bangladesh [8]. Both chronic and acute exposure
to arsenic is harmful to different tissues and organs in the body, such as alteration in
skin pigmentation and hyperkeratosis, peripheral neuropathy, development, cognitive
impairments, and cardiovascular diseases.

The contamination of arsenic increases with the finding of newer places [9]. The
familiar sources of arsenic exposure include drinking water, food, and inhalation in an
industrial work setting. Over 150 million people on the earth are exposed to carcinogenic
(10 µg/L) levels of arsenic [9,10], and the majority of these people are affected by drinking
water from aquifers contaminated with arsenic. Countries with arsenic concentrations
exceeding this carcinogenic level (10 µg/L) in the drinking water include Bangladesh, India,
China, Argentina, Mexico, Canada, the USA, and Chile [11]. Arsenic exposure to foods
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usually occurs by growing crops in the soil contaminated with arsenic and/or irrigating
water contaminated with arsenic [12]. Furthermore, NIOSH estimates that approximately
1.5 million workers have been affected by arsenic or arsenic compounds [13].

Arsenic has several states; the most common valence states of arsenic are inorganic
AsIII (arsenite) and AsV (arsenate). Inorganic arsenic is very toxic to humans, whereas
organic arsenic has low toxicity. AsIII is the highest toxic form because it is more soluble in
water than arsenic compounds. It contains a lone electron pair that can engage in chemical
bonds [14,15]. Depending on the types of food, arsenic can be found in both inorganic
(when combined with oxygen, chlorine, and sulfur, among other elements) and organic
forms (when linked with carbon and hydrogen). Inorganic arsenic is typically found in the
inorganic form in drinking water, soil, and some terrestrial foods such as rice, as either AsIII

or AsV. Inorganic pentavalent arsenic AsV is absorbed by the body through drinking water
and uses membrane transporters such as aquaporin and inorganic phosphate transporters
(PiT) to enter the cells [16,17]. In the cell, arsenic AsV is converted to the more toxic form
arsenite in a glutathione-dependent reaction (GSH), with subsequent methylation to mono-
methylated (MMA) and di-methylated arsenicals (DMA), respectively [18,19]. Methylated
arsenicals, especially MMAIII, are considered more toxic than inorganic AsIII both in vivo
(in hamsters) [20] and in vitro (human cell lines) [21].

The mechanisms by which arsenic induces carcinogenesis are still a point of debate.
However, it has been known that arsenical compounds contribute to carcinogenesis by
disrupting the signaling cascade, changing gene expression, elevating levels of oxidative
stress and inflammation, increasing genotoxic and DNA damage, decreasing DNA repair,
inducing cell cycle arrest and apoptosis [19,22–24], acting as co-carcinogenesis with other
environmental toxicants [25], and alterations of epigenetic regulation. There is also doubt
about whether arsenic is genotoxic or not because arsenic does not cause point mutations in
standard mutagenicity assays; hence it is considered to be nongenotoxic [26,27]. Although
arsenic is viewed as a carcinogen, its non-mutagenic characteristics violet its function in
causing genetic alteration. However, a less studied mechanism, but one that is crucial for
understanding arsenic-induced carcinogenesis, is the dysregulation of epigenetic modifica-
tions. Studies investigating epigenetic regulation changes upon arsenic exposure during
the last decade are increasing. The researchers have attempted to explore the role of DNA
methylation, histone modification, miRNAs and lncRNAs alteration, mRNA modification,
and alternative splicing in arsenic toxicity and carcinogenesis. The present review will
comprehensively discuss the epigenetic regulations involved in gene expression, and their
dysregulation is pivotal in arsenic-induced transformation, tumor growth, and angiogene-
sis. The general scheme of the mechanism of arsenic-induced carcinogenesis is shown as
follows (Figure 1).
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Figure 1. Mechanisms of arsenic-induced carcinogenesis. Arsenic exposure induces carcinogenesis 
via its biotransformation process, which causes effects on both genetic and epigenetic levels. The 
biotransformation of arsenic happens via a series of reactions such as reduction, oxidation, and 
methylation. Pentavalent arsenic (AsV) is reduced to trivalent (AsIII) and then methylated into or-
ganic arsenic species with higher carcinogenic potential. Here, S-adenosylmethionine (SAM) acts as 
a methyl donor, and Glutathione (GSH) and other thiols serve as reducing agents. Epigenetic alter-
ations induced by arsenic exposure include abnormal changes in DNA methylation, histone modi-
fication, miRNAs and lncRNAs expression, RNA modification, and alternative splicing. 

2. Arsenic-Induced Changes in DNA Methylation 
DNA methylation is the inclusion of the methyl group (-CH3) in the 5-carbon on the 

cytosine residues (5 mC) in CpG (Cytosine-Phosphate-Guanine) and non-CpG (CpA, CpT, 
and CpC) dinucleotides. The methyl group comes from a methyl donor, generally from S-
adenyl methionine (SAM), and this process is mediated by DNA methyl transferases 
(DNMTs) [28]. CpG dinucleotides are concentrated in CpG islands (short CpG-rich DNA 
stretches) and regions of repetitive sequences such as centromeric repeats, retrotrans-
poson elements, rDNA, etc. [29–31]. In cancers, the changes of methylation status mainly 
occur within CpG islands, which occupy ~70% of all mammalian promotors. In addition, 
these islands play an important role in the regulation of transcription, and their general 
changes have been found during malignant transformation [32,33]. The functional effect 
of the dysregulation of DNA methylation is context- and spatial-dependent, dynamic, tis-
sue-specific, and trans-generationally heritable [34–36]. Generally, gene silencing involves 
promotor methylation, and constitutive gene expression is associated with gene body 
methylation [32]. However, the methylation of the gene body may also be found to inac-
tivate repetitive DNA elements within the gene body [35,37] and show dramatic alteration 
intron-exon boundaries [38]. These complex methylation patterns underline the necessity 
of DNA methylation profiling to answer biological questions. 

Although it is evident that the dysregulation of DNA methylation has been demon-
strated in different cancers, our knowledge of the impact of inorganic arsenic (iAs) on 
DNA methylation is still growing. Methyl transferase (MTs) catalyze the methyl group 
transfer in the 5-carbon on the cytosine residues (5 mC) in CpG dinucleotides and use 

Figure 1. Mechanisms of arsenic-induced carcinogenesis. Arsenic exposure induces carcinogenesis
via its biotransformation process, which causes effects on both genetic and epigenetic levels. The
biotransformation of arsenic happens via a series of reactions such as reduction, oxidation, and
methylation. Pentavalent arsenic (AsV) is reduced to trivalent (AsIII) and then methylated into
organic arsenic species with higher carcinogenic potential. Here, S-adenosylmethionine (SAM) acts
as a methyl donor, and Glutathione (GSH) and other thiols serve as reducing agents. Epigenetic
alterations induced by arsenic exposure include abnormal changes in DNA methylation, histone
modification, miRNAs and lncRNAs expression, RNA modification, and alternative splicing.

2. Arsenic-Induced Changes in DNA Methylation

DNA methylation is the inclusion of the methyl group (-CH3) in the 5-carbon on the
cytosine residues (5 mC) in CpG (Cytosine-Phosphate-Guanine) and non-CpG (CpA, CpT,
and CpC) dinucleotides. The methyl group comes from a methyl donor, generally from
S-adenyl methionine (SAM), and this process is mediated by DNA methyl transferases
(DNMTs) [28]. CpG dinucleotides are concentrated in CpG islands (short CpG-rich DNA
stretches) and regions of repetitive sequences such as centromeric repeats, retrotransposon
elements, rDNA, etc. [29–31]. In cancers, the changes of methylation status mainly occur
within CpG islands, which occupy ~70% of all mammalian promotors. In addition, these
islands play an important role in the regulation of transcription, and their general changes
have been found during malignant transformation [32,33]. The functional effect of the
dysregulation of DNA methylation is context- and spatial-dependent, dynamic, tissue-
specific, and trans-generationally heritable [34–36]. Generally, gene silencing involves
promotor methylation, and constitutive gene expression is associated with gene body
methylation [32]. However, the methylation of the gene body may also be found to
inactivate repetitive DNA elements within the gene body [35,37] and show dramatic
alteration intron-exon boundaries [38]. These complex methylation patterns underline the
necessity of DNA methylation profiling to answer biological questions.

Although it is evident that the dysregulation of DNA methylation has been demon-
strated in different cancers, our knowledge of the impact of inorganic arsenic (iAs) on DNA
methylation is still growing. Methyl transferase (MTs) catalyze the methyl group transfer
in the 5-carbon on the cytosine residues (5 mC) in CpG dinucleotides and use SAM, a
coenzyme, as a methyl group donor. Long-term exposure to arsenic causes depletion of the
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SAM by MTs such as AS3MT [arsenic (III) methyl transferase]. Furthermore, arsenic can
also control DNMTs and decrease their activities. For example, studies have found that
arsenic exposure causes a reduction of mRNA levels and activity of DNMTs [39–41].

iAs exposure has been shown to change global DNA methylation in vitro, in animal
studies as well as in population studies (Table 1). For instance, a chronic low-dose of iAs
exposure induces DNA hypo-methylation in cells [42]. In addition, fish, mice, and rats
exposed to iAs exhibit hepatic global DNA hypomethylation [42–44]. However, limited
studies are available for the human population compared to in vitro and animal stud-
ies. A recent study assessed the association between arsenic exposure and global DNA
methylation (∼850,000 CpGs) through drinking water among 396 Bangladeshi people who
joined the Health Effects of Arsenic Longitudinal Study (HEALS). The study identified
34 CpGs associated with arsenic concentration in the urinary tract and found a positive
relationship between higher arsenic concentration and DNA hypomethylation in those
CpGs. Among the arsenic-associated CpGs, most of the genes were annotated to the
reactive oxygen species (ROS) pathway, tumor necrosis factor-α (TNF-α) signaling, and
inflammatory response via nuclear factor kappa B (NF-κB). These are essential hallmarks
of cancer and aging [45]. The results are consistent with earlier studies indicating that
epigenetic alterations potentially regulate arsenic toxicity [45]. Pilsner et al. showed that
iAs exposure led to global hypomethylation of leukocytes in human skin. The authors
observed that people with hypo methylation in the peripheral blood lymphocytes (PBL)
DNA were prone to skin lesions two years later when they adjusted for age, urinary As,
and other factors [46]. A whole-genome microarray-based study showed that the status
of DNA methylation changed over time in people who were affected by arsenic-induced
skin lesions compared to control in Bangladesh. The study found the top 20 differentially
methylated CpG sites. Among these top CpG sites, the methylation percentages increased
in 13 CpGs, and decreased in 7 CpGs between baseline and follow-up [47]. Bandyopad-
hyay et al. evaluated the association of cytogenetic damage by measuring lymphocyte
micronucleus (MN) frequency and long interspersed nuclear element-1 (LINE-1) methyla-
tion status among children who were exposed to arsenic in the areas of West Bengal. They
observed that a high reduction of LINE-1 methylation was associated with MN frequency
in exposed children compared to unexposed children, suggesting that LINE-1 methylation
is a potential epigenetic marker for arsenic toxicity in individuals [48].

Besides the changes in global DNA methylation status, iAs exposure also causes
changes in DNA methylation in specific regions of targeted genes in different cancers [49].
For example, the association between arsenic exposure and hypomethylated or hyper-
methylated promotors of some genes was found in human skin cancer [50] and bladder
cancer [51,52]. The carcinogenesis can occur due to the silence of tumor suppressor genes
via hypermethylation [40]. Some studies have found that iAs exposure leads to increased
methylation of the promotor for tumor suppressor genes such as p15, p16, p53, and death-
associated protein kinase (DAPK) in vitro and in vivo [40,50,51], DNA repair-related genes
such as ERCC2, RPA1 in human hepatocytes [53], MLH1 in whole human blood [54], and
genes associated with the Wnt pathway like MYC and WNT2B [53]. However, another study
involving a human population chronically exposed to arsenic demonstrated hypomethyla-
tion at the promoter of the DNA repair gene ERCC2 [55]. Smeester et al. comprehensively
studied the status of DNA methylation within CpG islands for more than 14,000 genes
among arsenic-exposed individuals with skin lesions and without skin lesions [56]. They
identified 183 genes with differentially methylated CpG islands, of which 182 were hyper-
methylated in individuals with signs of arsenicosis. Gene enrichment analysis showed that
most genes involved cancer-linked pathways via genes such as p53. They also identified
an arsenic-methylated tumor suppressorome, a complex of 17 known or putative tumor
suppressors silenced in human cancers, which includes hypermethylated genes such as
chromosome 11 open reading frame 70 (C11orf70), centromere protein E (CENPE), forkhead
box F1 (FOXF1), homeobox B5 (HOXB5), homeobox B9 (HOXB9), hsa-mir-126, SWI/SNF
related, matrix associated, actin dependent regulator of chromatin subfamily d member
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2 (SMARCD2), T-box brain 1 (TBR1), etc. Chanda et al. showed the hypermethylation
of GMDS gene fragments in the peripheral blood leukocyte DNA of individuals exposed
to arsenic and with skin cancer. They indicated it as a biomarker for arsenic-induced
cancer [57]. The AS3MT gene plays an essential role in the metabolism of arsenic and
its toxicological mechanism. Gribble et al. found decreased methylation in the promotor
region of AS3MT in an arsenic-exposed area in Arizona [58]. However, no further studies
have been performed to investigate the association between skin lesion status and AS3MT
promoter methylation to date. On the other hand, carcinogenesis can also occur due to
the activation of oncogene genes via hypomethylation. For instance, mice treated with
iAs showed hypomethylation of the promoter region of oncogene Hras1 and increased
mRNA levels of Hras1 [59], which was consistent with another study showing hypomethy-
lation and increased mRNA levels of Hras1 and c-myc in vitro [60,61]. Arsenic exposure
also led to Esr1 gene overexpression via hypomethylation of its promoter region, which
is closely related to arsenic-induced hepatocarcinogenesis [44]. However, a recent study
by Janasik et al. found hypermethylation of genes promoter of Nuclear factor-erythroid
factor 2-related factor 2 (NRF2) and Kelch-like ECH-associated protein 1 (KEAP1) among
occupationally arsenic-exposed copper mill workers from Poland [62].

DNA methylation inhibition occurs in a site-specific manner by proteins known as
the ten-eleven translocation (TET) enzymes [63,64]. These TET enzymes oxidize 5 mc to
5 hyrdoxymethylcytosine (5 hmc). Disruption of this group of proteins has been shown
in different types of cancer. Wang et al. showed that As inhibited the TET-mediated DNA
demethylation and subsequently induced the hypermethylation in the promotor region to
suppress the antioxidant genes 8-oxoguanine DNA glycosylase (OGG1) and glutathione
S-transferase Pi 1 (GSTP1), thus increasing oxidative stress in human bronchial epithelial
(HBE) cells in vitro [65]. In another recent study, Domingo-Relloso et al. conducted an
epigenome-wide association study (EWAS) to compare the association of different As
exposure levels and human blood 5 mc and 5 hmc markers in two diverse populations
from the Aragon Workers Health Study (AWHS, Spain) and the Folic Acid and Creatinine
Trial (FACT, Bangladesh) [66]. The effect of As on site-specific 5 mC and 5 hmC was
measured using the Illumina methylation EPIC array on more than 850,000 CpG sites.
They indicated different epigenetic effects for low As exposure in the AWHS population
and high As exposure in the FACT population. The differentially methylated (DMP)
and hydroxymethylated (DHP) positions were primarily found in distinct genomic sites.
For example, they found three DMPs annotated to CLEC12A, a gene that plays a role in
inflammation and immune response, which was consistent with previous studies [67].
In addition, they also found one DHP annotated to NPLOC4, a gene that has protein
processing function in the endoplasmic reticulum (ER) in the FACT population exposed
to a high dose of As. This is invariable to a study that reported a role of As in ER stress-
associated protein misfolding and apoptosis [68], for which mechanisms are known to be
associated with cardiometabolic diseases and cancer.

In addition, arsenic exposure also causes transgenerational genotoxicity and the alter-
ation of global DNA methylation patterns in the animal model. Parental chronic arsenic
exposure led to genotoxic damage (F0–F3), different methylation patterns, changes in phys-
ical and reproductive parameters, abnormal morphology in the ovaries (F0 and F1) and
testicles (F1–F3), and a decline in the quality of sperm (F0–F3, except F2), suggesting that
an individual’s early life disruptions can negatively impact later generations’ health [36].
An association was found between low or high-dose exposure to arsenic during gestation
with umbilical cord blood DNA methylation. There was increased DNA methylation in
CpG sites of LINE-1 and, to a lesser extent, within the promotor region of p16 [69]. Studies
also showed the sex-dependent association between arsenic exposure and cord blood DNA
methylation status, and the impact was even more prominent in the boys than in the
girls [70].

Arsenic doesn’t induce point mutations but causes deletion mutations and chromoso-
mal instability [40]. One possible mechanism by which arsenical compounds contribute
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to carcinogenesis is the disruption of normal epigenetic marks at specific loci, which may
cause changes in gene expression and carcinogenesis [71,72]. Although arsenic exposure
was found to alter methylation levels in global DNA and promoters of some genes, cur-
rent research is hard to understand due to the complexity and insubstantial information
provided in the current studies. Further investigations are necessary to systematically
explore DNA methylation on a genome-wide level in cell lines exposed to arsenic and
target tissues from well-characterized arsenic-exposed populations or tumor tissues from
arsenic-associated cancers. Such studies will assist in elucidating the possible biological
effects of arsenic exposure on DNA methylation and carcinogenesis. Arsenic-induced
alterations of DNA methylation status and carcinogenesis are summarized in Table 1.

Table 1. Arsenic-induced alterations of DNA methylation status and carcinogenesis.

Tissue/Cells Source of Arsenic

DNA Methylation

References
Global

Gene-Specific

Hyper Hypo

Prostate epithelial cell line
RWPE-1 AsIII Hypo [73,74]

HaCaT keratinocytes AsIII Hypo [39]
TRL 1215 rat liver epithelial cells AsIII Hypo [42]

Goldfish AsIII Hypo [75]
Fisher 344 rat AsIII Hypo [43]
129/SvJ mice AsIII Hypo [44]

Blood samples Drinking water Hypo [45]

Blood samples from skin lesion
patients and control

13 Hyper and
7 hypo methylation

of CpG islands
[47]

Human Hyper [76]
Hypo (in skin

lesion patients) [46]

Peripheral blood lymphocyte
DNA from skin lesions and

non-skin lesions

Drinking water
(urine samples)

182 genes out of 183
hypermethylated;

Identified a silenced
tumor suppressorome

consists of 17 genes

[56]

MMAIII ZHCAN12 and
C1QTNF6

Uroepithelial SV-HUC-1 cells AsIII DAPK [77]
Hamster embryo cells AsIII c-myc and Ha-ras [61]

TRL 1215 rat liver epithelial cells AsIII c-myc [51]
C57BL/6J mice AsIII c-Ha-ras [59]

A/J mice AsV p16, RASSF1 [78]
C3H mice AsIII ERα [79]

Blood samples from the people
of West Bengal, India Drinking water p53 and p21 in skin

cancer patients [50]

Tissues from arsenic-induced
skin lesions (cases) and with no

skin lesions (controls)
Drinking water DAPK and p16 [80]

Blood samples from copper mill
workers and

Non-occupationally exposed
healthy controls in Poland

Copper mill (urine) NRF2 and KEAP1 [62]

Blood samples from
arsenic-exposed individuals

(with and without skin lesions)

Drinking water
(water, urine) MLH1 and MSH2 [81]

Samples from bladder tumor Drinking water
(toenail) RASSF1A and PRSS3 [52]

Cord blood lymphocytes Drinking water (cord
blood, nails, and hair) p53 [82]

Blood samples from the West
Bengal population and HEK293

cell lines

Drinking
water(water, urine),

sodium arsenite, AsIII

Increased ERCC2
expression [55]

Blood samples from
arsenic-exposed individuals

(with and without skin lesions)

Drinking water
(water, urine)

Increased Tfam and
PGC1α expression [83]
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3. Arsenic Alters Histone Post-Translational Modification (PTM)

Genomic DNA is vast, around 2 m in length, and fits into nuclei of approximately
6 µm diameter by packaging it into chromatin [84]. The nucleosome is the central unit of
chromatin, which consists of around 146 DNA base pairs wrapped 1.65 times around an oc-
tamer of histone protein, comprising two copies of each histone: H2A, H2B, H3, and H4 [85]
and linked by the fifth histone (H1), which helps stabilize the nucleosome and facilitates the
folding of nucleosomes into chromatin compression [86]. Post-translational modifications
(PTMs) of these histone proteins alter chromatin’s structure and function, leading to a
change in gene expression. Besides chromatin structures and gene expressions, histone
modifications also affect various biological processes such as replication, repair mecha-
nisms, and the recombination of DNA [87]. Histone modification includes acetylation,
methylation, phosphorylation, and others such as ubiquitylation, biotinylation, glyco-
sylation, carbonylation, ADP-ribosylation, crotonylation, propionylation, N-formylation,
sumoylation, citrullination, etc. [88]. In this review, we will discuss the most studied histone
modifications due to arsenic exposure.

3.1. Histone Acetylation

Histone acetylation or deacetylation is a dynamic and reversible event [89]. More
than 50 years ago, Alfrey et al. demonstrated that histone acetylation and transcriptional
activity were positively correlated [90]. Since then, histone acetylation has been found to
be an important event for gene regulation by increasing the ability to regulate and activate
transcription through chromatin modification [91]. Histone acetyltransferases (HATs) and
histone deacetylases (HDACs) are the two types of antagonistic enzymes that regulate
histone acetylation and deacetylation, respectively. HATs catalyzed the addition of an
acetyl group to the ε-amino group of specific lysine side chains within the histone’s basic
N-terminal tail region by using acetyl co-A as a donor. This event neutralizes the lysine’s
positive charge and weakens the interactions between histones and DNA, resulting in a
relaxation of chromatin, which favors higher transcription. The acetylation at particular
lysine sites can also recruit the SWItch/Sucrose Non-Fermentable (SWI/SNF) complexes
which are bromodomain-containing proteins that help change the structure of chromatin to
a more open state to enable it for active transcription [92]. In contrast, HDACs remove the
acetyl group from the lysine residues and favor compact chromatin [93].

Increasing evidence has indicated that arsenic can change the pattern of acetylation
in the histone proteins at different parts of the chromatin. In the 1980s, it was reported
that arsenic exposure significantly decreased histone acetylation in Drosophila [94]. More
recently, alteration in both H3 and H4 histone elements has been associated with global or
dose-dependent arsenic exposure [95–97]. For example, both AsIII and MMAIII exposure
has been shown to induce malignant transformation of human urothelial cells in vitro
and to alter histone H3 acetylation patterns [98]. In addition, the same study found DNA
hypermethylation in a number of promoters that are already hypoacetylated. This result
leads us to believe that the genes may be targeted in a coordinated manner by arsenic
via the alteration of various epigenetic mechanisms to promote malignant transforma-
tion [98]. In addition, H3K27 and H3K9 acetylation has been associated with occupational
arsenic exposure [95,99]. During embryo development, arsenic also increases global H3K9
hypoacetylation [96]. Jo et al. showed that in human bladder epithelial cells, the H4K16
acetylation global level was decreased in a dose- and time-dependent manner after exposure
to both AsIII and MMAIII treatment [100]. Moreover, silencing the gene MYST1, which is
needed for H4K16 acetylation, caused higher cytotoxicity from arsenical exposure, suggest-
ing that H4K16 acetylation may be crucial for resistance to arsenic-induced toxicity. Several
other researchers have investigated the influence of arsenic on specific histone acetylation
and noticed dissimilarities from lysine residue. Arsenic did not change H4K5ac [99,101] or
H4K8ac [101]. AsIII did not change H3K14ac in the APL cell lines [102]. However, an epi-
demiological study observed a positive association between urinary arsenic and H3K14ac
in lymphocytes [103]. Interestingly, AsIII exposure was found to upregulate the genes
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required in apoptosis or for the response to cell stress by inducing histone acetylation via
HDACs [102,104] and by hindering HDAC genes that associate with higher global histone
acetylation [105]. It has been reported that the HDAC inhibitor can restore arsenic-induced
endothelial dysfunction and dementia, and inhibit malignant transformation induced by
iAs [101,106].

3.2. Histone Methylation

Histone methylation takes place mainly on the lysine and arginine side chain and does
not change the charge of the histone protein, as opposed to histone acetylation and phos-
phorylation. Furthermore, this modification adds another level of complexity. Lysine can
be mono-, di-, or tri-methylated, while arginine can be mono- and di-methylated [107–109].
Histone methylation is commonly observed on the histones H3 and H4. However, H2A
and H2B methylations are also noted. Both transcriptional activation and repression are
observed with histone methylation. For example, H3K4 and H3K36 methylation was
correlated with transcriptional activation, but H3K9, H3K27, and H4K20 methylation had
been shown to induce transcriptional repression [110,111]. It was also believed that his-
tone methylation was an irreversible and permanent epigenetic change [112]. However,
recently, enzymes such as histone lysine demethylase and arginine deiminase were shown
to directly remove a methyl group from lysine residue and antagonize histone arginine
methylation, respectively.

The abnormal loss or gain of histone methylation levels has been demonstrated in
tumorigenesis [113]. For example, researchers observed that H2B total methylation levels
were increased by treating embryonic cells from Drosophila melanogaster with 50 µm triva-
lent arsenic, whereas H3 and H4 histone methylation were abolished [94,114]. However,
mammalian cell responses to arsenic exposure are not simple: the varied effects of AsIII on
the methylation of H3 lysine residues were observed, including higher H3K9 dimethyla-
tion (H3K9me2) and H3K4 tri-methylation (H3K4me3) and lower H3K27 tri-methylation
(H3K27me3) [115]. A study on human lung carcinoma A549 cells confirmed the increased
H3K4me3 after 24-h or seven-day exposures, which is consistent with a previous study
that utilized RWPE1 cells initially derived from a human prostate [116,117]. Methylation at
H3K4me3 has been shown to correlate with active gene transcription and is generally found
in the transcription start sites [118]. However, H3K9me2 is a repression mark. Increased
H3K9me2, which is catalyzed by higher levels of G9a protein, a nuclear lysine methyl
transferase [115], is associated with reversible modification correlated with transcriptional
repression [88], and has been demonstrated to be involved in the silencing of tumor sup-
pressor genes in the cancer cell lines [119,120]. H3K27me3 is also a repressive epigenetic
mark that is crucial for regulating genes and the inactivation X chromosome [121]. Al-
though multiple studies have investigated arsenic effects on H3K27me3, the discoveries
were inconsistent. A study did not find any alteration of H3K27me3 after treating HepG2
cells derived from a male human liver tumor with 7.5 µm AsIII [105]. However, Zhou et al.
demonstrated that 2.5 and 5 µm µg/L of AsIII decreased H3K27me3 in A549 cells [115]. This
result is consistent with a population-based study among Bangladeshi men in which an
inverse association between As exposure and H3K27me3 in peripheral blood mononuclear
cells (PBMCs) was observed [122]. In contrast, there was a positive correlation between
As exposure and H3K27me3 among women [122], similar to research demonstrating that
0.5 µm AsIII enhanced this post-transcription modification using embryonic fibroblasts
derived from a female mouse [123]. Arsenic also induced epigenetic modification via the
generation of oxidative stress [124]. Ma et al. found a positive relationship between arsenic
levels in hair and urine, and altered total H3K9me2 and H3K36me3 amounts. The alteration
of H3K36me3 was found to be higher in the promoter regions of oxidative stress response
(OSR) genes in HaCaT and HEK cells [103].
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3.3. Histone Phosphorylation

The phosphorylation of histone is crucial for chromatin condensation and transcrip-
tional activation during mitosis and meiosis [125]. Phosphorylation can modify all four
histone core proteins (H2A, H2B, H3, and H4) and linker protein H1. It mainly occurs on
serine, threonine, and tyrosine residues. Phosphatases and kinases control this modifica-
tion. For example, H2A and H2B phosphorylation is catalyzed by several kinases, such
as ataxia telangiectasia mutated (ATM) for H2AX [126]. In contrast, Cyclin-dependent
kinases (CDKs) are responsible for H1 phosphorylation [127]. H3 phosphorylation is found
during cell cycle progression and regulation of gene expression [128]. Similarly, histone
H4 (serine 1) phosphorylation is increased during the cell cycle and is regulated by casein
kinase 2 [129]. The function of histone phosphorylation is to loosen the chromatin by acting
against the positively charged histone protein [130].

Histone phosphorylation plays an important role in arsenic-induced carcinogenesis.
Exposure to a high dose AsIII (10 µm) has been shown to reduce the total H1 and H3
phosphorylation levels in Chinese hamster ovary cells [131]. However, several studies
using various cell lines have demonstrated consistently that different doses and durations
of both AsIII and DMAIII can globally induce H3 phosphorylation on a serine residue
(H3S10ph) [102,132–135], which is essential for the regulation of chromosome segregation
during mitosis [136]. Studies have also indicated that H3 phosphorylation induced by
arsenic exposure may be necessary for the upregulation of the oncogenes c-fos and c-
jun [104] and the induction of caspase 10, a proapoptotic factor [102]. Interestingly, nickel,
another metal, has also been demonstrated to increase H3S10 (serine 10) through the
activation of the c-jun N-terminal kinase/stress-activated protein kinase (JNK/SAPK)
pathway [137]. Arsenic exposure activates JNK and p38/Mpk2 kinase [138], and histone
H3 phosphorylation through the JNK/SAPK pathway, which may be a common mechanism
of metal-induced histone modification.

Overall, these studies prove that the dysregulation of PTM occurs due to arsenic
exposure. However, the findings have been inconsistent in some cases because of many
factors, including dose and time of exposure differences, duration and type of arsenic
compound, and compounding factors such as sex contribution and measurement error.
Hence, further work is necessary to completely unravel the relationship between altered
histone modification and arsenic exposure, and to elucidate the total amount of altered
PTM of histone on arsenic-induced carcinogenesis and angiogenesis.

4. Abnormal Changes of MicroRNAs and lncRNAs upon Arsenic Exposure
4.1. MicroRNAs

MicroRNAs (miRNAs) are small non-coding RNAs that participate in different biolog-
ical regulatory events such as RNA silencing and post-transcriptional regulation of genes.
Ambros and colleagues discovered lin-4, the first miRNA in Caenorhabditis elegans, as a small
non-coding RNA that affected development via regulating the expression of the protein
lin-14 [139]. Since then, miRNAs have been found to be present in both invertebrates
and vertebrates, and some of them are highly conserved across the species, leading us
to believe that miRNA-mediated post-transcriptional regulation is a general regulatory
function across species [140–142]. Each miRNA is believed to target several hundred mR-
NAs, and each mRNA may be suppressed by several different types of miRNAs [143].
MicroRNAs regulate mRNA through sequence-specific RNA–RNA interactions in the 3′

untranslated region (3′-UTR) of targeted mRNA, destabilizing the mRNA and deactivating
gene expression [144,145]. Currently there are 38,589 hairpin precursors and 48,860 mature
miRNAs from 271 organisms recorded in miRBase catalogs, though the roles of many
miRNAs are still unknown [146]. Approximately 30% of mammalian genes are regulated
by miRNAs [147]. In addition, increasing evidence has established the dysregulation of
miRNA expression in cell differentiation, proliferation, and angiogenesis that can lead
to carcinogenesis via different mechanisms. These mechanisms include amplification or
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deletion, a transcriptional control of miRNAs, dysregulated epigenetic changes, and defects
in the miRNA biogenesis machinery [145].

It has been demonstrated that miRNAs are heavily dysregulated in cancers [19,148].
Because miRNAs are negative regulators of gene expression, dysregulation of these miR-
NAs can be tumorigenic if targeted mRNAs are either tumor suppressors or oncogenes.
For instance, the let-7 miRNA family directly targets the RAS oncogene to suppress its ex-
pression, and the reduction of let-7 miRNA family members leads to the overexpression of
RAS oncoprotein. Conversely, perturbation of the miR-34 family leads to the dysregulation
of the p53 tumor suppressor pathway [40,149].

Although notable progress has been made regarding the biogenesis and mechanisms
of miRNAs in different types of cancer, our knowledge is limited about the dysregulation
of miRNAs in As-induced carcinogenesis. The very first study of arsenic-induced miRNA
dysregulation in cell transformation was done by Wang et al. in 2011. They found that
exposure to a low concentration of arsenic for 16 weeks led to malignant transformation and
reduced miR-200b/c expression in immortalized human bronchial epithelial cells (HBECs)
with p53 knockdown. The inhibition of malignant transformation occurred when the same
cells were forcefully expressed with miR-200b [150]. Since then, there has been growing
evidence of miRNA dysregulation in As-mediated carcinogenesis (Table 2).

Table 2. miRNA alteration and carcinogenesis due to arsenic exposure.

MicroRNAs Biological Samples Alteration Target Genes & Function References

miR-21

HELF, Human Bronchial
Epithelial (HBE), and human

umbilical vein endothelial
cells (HUVEC)

Up
1. ROS activation of ERK/NF-kb pathway
2. EMT transition by acting on PTEN and PCD4
3. Enhanced levels of vascular endothelial growth

factor (VEGF) to increase angiogenesis

[151–154]

A urine sample from Hong
Kong children Down Not known

Blood plasma from the
Chinese and

Indian population
Up Association with liver damage [155,156]

miR-145 Blood plasma from the
Chinese population Up

1. Indicated impact on immune inflammation,
oxidative stress, and DNA repair mechanisms

2. Association liver damage
[155,157]

miR-155
Blood plasma from the

Chinese population Up Association with skin damage [155]

HBE cells Up miR-155 induced cell malignant transformation by
targeting Nrf2-mediated oxidative damage [158]

miR-190 Human lung epithelial cells Up
1. Activate Akt signaling via downregulating

PHLPP
2. Promote angiogenesis through increasing

VEGF expression

[159]

miR-191 human bronchial epithelial
(HBE) cells Up

HIF-2α increased Wilms’ tumor 1 (WT1) via
miR-191 involved in the angiogenesis and

metastasis of Transformed-HBE cells
[160]

Blood plasma from the
Chinese population Up Association with kidney damage [155]

miR-222
Hepatocellular carcinoma Up Inhibition of apoptosis by regulating different

target such as p27, TIMFE and FTEN [161–163]

Arsenic-induced BEAS-2B
(As-T-cells) Up Inhibition of apoptosis by regulating target FTEN [164]

miR-301a
Arsenic-induced BEAS-2B

(As-Tcells) and
Xenografts model

Up
Malignant transformation of BEAS-2B cells by

acting on directly
SMAD4 via STAT3/miR-301a/SMAD4 Loop

[151]

miR-425-5p and miR-433
Premalignant and malignant

skin tissue from an
Indian population

Up Association with hyperkeratosis that leads to
conclude their association with malignancy [152]

miR23a, miR-27a, miR-122,
miR-124, and miR-126 Blood plasma from the

Indian population
Up

Association with skin lesions [165]
miR-1282 and miR-4530 Down
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Table 2. Cont.

MicroRNAs Biological Samples Alteration Target Genes & Function References

miR-199a-5p Arsenic-induced BEAS-2B
(As-T-cells) Down Upregulate HIF-1 alpha and COX-2 to promote

angiogenesis [153]

miR-200 b Immortalized p53-knocked
down HBE Down Increased expression of ZEB1 and ZEB2, which are

EMT-inducing transcription factors [150]

miR-9 In vivo experiment on the
fertilized egg Down Increased NRP1 transmembrane receptor to

promote vascular development [166,167]

miR-181b In vivo experiment on the
fertilized egg Down

Increased NRP1 transmembrane receptor via
miR-181b downregulation to promote vascular

development
[166,167]

miR-182-5p Human retinal epithelial cells Down
Increased HIF2α through miR-182-5p suppression

contributed to arsenic-induced malignant
transformation of human renal epithelial cells.

[168]

miR-31 BEAS-2B cells Down
arsenic induces malignant transformation of

BEAS-2B cells by the overexpressing SATB2 and
inhibiting miR-31 expression

[169]

miR-126 Blood plasma from the
Indian population Down Precancerous and cancerous skin lesions [165]

Kong et al. found an association between the reduced level of miR-21 and an increase
in urinary arsenic levels in Hong Kong children aged 12–19 [170]. In contrast, there was
an increase of miR-21 and miR-222 in the peripheral blood of steelworkers [171]. When
non-malignant human keratinocytes (HaCaT) were treated with arsenic, 30 miRNAs were
differentially expressed in arsenic-exposed cells compared to control cells. This study
confirmed the upregulation of previously found miRNAs involved in carcinogeneses,
such as miR-21, miR-200a, and miR-141, which were indicated as potential biomarkers
for the epithelial phenotype of cancer cells [172]. In addition, exposure to As led to the
upregulation of miR-151 and miR-183 in liver tissues of rats [173] and miR-155 in cultured
16-HBE cells [158]. Zeng et al. evaluated the relationship between the expression of miRNAs
and multiorgan damage in control and arsenic-exposed populations in China [155]. The
study found associations between miR-155 and arsenic-induced skin damage between
miR-21, miR-145, and liver damage, and between miR-191 and kidney damage, indicating
that these miRNAs act as potential biomarkers for As-induced multiorgan injury. In a
recent study, Al-Eryani et al. analyzed the miRNA expression profile in non-malignant
hyperkeratosis (HK) and malignant skin lesion tissues, squamous cell carcinoma (SCC),
and basal cell carcinoma (BCC) from West Bengal (India) people chronically exposed to
high levels of arsenic, and found the differential expression of 35 miRNAs among the three
skin lesions. They found that miR-425-5p and miR-433 were upregulated in both BCC
and SCC compared to HK and were potentially associated with malignancy. However,
miR-184 and miR-576-3p were upregulated in SCC alone compared to both BCC and HK.
MiR-29c, miR-381, miR-452, miR-487b, miR-494, and miR-590-5p were selectively decreased
in BCC compared to both SCC and HK. They summarized both phenotype- and stage-
related differential miRNA expression profiles that may serve as possible biomarkers for
arsenic-induced internal tumors [9,152].

Several potential mechanisms are associated with miRNA dysregulation in As-mediated
cancerous outcomes. For example, As exposure led to the generation of reactive oxygen
species (ROS) and conceivably changed the miRNA expression [41,163,164]. A study found
that miR-21 was upregulated in the malignant transformed human embryo lung fibroblast
(HELF) cells after As exposure, which was due to the activation of the ERK/NF-κB pathway
by ROS [174]. We also showed that chronic As exposure led to ROS generation in human
bronchial epithelial BEAS-2B cells, which induced cyclooxygenase-2 (COX2) and hypoxia-
inducible factor (HIF)1-α expression through miR199a-5p suppression, thus promoting
tumor growth and angiogenesis. The forced expression of miR-199a-5p suppressed COX2
and HIF1-α expression and impaired arsenic-induced angiogenesis and tumor growth [153].
Another mechanism study showed that arsenic promoted epithelial-mesenchymal transi-
tion (EMT) by inducing pro-inflammatory cytokine interleukin-6 (IL-6) secretion, mediating
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the signal transducer and activator of transcription 3 (STAT3) signaling, and increasing
miR-21 expression in an autocrine manner [175]. In addition, miR-301a was also found to
be increased in human lung epithelial BEAS-2B cells exposed to As, and miR-301 was an
oncogenic miRNA that directly antagonized SMAD4 in the IL6/STAT3/miR-301a/SMAD4
signaling pathway during As-induced carcinogenesis [151]. Liu et al. found that increased
miR-21 expression inhibited tumor suppressor programmed cell death protein 4 (PDCD4)
and activated the ERK signaling pathway through the decreased expression of tumor
suppressor PTEN [176]. Similarly, the induction of miR-222 expression by As exposure
inhibited PTEN expression and was responsible for inducing cell transformation and tumor
growth [164].

4.2. Long Noncoding RNAs (ln cRNAs)

Long noncoding RNA (lncRNA) is a type of RNA that is greater than 200 nucleotides
and is not translated into a protein. Like mRNAs, lncRNAs are also generally transcribed
by RNA polymerase II and processed with a 5′-cap structure and 3′-end poly-A, followed
by RNA splicing and editing to create isoform transcripts. Because of their low expressions,
lncRNAs were primarily thought to be a transcription noise. However, with the advance-
ment of technology and better understanding, lncRNAs were observed to be involved
in the transcription and post-transcription regulation via interaction with RNA, DNA,
or proteins [177]. The lncRNAs can be found in the genomic loci, which are putatively
intronic, intergenic, or intersected with protein-coding regions in either sense or antisense
orientation, which can control the target gene expression in the downstream via cis- or
trans-regulatory mechanism. In addition, lncRNAs also regulate mRNA splicing and act as
predecessors to noncoding RNAs (ncRNAs), such as miRNAs [178–180]. They can function
as tumor suppressors or oncogenes and play roles in various signaling pathways [181].
Several lncRNAs have been recognized as independent or additional biomarkers in the
diagnosis and prognosis of cancer [182].

A recent study found that programmed cell death 1 ligand (PD-L1) and STAT3 were
upregulated in arsenic-transformed BEAS-2B cells, and knockdown of STAT3 inhibited
arsenic-induced PD-L1 upregulation. Lnc-DC, an lncRNA, was an upstream regulator
to mediate arsenic-induced STAT3 activation, suggesting that Lnc-DC/STAT3 cascade
may mediate PD-L1 upregulation during arsenic-induced transformation [154]. In lung
cancer cells, STAT3 is directly bound to the PD-L1 promotor and is necessary for PD-L1
expression [183,184]. Ji et al. found that the expression levels of metastasis-associated lung
adenocarcinoma transcript 1 (MALAT1), one of the well-known lncRNAs, highly correlated
with the tumor stage and metastasis of non-small cell lung cancer (NSCLC) [185]. In the
area of arsenic exposure, the levels of MALAT1 expression were increased in hepatocellu-
lar carcinoma (HCC) patients [186]. Increased hypoxia-inducible factor 2α (HIF-2α) and
MALAT1 expression levels were also found in HCC tissues and arsenic-induced trans-
formed human hepatic epithelial (L-02) cells. Functionally, the upregulation of MALAT1
and HIF-2α enhanced the invasive capability of arsenic-transformed L-02 cells and HCC-
LM3 cells. Mechanistically, As induced MALAT1 and separated the von Hippel-Lindau
(VHL) protein from HIF-2α to reduce the ubiquitination of VHL-mediated HIF-2α, result-
ing in HIF-2α accumulation. In L-02 cells, arsenite exposure enhanced glycolysis [187].
In addition to HIF-2α upregulation as above, arsenic exposure also increased the expres-
sion of HIF-1α through the lncRNA MALAT1. Furthermore, arsenic exposure enhanced
glycolysis by HIF-1α stabilization via MALAT1, but not by HIF-2α [187]. Currently, it is
well established that enhanced glycolysis plays an essential role in cancer initiation and
progression [188–190]. These discoveries give additional proof that supports a critical
role of the MALAT1 upregulation in arsenic-mediated carcinogenesis. Animals exposed
to arsenic treatment also showed the upregulation of MALAT1 during the progression
of mouse liver fibrosis. Together, these studies show that arsenic exposure upregulates
MALAT1 expression in both cultured cells and mice, suggesting a critical role of lncRNA
MALAT1 in arsenic carcinogenicity and toxicity [191]. However, the role and mechanisms
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of these upregulated lncRNAs in arsenic-induced carcinogenesis are currently not clear
and remain to be elucidated.

Overall, arsenic exposure changes the expression profiles of miRNAs and lncRNAs,
which may serve as potential biological markers and provide therapeutic values for arsenic-
induced carcinogenesis. However, the research is limited to lncRNAs, and more studies are
necessary to unravel their function during this process. Similarly, studies are also required
to investigate miRNAs in As-induced cancer in different stages, especially mechanisms
related to direct vs. indirect effects of arsenic-targeted miRNAs on the population and how
these miRNAs control different signaling pathways to cause cancer and other diseases.

5. Arsenic Causes Abnormal RNA Modification

RNA methylation is a reversible post-transcriptional alteration to RNA that epige-
netically regulates different biological processes and is widely present in both eukaryotes
and prokaryotes [192]. In this process, a methyl group is transferred from an active methyl
compound to a different compound. It occurs not only in messenger RNA (mRNA),
but also in other RNA species, including transfer RNA (tRNA), ribosomal RNA (rRNA),
transfer-messenger RNA (tmRNA), small nucleolar (snoRNA), microRNA, viral RNA, and
so on [193,194]. RNA methylation modulates RNA splicing [195], stability [196], transla-
tion [197,198], DNA damage repair [199], nuclear export [200], miRNA biogenesis initia-
tion [201], immunogenicity [202], and the occurrence and development of cancer [203,204].
Among more than 170 types of modification that have been observed in all kinds of RNAs,
methylation accounts for more than 50% of them. When methylation is found at the sixth
N of the adenylate of RNA, it is called m6A methylation. Studies also found other forms of
RNA methylation besides m6A methylation, such as m6Am, m7G, m1A, and m5c. How-
ever, m6A alteration has been considered the most abundant methylation alteration in the
eukaryote mRNA [205] that affects every process in the life cycle of RNA [206].

M6A methyl transferases such as methyltransferase-like enzyme 3/14 (METTL3/14),
Wilms tumor 1-associated protein (WTAP), RBM15/15B, and KIAA1429 catalyze m6A
modification [207]. The binding proteins, called ‘readers’, which can recognize and bind to
the methylated RNA, decode m6A methylation, and generate a functional signal. Readers
include eukaryotic initiation factor (eIF) 3, YT521-B homology (YTH) domain-containing
protein [208], heterogeneous nuclear ribonucleoprotein (HNRNP) protein family [209], and
the IGF2 mRNA binding proteins (IGF2BP) family [210]. On the other hand, demethylases
such as fat mass and obesity-associated protein (FTO) and alkB homolog 5 (ALKBH5) are
called “erasers” because they remove the methyl group from the target mRNAs. Growing
evidence has suggested that the affluence of m6A and expressions of its regulators, includ-
ing writers, erasers, and readers, are often dysregulated in different types of cancers and
are essential for cancer initiation, progression, metastasis, as well as drug resistance and
cancer relapse [211–215]. For instance, METTL3 can recruit translation initiation factors
directly and increase RNA translation. It promoted cell growth, survival, and invasion by
upregulating EGFR and TAZ in lung adenocarcinoma [216]. Choe et al. demonstrated that
METTL3 promoted the translation and transformation of oncogenes and formed dense
polyribosomes by interacting with EIF3H in primary lung cancer, which might be a po-
tential therapeutic target [217]. The role of METTL14 in lung cancer is controversial; a
recent study showed that METTL14 knockdown suppressed the malignant progression of
non-small cell lung cancer (NSCLC) by reducing Twist expression [218]. However, other
studies showed that METTL14 was downregulated in lung adenocarcinoma (LUAD) and
mediated lncRNA HCG11 [219] or miR-30c-1-3p to inhibit tumor growth [220]. The over-
expression of FTO decreased m6A levels in MZF1 mRNA transcripts, increased mRNA
stability, and promoted MZF1 expression, leading to the proliferation and invasion of lung
squamous cell carcinoma cells [221]. Although m6A RNA modification dysregulation is
associated with various cancers, the underlying mechanisms of m6A in cancer have not yet
been fully understood.
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Gao et al. found that As treatment reduced m6A modification near the stop codon of
an endogenous inducer of somatic mutation gene APOBEC3B (A3B) in the human alve-
olar basal epithelial cells from adenocarcinoma. FTO was responsible for reducing m6A
alteration in A3B, which led to increased A3B expression and higher DNA mutation rates
of the m6A reader YTHDF2. They confirmed that A3B was a downstream target of FTO
in lung tissues from As-exposed mice. FTO protein expression was positively correlated
with A3B protein expression in tumor samples from human NSCLC patients [222]. An-
other study also confirmed that As treatment increased FTO expression, decreased m6A
RNA methylation, and consequently induced malignant transformation and tumorigenesis
in keratinocytes. FTO deletion inhibited arsenic-induced tumorigenesis in both in vitro
and in vivo experiments. Arsenic stabilization of the FTO protein occurred via impeding
p62-mediated autophagy, which led to a positive feedback loop to keep up FTO accumula-
tion [223]. Unfortunately, few studies have been performed on As-induced dysregulation
of m6A methylation; hence, further studies are necessary to understand the potential
molecular mechanisms of m6A in As-induced tumorigenesis and cancer progression.

6. Arsenic Exposure and Alternative Splicing

The removal of intronic sequences and splicing together of adjacent exons are nec-
essary for RNA maturation and translation into protein. The elimination of introns is
followed by attaching exons in their DNA-corresponding order, known as consecutive
splicing, which occurs at every intron-exon boundary [224]. Alternative splicing diverges
from this process via mechanisms that reorder the pattern of exons into alternative coding
sequences that translate to different proteins. This mechanism is an evolutionarily con-
served process that significantly increases transcriptome and proteome diversity from a
limited genome. Alternative splicing is necessary to maintain cellular homeostasis and is
essential in regulating cell differentiation and development [225,226]. Alternative splicing
is tightly controlled by other significant processes in the cell, and perturbation of this
process is known to occur commonly in human cancers [63,227,228]. Alternative splicing
is associated with carcinogenesis [229], angiogenesis [230], and EMT [227,228]. Growing
evidence has demonstrated that the decision of alternative splicing or consecutive splicing
occurs while the mRNA is still tied to the DNA and takes place transcriptionally [231]. Sev-
eral studies have shown the factors that control the structure of chromatin, such as histone
PTMs and DNA methylation, dictate the selection of exon candidates for splicing [232–234].

As discussed, exposure to iAs significantly changes DNA methylation and histone
post-translational modifications. Hence, it is reasonable to believe that it may play a part in
alternative splicing by changing chromatin organization. Cardoso et al. found that when
human immortalized human keratinocytes (HaCaT) were treated with sodium arsenite at
100 nM for 28 weeks, a minimum of 600 different alternative splicing events were found at
each time point tested. They found that chronic arsenic exposure induced the canonical iso-
forms of the splice regulators DDX42, RMB25, and SRRM2 [235]. Alternating splicing might
occur via DNA binding inhibition by alternative splicing modifiers such as CCCTC-binding
factor (CTCF), TET1/2, and poly (ADP) ribose polymerase (PARP1) [64]. Several other
studies also showed that PARP-1 inhibition occurred in arsenite-exposed cells [236,237],
and PARP-1 was a direct molecular target of arsenite, which selectively interacted with
zinc finger domains [236–238]. Notably, many splicing factors are regulated by PARyla-
tion [239–241], and inhibition of PARP1 binding to DNA upon arsenic exposure affects the
structural properties of chromatin and the PARylation activities, which indirectly controls
splicing decisions. iAs also inhibits the methylcytosine dioxygenases (TET1/2), the DNA-
binding proteins with zinc finger motifs. TET1/2 are necessary to oxidize 5-methylcytosine
to 5-hydroxymethylcytosine and 5-carboxylcytosine [242]. Deactivation of TET1/2 allows
5-methylcytosine to assemble at the CTCF target sites and stops CTCF from attaching to
its target sites, consequently leading to exon exclusion [243]. Thus, iAs may participate in
splicing decisions by blocking the binding of PARP1 or CTCF to DNA.
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iAs also changes alternate splicing by upregulating p52 via non-canonical NF-kB
pathway activation [244]. p52 modulates the splicing factor SRSF1 by co-localizing and
interacting with it [245]. SRSF1 overexpression is induced by MYC [246], which is also
dysregulated in iAs exposure [53,247]. MYC increases core pre-mRNA machinery in the
process of carcinogenesis and maintains the suitable splicing of alternative exons [248].
More studies are needed to further elucidate how iAs dictates alternating splicing.

7. Conclusions and Future Direction

Arsenic alone is not efficient to cause point mutation or initiate and promote tumor
development in animal models. However, growing evidence has shown that arsenic causes
the dysregulation of epigenetic changes, including DNA methylation, histone modification,
miRNAs and lncRNAs, RNA modification, and alternative splicing, which consequently
changes the gene expressions followed by severe pathologies, including cancers. Our
understanding of the underlying epigenetic mechanisms is still limited, especially for RNA
methylation, lncRNAs, and alternative splicing. More studies are necessary to elucidate
their roles and mechanisms in arsenic-induced carcinogenesis. In addition, most studies
used different cell lines and animals to characterize epigenetic changes induced by arsenic
exposure. More population studies using human cohorts exposed to varying arsenic
levels are necessary to unveil how individual variability, genetic background, and other
confounding variables such as diet, gender, and age may influence the epigenetic responses.
Studies are also required to systematically investigate epigenetic profiles to identify and
validate the markers of epigenetic changes in targeted disease-relevant tissues such as the
skin, bladder, kidney, and lung.

In summary, a comprehensive epigenomic approach is necessary to understand the
mechanisms of arsenic-induced carcinogenesis and angiogenesis. These mechanistic com-
prehensions of epigenetic changes can provide potential biomarkers of arsenic exposure and
develop potential therapeutic targets for mitigating the global burden of arsenic-induced
diseases, including cancers.
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