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A B S T R A C T

The COVID-19 pandemic has been keeping asking urgent questions with respect to therapeutic options. Existing
drugs that can be repurposed promise rapid implementation in practice because of their prior approval.
Conceivably, there is still room for substantial improvement, because most advanced artificial intelligence
techniques for screening drug repositories have not been exploited so far. We construct a comprehensive
network by combining year-long curated drug–protein/protein–protein interaction data on the one hand, and
most recent SARS-CoV-2 protein interaction data on the other hand. We learn the structure of the resulting
encompassing molecular interaction network and predict missing links using variational graph autoencoders
(VGAEs), as a most advanced deep learning technique that has not been explored so far. We focus on hitherto
unknown links between drugs and human proteins that play key roles in the replication cycle of SARS-CoV-2.
Thereby, we establish novel host-directed therapy (HDT) options whose utmost plausibility is confirmed by
realistic simulations. As a consequence, many of the predicted links are likely to be crucial for the virus to
thrive on the one hand, and can be targeted with existing drugs on the other hand.
1. Introduction

The ongoing pandemic of COVID-19 (Coronavirus Disease-2019),
caused by SARS-CoV-2, an enveloped, single-stranded RNA virus [1],
has led to more than a million deaths so far and keeps asking urgent
questions. Accepting the challenge, researchers have been relentlessly
searching for possible therapeutic strategies in the last few months.
However, still, no truly reliable remedy has been showing on the
horizon.

Repurposing drugs refers to screening databases for molecules
whose risks have been found to be manageable in prior applications
on the one hand, and that can be shown to target proteins that are
crucial for SARS-CoV-2 to replicate and thrive on the other hand. If
not even representing viable cures by themselves, repurposed drugs
have the potential to mitigate the severity of the pandemic for the
time being. The fact that the majority of 3D structures of the SARS-
CoV-2 proteins has remained unknown so far, corroborates the need
for artificial intelligence based screens of molecular interaction data
that relate with COVID-19 further, because experimental, de novo drug

∗ Corresponding author.
E-mail addresses: sumanta.ray@aliah.ac.in (S. Ray), alexander.schoenhuth@uni-bielefeld.de (A. Schönhuth).

design crucially depends on the availability of such 3D structures.
Note further that because the virus hijacks the host cell machinery
for replication through interactions of viral with human proteins, a
comprehensive understanding of the interactions between viral and
human proteins is essential [2,3].

In that quest for therapy options, the most advanced artificial in-
telligence based approaches may mean a massive boost with respect to
drug repurposing screens. However, despite their promising potential,
many state-of-the-art AI – in particular deep neural network – based
approaches have not yet been explored so far.

Here, we do exactly this. We combine existing, year-long curated
and approved molecular (drug/human protein) interaction data with
most recent experimental interaction screens (yielding new, and so
far only insufficiently explored SARS-CoV-2–human protein interaction
data). In this, we design an experimental setup that enables us to ex-
ploit most advanced (and hitherto unexplored) deep variational graph
autoencoder techniques for generating novel therapy options.
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In detail, we first learn the structure of the comprehensive drug–
human–virus molecule interaction network while encoding the net-
work. We then predict links between human proteins that are crucial
for the virus to replicate on the one hand, and existing drugs as a result
of decoding the autoencoder representation of our network, although
these links were not part of the original network. As a result, we do
not only predict drugs to act against COVID-19, but we also identify
the human proteins that when blocked lead to disruption of the viral
replication cycle, which fosters the biomolecular understanding of how
viral replication can be controlled.

Note that we suggest to block human proteins such that the replica-
tion machinery of the virus falls apart. However, we do not suggest to
target viral proteins themselves. The justification is that viral proteins,
when being targeted, tend to elicit resistance-inducing mutations, such
that the virus rapidly adapts to the (rather simpleminded) attack. In
comparison to viral proteins, human proteins acquire mutations at
rates that are smaller by orders of magnitudes. This renders human
proteins substantially more sustainable therapy options when estab-
lishing actionable drug targets [4]. This explains why we focus on the
corresponding host-directed therapy (HDT) options here. In summary,
we suggest drugs that have the potential to be rapidly integrated in
clinical practice (thanks to repurposing) and that the virus cannot easily
escape (thanks to serving HDT based strategies).

Our combination of drug repurposing and HDT based on screening
molecular interaction data is further supported by prior work that has
been describing unprecedented opportunities lately [5]. Examples of
pathogens that were treated earlier are Dengue [6], HIV [7], Ebola [8],
next to various other, non-viral diseases.

As for related work, a handful of research groups have been trying to
suggest drugs to be repurposed so as to counteract the spread of SARS-
CoV-2 in the human body based on exploiting network resources since
the outbreak of COVID-19. Zhou et al. made the first attempt through
an integrative network analysis [9], followed by Li et al. who combined
network data with a comparative analysis on the gene sequences of
different viruses [10].

Only shortly thereafter, however, Gordon et al. generated a map
that juxtaposes SARS-CoV-2 proteins with human proteins based on
affinity-purification mass spectrometry (AP-MS) screens in pioneering
work [11], closely followed by Dick et al. who, in independent work,
identified high confidence interactions between human and SARS-
CoV-2 proteins using sequence-based PPI predictors (a.k.a. PIPE4 &
SPRINT) [12]. Recently, Sadegh et al. developed CoVex to visually
explore the SARS-CoV-2 host interactome and repurposable drugs in an
online interactive platform [13]. Giulia et al. [14], proposed a network
similarity based approach to prioritize drug molecules associated with
COVID-19. Gysi et al. [15] integrate artificial intelligence, network
diffusion, and network proximity measure to rank the existing drugs
for their expected efficacy against SARS-CoV-2.

Both of the studies [11,12] provide crucial data, because only
because of the two studies we are able to link existing (long term
curated and highly reliable) drug–protein and human protein–protein
interaction data with the SARS-CoV-2 proteins, just as was possible for
the above-mentioned diseases earlier [6,7,16,17].

Still, however, the exploitation of the novel data, in combination
with year-long established, refined and curated interaction data using
most advanced AI techniques needed to be brought into effect. As a
brief summary of our contributions:

(1) We link existing high-quality, long-term curated and refined,
large scale drug/protein–protein interaction data with

(2) molecular interaction data on SARS-CoV-2 itself, raised recently
in literature,

(3) exploit the resulting overarching network using an advanced
AI supported techniques (namely variational graph autoencoder based
techniques)

(4) for repurposing drugs in the fight against SARS-CoV-2
2

(5) in the frame of HDT based strategies.
As for (3)–(5), we will demonstrate how to adapt most advanced
deep learning based techniques to learn and exploit molecular interac-
tion network data. By this, we are able to predict new links between
drugs and proteins at utmost accuracy. The spectrum of drugs we reveal
is fairly broad in terms of mechanism of action. We are therefore
convinced that several drugs we suggest have solid potential to be
amenable to developing successful HDTs against COVID-19.

2. Materials and methods

In the following, we will first describe the workflow of our analysis
pipeline and the basic ideas that support it.

First, we raise a novel network by combining well-established and
most recent resources into an overarching, comprehensive interac-
tion network that puts drugs, human and SARS-CoV-2 proteins into
encompassing context.

We then carry out a simulation study that proves that our AI
supported pipeline predicts missing links in the encompassing drug–
human protein–SARS-CoV-2–protein network at utmost accuracy. With
this, we provide evidence for our predictions to reflect true interactions
between molecular interfaces, at utmost likelihood.

Subsequently, in our real experiments, we predict links between
drugs on the one hand, and SARS-Cov-2-associated human proteins
on the other hand to be missing. Corroborated by our simulations, a
large fraction (if not possibly even the vast majority) of predictions
establish true molecular interactions, potentially actionable in HDT
based strategies.

Finally, we inspect the postulated mechanism of action of the sug-
gested drugs in the frame of several diseases, including the closely
related SARS-CoV (‘‘SARS-classic’’) and MERS-CoV, documenting the
plausibility of our predictions.

2.1. Workflow

See Fig. 1 for the workflow of our analysis pipeline. We will describe
all important steps in the paragraphs of this subsection.

2.1.1. Raising a comprehensive interaction network
See A & B in Fig. 1. We have combined well-established drug–

gene interaction and human interactome data (compiled from eight,
year-long curated, much refined, well-established publicly accessible
resources) with the SARS-CoV-2–human protein-interaction network
published only a few weeks ago. The integrated network has four types
of nodes:

(1) SARS-CoV-2 proteins, (2) SARS-CoV-2-associated host proteins
(CoV-host), (3) human proteins other than (2) and (4) drugs. This
means that we put drugs, human proteins and SARS-CoV-2 proteins
into a context that is as comprehensive as currently possible. Still, it
is highly likely, however, that links are missing. Because many such
missing links reflect drugs that can be repurposed, it remains to set up
an AI approach that can predict such links.

2.1.2. AI model first stage — Node2Vec
See C in Fig. 1. For the link prediction machinery to work, we

operate in two stages. First, we employ Node2Vec [18], as a network
embedding strategy that extracts node features from the integrated
network. Formally, Node2Vec converts the adjacency matrix that rep-
resents the network into a fixed-size, low-dimensional latent feature
space. As elements of this space, nodes correspond to feature vectors.
Thereby, Node2Vec aims at preserving the properties of the nodes
relative to their surroundings in the network. For efficiency reasons,
Node2Vec makes use of a sampling strategy. The result of this step
is a feature matrix (𝐹 ) where rows refer to nodes and columns refer
to the inferred network features (See supplementary text for detailed

descriptions).
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Fig. 1. Overall workflow of the proposed method: The three networks SARS-CoV-2–host PPI, human PPI, and drug–target network (Panel-A) are mapped by their common interactors
to form an integrated representation (Panel-B). The neighborhood sampling strategy Node2Vec converts the network into fixed-size low dimensional representations that perverse
the properties of the nodes belonging to the three major components of the integrated network (Panel-C). The resulting feature matrix (F) from the node embeddings and adjacency
matrix (A) from the integrated network are used to train a VGAE model, which is then used for prediction (Panel-D).
2.1.3. AI model second stage — variational graph autoencoders (VGAE)
See B, C & D in Fig. 1. In the next step, we employ variational graph

autoencoders (VGAE), as a most recent graph neural network based
technique that was shown to predict missing links in networks at utmost
accuracy [19]. VGAEs require the original graph (coded as its adjacency
matrix 𝐴) and, optionally, a feature matrix 𝐹 that annotates the nodes
of the network with helpful additional information. Often, 𝐹 does not
necessarily refer to the topology of the network itself. Here, however,
we do make use of the feature matrix 𝐹 that was inferred from 𝐴 by
Node2Vec. We found that using 𝐹 aided in raising prediction accuracy
substantially, despite 𝐹 only being an alternative representation of 𝐴.
The explanation for this is that 𝐹 consists of knowledge obtained using
Node2Vec, which, as being complementary to VGAEs, indeed reveals
additional information. Our pipeline thus unifies the virtues of both
VGAE and Node2Vec. See Section 3-C and Fig. 2 for corresponding
experiments.

2.1.4. Predicting missing links
See D in Fig. 1. After training the VGAE, we predict links in the en-

compassing drug–human–virus interaction network that had remained
to be missing. For this, we make use of the decoding part of the
VGAE, which re-raises the interaction network based on the latent
representation the encoder had computed. Re-raising the network re-
sults in edges between nodes that although not having been explicit
before, are imperative to exist relative to the encoded version of the
network. Thereby, one predicts links between drugs and SARS-CoV-
2-associated human proteins in particular. Although not having been
3

Table 1
Average AUC and AP across the last 10 training epochs of FastGAE. Validation AUC
and AP for different numbers 𝑁𝑆 of sampling nodes are reported.
𝑁𝑠 Average performance on validation set

AUC (%) AP (%) Training time (in sec)

7000 89.21 ± 0.02 85.32 ± 0.02 1587
5000 89.17 ± 0.03 85.30 ± 0.04 1259
3000 88.91 ± 0.10 85.02 ± 0.04 1026
2500 88.27 ± 0.15 84.88 ± 0.13 998
1000 86.69 ± 0.17 83.58 ± 0.19 816

explicit before, the existence is implied by the topological constraints
the comprehensive network imposes on such links to exist or not.
Our model thus predicts both drugs and proteins: repurposing these
drugs leads to targeting the matching proteins. See Fig. 1 for the total
workflow we just described.

2.1.5. Addressing computation time
The biomolecular interaction networks one needs to consider for

successful drug repurposing, i.e. standard protein–protein and drug–
protein interaction networks, consist of hundreds of thousands of nodes,
and are too large for standard implementations of VGAEs to deal with.
This renders advanced, runtime friendly implementations of VGAEs
crucial ingredients of our workflow. Most recent progress on that topic
by Salha et al. (published Feb 5, 2020), running under the name
FastGAE [20] provides the last key element for our approach to work in
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Fig. 2. Performance of the model (AUC on the validation set) with and without using feature matrix (F).
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ractice. FastGAE relies on a strategy by which to repeatedly subsample
odes from large graphs, and train VGAEs on the resulting subgraphs,
nd subsequently to join the resulting autoencoders in a consistent
anner. In experiments (see Table 1), we determined 5000 nodes as

n optimal size for a subsample.

.2. Sampling strategy and feature matrix generation

We have utilized Node2vec [18], an algorithmic framework for
earning continuous feature representations for nodes in networks. It
aps the nodes to a low-dimensional feature space that maximizes the

ikelihood of preserving network neighborhoods.
The principle of feature learning framework in a graph can be de-

cribed as follows: Let 𝐺 = (𝑉 ,𝐸) be a graph, where 𝑉 represents a set
f nodes, and 𝐸 represents the set of edges. The feature representation
f nodes (|𝑉 |) is given by a mapping function: 𝑓 ∶ 𝑉 → 𝑅𝑑 , where
specifies the feature dimension. Alternatively, 𝑓 may be considered

s a node feature matrix of a dimension of |𝑉 | × 𝑑. For each node,
∈ 𝑉 , a network neighborhood 𝑁𝑁𝑆 (𝑣) ⊂ 𝑉 of node 𝑣 is defined by

employing a neighborhood sampling strategy 𝑆. The sampling strategy
can be sketched as an interpolation between breadth-first search and
depth-first search [18], with objective function

max
𝑓

(

∑

𝑣∈𝑉
log𝑃 (𝑁𝑁𝑆 (𝑣) ∣ 𝑓 (𝑣))

)

(1)

This maximizes the likelihood of observing a network neighborhood
𝑁𝑁𝑆 (𝑣) for a node 𝑣 given its feature representation 𝑓 (𝑣). The prob-
ability of observing a neighborhood node 𝑛𝑖 ∈ 𝑁𝑁𝑆 (𝑣) given 𝑓 (𝑣) is

𝑃 (𝑁𝑁𝑆 (𝑣) ∣ 𝑓 (𝑣)) =
∏

𝑛𝑖∈𝑁𝑁𝑆 (𝑣)
𝑃 (𝑛𝑖 ∣ 𝑓 (𝑣)). (2)

where 𝑛𝑖 refers to the 𝑖th neighbor of node 𝑣 as part of 𝑁𝑁𝑆 (𝑣). Last,
the conditional probability 𝑃 (𝑛𝑖 ∣ 𝑓 (𝑣)) of a neighborhood node 𝑛𝑖 ∈
𝑁𝑁𝑆 (𝑉 ) given the original node 𝑣 is computed as the softmax the scalar
roduct of their feature vectors 𝑓 (𝑣) and 𝑓 (𝑛𝑖)

𝑃 (𝑛𝑖 ∣ 𝑓 (𝑣)) =
𝑒𝑥𝑝(𝑓 (𝑣) ⋅ 𝑓 (𝑛𝑖))

∑

𝑢∈𝑉 𝑒𝑥𝑝(𝑓 (𝑢) ⋅ 𝑓 (𝑣))
(3)

2.3. Drug–SARS-CoV-2 link prediction

2.3.1. Adjacency matrix preparation
In this work, we consider an undirected graph 𝐺 = (𝑉 ,𝐸) with

|𝑉 | = 𝑛 nodes and |𝐸| = 𝑚 edges. Let 𝐴 be the binary adjacency matrix
of 𝐺. Here 𝑉 consists of SARS-Cov-2 proteins, CoV-host proteins, drug–
target proteins and drugs. The matrix (𝐴) contains a total of 𝑛 = 16444
nodes given as:

𝑛 = |𝑁 | + |𝑁 | + |𝑁 | + |𝑁 |, (4)
4

𝑁𝑐 𝐷𝑇 𝑁𝑇 𝐷
where, 𝑁𝑁𝑐 is the number of SARS-CoV-2 proteins. 𝑁𝐷𝑇 is the number
of drug targets, whereas 𝑁𝑁𝑇 and 𝑁𝐷 represent the number of CoV-
host and drugs nodes, respectively. The total number of edges is given
by:

𝑚 = |𝐸1| + |𝐸2| + |𝐸3|, (5)

where, 𝐸1 represents interactions between SARS-CoV-2 and human host
proteins, 𝐸2 is the number of interactions among human proteins, and
𝐸3 represents the number of interactions between drugs and human
host proteins.

2.3.2. Feature matrix preparation
The neighborhood sampling strategy is used to compute feature

representations for all nodes. A flexible biased random walk procedure
is employed to explore the neighborhood of each node. A random walk
in a graph 𝐺 can be described as the probability

𝑃 (𝑎𝑖 = 𝑥 ∣ 𝑎𝑖−1 = 𝑣) = 𝜋(𝑣, 𝑥), (6)

where, 𝜋(𝑣, 𝑥) is the transition probability between nodes 𝑣 and 𝑥,
where (𝑣, 𝑥) ∈ 𝐸 and 𝑎𝑖 is the 𝑖th node in the walk of length 𝑙. The
ransition probability is given by 𝜋(𝑣, 𝑥) = 𝑐𝑝𝑞(𝑡, 𝑥) ×𝑤𝑣𝑥, where 𝑡 is the

previous node of 𝑣 in the walk, 𝑤𝑣𝑥 is the (static) weight attached to
the edge (𝑣, 𝑥) and 𝑝, 𝑞 are the two parameters that guide the walk. The
oefficient 𝑐𝑝𝑞(𝑡, 𝑥) is given by

𝑐𝑝𝑞(𝑡, 𝑥) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

1∕𝑝 distance(t, x) = 0

1 distance(t, x) = 1

1∕𝑞 distance(t, x) = 2

(7)

where distance(𝑡, 𝑥) represents the distance of the shortest path between
nodes 𝑡 and node 𝑥. The process of feature matrix 𝐹𝑛×𝑑 generation
is governed by the Node2vec algorithm. It starts from every node,
simulating 𝑟 random walks of fixed length 𝑙. In every step of a walk the
transition probabilities 𝜋(𝑣, 𝑥) govern the sampling. In each iteration,
generated walks are added to a list of walks. Each random walk
forms a sentence which is ultimately used by word2vec [21], a well-
known algorithm that takes a set of sentences (walks), and outputs an
embedding for each word. The log-likelihood in Eq. (1) is optimized in
the Optimization step by using stochastic gradient descent algorithm
on a two-layer Skip-gram neural network model used by word2vec.

2.3.3. Link prediction
We utilize scalable and fast variational graph autoencoder (FastV-

GAE) [20] to reduce the computational time of VGAE in networks that
are as large as ours. The adjacency matrix 𝐴 and the feature matrix
𝐹 are fed into the encoder of FastVGAE as input. The encoder uses a
graph convolution neural network (GCN) on the entire graph to create
the latent representation

𝑍 = 𝐺𝐶𝑁(𝐴, 𝐹 ) (8)
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The encoder works on the full adjacency matrix 𝐴. After encoding,
one samples subgraphs, and decoding is performed on the sampled
subgraphs.

The mechanism of the decoder of FastVGAE slightly differs from
that of a traditional VGAE. For each subsample of graph nodes 𝑉𝑠,
it regenerates an adjacency matrix 𝐴. For subsampling graph nodes,
it makes use of a technique that determines the nodes from which
to reconstruct the adjacency matrix in each iteration. Therefore, each
node is assigned with a probability

𝑝(𝑖) =
𝑑(𝑖)𝛼

∑

𝑗∈𝑉 𝑑(𝑗)𝛼
(9)

where 𝑑(𝑖) is the degree of node 𝑖, and 𝛼 is the sharpening parameter,
where in our study 𝛼 = 2. Nodes are then selected during subsampling
according to their probabilities 𝑝𝑖 until the subsampled nodes amount
to |𝑉𝑠| = 𝑛𝑠, the prescribed number of sampling nodes.

The decoder reconstructs the smaller matrix, 𝐴𝑠 of dimension 𝑛𝑠×𝑛𝑠
instead of decoding the main adjacency matrix 𝐴. The decoder function
follows the following equation:

𝐴𝑠(𝑖, 𝑗) = Sigmoid(𝑧𝑇𝑖 ⋅ 𝑧𝑗 ), ∀(𝑖, 𝑗) ∈ 𝑉𝑠 × 𝑉𝑠 (10)

here 𝑧𝑖, 𝑧𝑗 reflect the representations of nodes 𝑖, 𝑗, as computed by the
ncoder, see (8). At each training iteration a different subgraph (𝐺𝑠) is
rawn using the sampling method.

After training the model, the drug–CoV-host links are predicted
sing the equation

(𝐴𝑖𝑗 = 1 ∣ 𝑧𝑖, 𝑧𝑗 ) = Sigmoid(𝑧𝑇𝑖 𝑧𝑗 ), (11)

here 𝐴𝑖𝑗 = 1 reflects a link between nodes 𝑖 and 𝑗 to exist, where 𝑖
nd 𝑗 further reflect human proteins that interact with SARS-CoV-2 on
he one hand and drugs on the other hand (recalling that we would
ike to predict links between human proteins that when targeted lead
o the replication machinery of the virus falling apart). For each such
ombination of nodes the model computes the probability based on the
ogistic sigmoid function.

. Formal details and background

.1. Variational graph autoencoder

The Variational Graph Autoencoder (VGAE) is a framework for
nsupervised learning on graph-structured data [19]. This model uses
atent variables and is effective in learning interpretable latent repre-
entations for undirected graphs. The VGAE consists of two subnet-
orks that are stacked onto another: (1) Encoder and (2) Decoder.
irst, a graph convolution networks (GCN) based encoder [19] maps
he nodes into a low-dimensional embedding space. Subsequently, a
ecoder attempts to reconstruct the original graph structure from the
ncoder representations. Both models are jointly trained to optimize
he quality of the reconstruction from the embedding space, in an
nsupervised way. The encoder and the decoder are described in the
ollowing.

ncoder . The encoder consists of a Graph Convolution Network (GCN)
hat takes the adjacency matrix 𝐴 and the feature representation matrix

as input. The encoder generates a 𝑑′-dimensional latent variable 𝑧𝑖
or each node 𝑖 ∈ 𝑉 , with |𝑉 | = 𝑛, where 𝑑′ ≤ 𝑛. Let 𝑍 = (𝑧𝑖) represent
ll such latent variables. The probability to generate a particular choice
f 𝑍 is given by the formula

(𝑍 ∣ 𝐴, 𝐹 ) =
|𝑣|
∏

𝑖=1
𝑞(𝑧𝑖 ∣ 𝐴, 𝐹 ), (12)

hich assumes conditional independence between the 𝑧𝑖 given the
djacency matrix 𝐴 (that is, the graph) and the Node2Vec based feature
epresentation 𝐹 of the graph. The probability 𝑟(𝑧𝑖|𝐴, 𝐹 ) follows a nor-
al distribution,  (𝑧 |𝜇 , diag(𝜎2)) where 𝜇 and diag(𝜎2) parameterize
5

𝑖 𝑖 𝑖 𝑖 𝑖 d
the 𝑑′-dimensional distribution  . Both 𝜇𝑖 and 𝜎𝑖 reflect the output of
two graph convolutional networks (GCN) that share parameters in the
first layer. For further details, see [19]. In that sense, 𝑧𝑖 reflects to be
sampled from the Gaussian distributions that are learned by two GCNs
that partially share parameters.

Decoder . The decoder is a generative model that seeks to reconstruct
the graph, as represented by its adjacency matrix 𝐴 from the latent
variables 𝑧𝑖. The result is an estimate 𝐴 of the adjacency matrix that is
supposed to match the original 𝐴 as well as possible. The probability
that 𝐴𝑖𝑗 is one (that is there is an edge between node 𝑖 and 𝑗), given
the embedding vector 𝑍, evaluates as

𝑝(𝐴𝑖,𝑗 = 1 ∣ 𝑧𝑖, 𝑧𝑗 ) = Sigmoid(𝑧𝑇𝑖 𝑧𝑗 ), (13)

hat the application of a sigmoid function to the scalar product of 𝑧𝑖 and
𝑗 . The objective function of the variational graph autoencoder (VGAE)
eads as

𝑉 𝐺𝐴𝐸

𝐸𝑞(𝑍∣𝐴,𝐹 )[log 𝑝(𝐴 ∣ 𝑍)] −𝐷𝐾𝐿(𝑞(𝑍 ∣ 𝐴, 𝐹 ) ∥ 𝑝(𝑍)) (14)

here 𝐷𝐾𝐿(. ∥ .) reflects Kullback–Leibler divergence and 𝑝(𝑍) is
he prior distribution that governs the latent variables 𝑍. 𝐶𝑉 𝐺𝐴𝐸 is
aximized using stochastic gradient descent; for details see again [19].

.2. Practical implementation: FastGAE

We utilize FastGAE, a fast version of VGAE, for the implementa-
ion of variational graph autoencoding in practice. Note that while
ncoding is feasible in practice also for large networks, decoding is
ot. Therefore, FastGAE is identical to the original VGAE during the
ncoding phase. Decoding, however, is computationally too expensive
f the underlying graph, and hence its adjacency matrix is too large.
ote that here the number of nodes corresponds to the number of drugs,
uman and SARS-CoV-2 proteins together, which clearly exceeds the
imits of the original VGAE.

To resolve the issue, FastGAE randomly samples subgraphs 𝐺𝑆 ,
eferring to smaller sets of nodes 𝑆 ⊂ 𝑉 of size 𝑁𝑆 , and reconstructs the
orresponding submatrices 𝐴𝑆 . FastGAE proceeds in several iterations
n each of which a different subset of nodes 𝑆 of size 𝑁𝑆 is sampled.
he decoding step then estimates an adjacency matrix 𝐴𝑆 whose entries
efer only nodes from 𝑆. The submatrices 𝐴𝑆 resulting from single
terations are eventually combined into an overarching matrix 𝐴̃, as
n approximation of the matrix 𝐴 that gets reconstructed as a whole
n the decoding phase of the original VGAE. The justification is that
epending on the number of iterations and the size 𝑁𝑆 of a sample, 𝐴̃
as shown to be a highly accurate estimate of the original 𝐴 [20].

For evaluating the effects of including a feature matrix 𝐹 that
eflects an alternative representation of the original adjacency matrix
, we evaluated the performance of the model with and without

ncluding 𝐹 . Fig. 2 shows the average performance of the model on
alidation sets with and without 𝐹 as input for different numbers of
ampling nodes. The average AUC, and AP scores are reported for 50
omplete runs. From Fig. 2, it is evident that including 𝐹 as a feature
atrix enhances the model’s performance markedly. As mentioned in
esults, the explanation for this – at first glance surprising – effect

s the complementarity of the methods Node2Vec (which generates 𝐹
ndependently of VGAE) and VGAE. The integration of 𝐹 evidently
eads to synergetic effects between Node2Vec and VGAE.

. Result

.1. Dataset preparation

We have utilized three categories of interaction datasets: human
rotein–protein interactome data, SARS-CoV-2–host protein interaction

ata, and drug–host interaction data.
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Table 2
Description of data sets.
Index Dataset Category Dataset #Edges #Nodes

1 Human PPI CCSB [29] 13 944 4303
HPRD [27] 39 240 9617

2 SARS-CoV-2–Host PPI Gordon et al [11] 332 27 (#SARS-CoV-2) 332 (#Host)
Dick et al [12] 261 6 (#SARS-CoV-2) 202 (#Host)

3 Drug–target interaction

DrugBank (v4.3) [22]

1 788 407 1307 (# Drug) 12 134 (# Host-target)ChEMBL [23]
Therapeutic Target Database (TTD) [24]
PharmGKB database
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SARS-CoV-2-host interaction data. We have taken SARS-CoV-2–host
interaction information from two recent studies by Gordon et al. and
Dick et al. [11,12]. In [11], 332 high confidence interactions be-
tween SARS-CoV-2 and human proteins are predicted using affinity
purification mass spectrometry (AP-MS). In [12], 261 high-confidence
interactions are identified using sequence-based PPI predictors (PIPE4
& SPRINT).

Drug–host interactome data. The drug–target interaction information
has been collected from five databases: DrugBank database (v4.3) [22],
ChEMBL [23] database, Therapeutic Target Database (TTD) [24], Phar-
mGKB database, and IUPHAR/BPS Guide to PHARMACOLOGY [25].
The total number of drugs and drug–host interactions used in this study
are 1309 and 1 788 407, respectively.

The human protein–protein interactome. We have built a comprehen-
sive list of human PPIs from two datasets:

(1) CCSB human Interactome database consisting of 7000 genes, and
13 944 high-quality binary interactions [26]

(2) The Human Protein Reference Database [27] which consists of
8920 proteins and 53 184 PPIs.

The summary of all the datasets is provided in Table 2. The CMAP
database [28] is used to annotate the drugs according to their usage
with respect to different diseases.

4.2. Advantages of including a feature matrix 𝐹

For evaluating the effects of including a feature matrix 𝐹 that
reflects an alternative representation of the original adjacency matrix
𝐴, we evaluated the performance of the model with and without
including 𝐹 . Fig. 2 shows the average performance of the model on
validation sets with and without 𝐹 as input for different numbers of
sampling nodes. The average AUC, and AP scores are reported for 50
complete runs. From Fig. 2, it is evident that including 𝐹 as a feature
matrix enhances the model’s performance markedly. As mentioned in
Results, the explanation for this—at first glance surprising—effect is
the complementarity of the methods Node2Vec (which generates 𝐹
independently of VGAE) and VGAE. The integration of 𝐹 evidently
leads to synergetic effects between Node2Vec and VGAE.

4.3. Predicting missing links: Validation

Let 𝐺 = (𝑉 ,𝐸) be the entire drug–human–virus interaction network
in the following, where nodes 𝑣 ∈ 𝑉 represent molecules (drugs,
proteins). Edges (𝑢, 𝑣) ∈ 𝐸 between molecules 𝑢, 𝑣 reflect known
nteractions where we are interested in the case of 𝑢 being a drug and
being a human protein that was found to interact with SARS-CoV-2

roteins recently [11,12]. The goal of this study is to predict such edges
𝑢, 𝑣) to exist with great probability, despite not making explicit part of
he network 𝐺.

For approving and corroborating the quality of the predictions
f such virtual, non-explicit edges in the following, we designed the
ollowing canonical experiment. We first removed all existing edges
𝑢, 𝑣) ∈ 𝐸 between drugs and SARS-CoV-2-associated human proteins
‘‘CoV-host proteins’’) from 𝐺, resulting in an interaction network 𝐺̃ =
6

h

(𝑉 , 𝐸̃) where 𝑉 is the same set of molecules as before, while the edges
̃ lack any interaction of the type we are looking for, as just described.
ote that removing all such edges creates a particularly challenging

scenario (in comparison to, for example, only removing selected subsets
of such edges).

We then ran our pipeline on 𝐺̃, yielding an adjacency matrix 𝐴̃ and
a feature matrix 𝐹 (resulting from running Node2Vec on 𝐺̃) for training
the VGAE. We used the resulting decoder for predicting missing edges.
In the evaluation of this experiment, we focused on the edges that we
had removed before, because these are known to be true.

Evaluating the resulting predictions confirmed that predicting miss-
ing edges by means of our pipeline operates at utmost performance
(ROC–AUC: 93.56 ± 0.01 AP: 90.88 ± 0.02 averaged across 100 runs);
we recall that we considered the most challenging scenario conceivable
(it is conceivable that performance rates increase when re-integrating
existing edges, because the model profits from the additional struc-
ture provided during training). The purpose of these simulations is to
point out that the following results are trustworthy; note that in the
following we do make use of all the edges that we removed in the
simulations described here, which provides the additional structure, as
just explained.

To choose the correct size of sampling node (𝑁𝑆 ) in the decod-
ing stage of FastGAE, we tested the model performance for different
numbers of 𝑁𝑆 and kept track of the corresponding performance (area
nder the ROC curve (AUC), average precision (AP) score) and model
raining time) in the frame of a train-validation-test split at propor-
ions 8:1:1. Table 1 shows the performance of the model for sampled
ubgraph sizes 𝑁𝑆 = 7000, 5000, 3000, 2500 and 1000. For 5000
ampled nodes, the model’s performance is sufficiently good concerning
ts training time and validation-AUC and -AP score. The average test
OC–AUC and AP score of the model for 𝑁𝑠 = 5000 are 88.53 ± 0.03
nd 84.44 ± 0.04.

.4. Drug–CoV-host interaction prediction

The overall number of possible links between drugs and CoV-host
roteins amounts to 332 × 1302 (CoV-host × drugs). While many such
inks make part of the network, the majority of such possible links
oes not make part of the network. We refer to all such links that do
ot make part of network as ‘‘non-edges’’. Any such ‘‘non-edge’’ that is
redicted to exist at sufficiently high probability is a prediction for an
nteraction of a drug with a CoV-host protein. We train the model on the
hole network reflected by adjacency matrix 𝐴 and feature matrix 𝐹

the latter computed by Node2Vec). The trained model is then applied
o the ‘‘non-edges’’ to discover the most probable missing drug–Cov–
ost interactions. Fig. 3(a), Panel-A shows the heatmap of probability
cores between predicted drugs and CoV-host proteins. We identified
92 links, connecting 92 drugs with 78 CoV-host proteins whose proba-
ility to exist exceeded a threshold of 0.8. As we will illustrate further in
he following, the predicted CoV-host proteins are involved in different
athways that are crucial for viral infections (Supplementary Table 3).
e further used a Weighted bipartite clustering algorithm [30] for an-

lyzing the bipartite graph whose partitions consist of drugs on the one

and, and CoV-host proteins on the other hand further. Application of
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Fig. 3. Drug–CoV-host predicted interaction.
the algorithm results in 4 bipartite modules (Panel-A Fig. 3(a)): B1 (11
drugs, 28 CoV-host), B2 (4 drugs, 41 CoV-host), B3 (71 rugs and 4 CoV-
host), and B4 (6 drugs and 5 CoV-host). Panels B–D in Figs. 3(b), 3(c),
and 3(d) show the network diagram of four bipartite modules. Of note,
7

several antibiotics (Anisomycin and Midecamycin in B1; Puromycin,
Demeclocycline, Dirithromycin, Geldanamycin, and Chlortetracycline
in B3), anti-cancer drugs (Doxorubicin, Camptothecin) and other drugs
(Lobeline and Ambroxol in B3) have a variety of therapeutic uses,



Artificial Intelligence In Medicine 134 (2022) 102418S. Ray et al.
Fig. 3. (continued).
including bronchitis, pneumonia, and respiratory tract infections [31]
which provides further evidence of the reasonability of our results.

High-confidence interactions (exceeding a probability threshold of
0.9) are further shown in Fig. 4(a), Panel A. To highlight some re-
purposable drug combination and their predicted CoV-host target, we
8

perform a weighted clustering (using clusterONE [32]) on this net-
work, resulting in several quasi-bicliques (shown in Panels B–E of
Fig. 4(b))

We matched our predicted drugs with the drug list recently pub-
lished by Zhou et al. [9] and found six common drugs: Mesalazine,
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Fig. 4. Predicted interactions for probability threshold: 0.9. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this
article.)
Vinblastine, Menadione, Medrysone, Fulvestrant, and Apigenin. Among
them, Apigenin has a known effect on the antiviral activity together
with quercetin, rutin, and other flavonoids [33]. Mesalazine is also
proven to be extremely effective in the treatment of other viral diseases
like influenza A/H5N1 virus [34].
9

4.5. Repurposable drugs for SARS-CoV-2

Here we showcased some repurposable drugs that have promi-
nent literature-reported antiviral evidence, especially for two other
coronaviruses SARS-CoV and MERS-CoV. Some drugs are directly as-
sociated with the treatment of SARS-CoV-2 as well. The details of the
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predicted drugs and their uses are given in supplementary text and
Supplementary Table-2.

Topoisomerase inhibitors. Topoisomerase Inhibitors such as Camp-
tothecin, Daunorubicin, Doxorubicin, Irinotecan and Mitoxantrone are
in the list of predicted drugs. The anticancer drug camptothecin (CPT)
and its derivative Irinotecan have a potential role in antiviral activ-
ity [35]. Daunorubicin (DNR) is demonstrated as an inhibitor of HIV-1
virus replication in human host cells [36]. The anticancer antibiotic
Doxorubicin was previously identified as a selective inhibitor of in-
itro Dengue and Yellow Fever virus [37]. Mitoxantrone shows antiviral
ctivity against the human herpes simplex virus (HSV1) by reducing the
ranscription of viral genes in many human cells that are essential for
NA synthesis [38].

istone deacetylases inhibitors (HDACi). Our predicted drug list
supplementary table-2) contains two HDACi: Scriptaid and Vorinostat.
oth drugs can be used to achieve latency reversal in the HIV-1 virus
afely and repeatedly [39]. Asymptomatic patients infected with SARS-
oV-2 are of significant concern as they are more vulnerable to infect

arge population than symptomatic patients. Moreover, in most cases
99-percentile), patients develop symptoms after an average of 5–14
ays, which is longer than the incubation period of SARS and MERS.
o this end, HDACi may serve as good candidates for recognizing and
learing the cells in which SARS-CoV-2 latency has been reversed.

SP inhibitor . Heat shock protein 90 (HSP) is described as a crucial
ost factor in the life cycle of several viruses that includes an entry in
he cell, nuclear import, transcription, and replication [40,41]. HSP90
s also shown to be an essential factor for SARS-CoV-2 envelop (E)
rotein [42]. In [43], HSP90 is described as a promising target for
ntiviral drugs. The predicted drug list contains three HSP inhibitors:
anespimycin, Geldanamycin, and its derivative Alvespimycin. The first
wo have a substantial effect in inhibiting the replication of Herpes
implex Virus and Human enterovirus 71 (EV71), respectively. Re-
ently in [44], Geldanamycin and its derivatives are proposed to be
n effective drug in the treatment of COVID-19.

ntimalarial agent, DNA-inhibitor, DNA methyltransferase/synthesis
nhibitor . Inhibiting DNA synthesis during viral replication is one of
he critical steps in disrupting the viral infection. The list of predicted
rugs contains six such small molecules/drugs, viz., Niclosamide, Azac-
tidine, Anisomycin, Novobiocin, Primaquine, Menadione, and Metron-
dazole (see supplementary text). Recently Hydroxychloroquine (HCQ),
derivative of CQ, has been evaluated to efficiently inhibit SARS-CoV-2

nfection in vitro [45]. Therefore, another anti-malarial aminoquino-
in drug Primaquine may also contribute to the attenuation of the
nflammatory response of COVID-19 patients. Primaquine is already
stablished to be effective in the treatment of Pneumocystis-pneumonia
PCP) [46].

ardiac glycosides ATPase inhibitor . The predicted list of drugs con-
ains three cardiac glycosides ATPase inhibitors: Digoxin, Digitoxi-
enin, and Ouabain. These drugs have been reported to be effective
gainst different viruses such as herpes simplex, influenza, chikun-
unya, coronavirus, and respiratory syncytial virus [47].

g132, resveratrol and captopril. MG132, a proteasomal inhibitor, is
strong inhibitor of SARS-CoV replication in early stage [48]. Resvera-

rol has also been demonstrated to be a significant inhibitor MERS-CoV
nfection [49]. Another drug Captopril is known as Angiotensin II
eceptor blockers (ARB), which directly inhibits the production of
ngiotensin II. In [50], Angiotensin-converting enzyme 2 (ACE2) is
emonstrated as the binding site for SARS-CoV-2. So Angiotensin II
eceptor blockers (ARB) may be good candidates to use in the tentative
10

reatment for SARS-CoV-2 infections
5. Discussion

In this work, we have successfully generated a list of candidate
drugs that can be repurposed to counteract SARS-CoV-2 infections. As
novelties, we have integrated the most recently published SARS-CoV-
2 interaction data into well-established network resources to raise an
encompassing network putting drugs, viral and human proteins into a
comprehensive context. Further, to exploit this novel network, we have
made use of the most recent and advanced deep learning methodology
that addresses learning and exploiting network data, establishing an-
other novelty. Experiments validate that our predictions are of utmost
accuracy, which confirms the quality of the novel interactions between
drugs and virus related proteins that we suggest.

The recent publication of two novel SARS-CoV-2–human protein
interaction resources [11,12] has unlocked enormous possibilities in
studying the mechanisms that drive virulence and pathogenicity of
SARS-CoV-2. Only now sufficiently systematical and accurate, AI sup-
ported drug repurposing strategies for fighting COVID-19 have become
conceivable.

To the best of our knowledge, we have raised such a systematic
approach of utmost accuracy with an advanced AI boosted model for
the first time. We have integrated the new SARS-CoV-2 protein inter-
action data into well established, carefully curated resources, capturing
hundreds of thousands of approved interfaces between molecules that
reflect drugs or human proteins. As a result, we have been able to raise
a comprehensive drug–human–SARS-CoV-2 network that reflects the
latest state of the art with respect to the interactions that it displays.

This new network already establishes a novel resource in its own
right. For exploiting it, we have opted for using variational graph
autoencoders (VGAE), which have been most recently presented as the
state of the art in analyzing large network datasets, and which allow
to predict links that are missing in the network whose structure and
the rules that underlie the interplay of links it has ‘‘learned’’ at utmost
accuracy. Note that FastGAE, the practical implementation of VGAEs
that enables us to analyze networks of sufficiently large sizes, was
presented only very recently [20] as well, pointing out the timeliness
of our study yet again.

Simulation experiments, reflecting scenarios where links known to
exist are predicted upon their artificial removal, have pointed out that
our approach operates with utmost accuracy.

Encouraged by these simulations, we predicted links to be missing
without prior removal of links. Our predictions have revealed 692
high confidence interactions between human proteins that are essential
for the virus on the one hand and 92 drugs on the other hand; note
that we had been emphasizing host-directed therapy (HDT) strategies,
which explains why we have focused on the type of interaction just
described. We recall that the combination of HDT and drug repurposing
promises to yield drugs that not only enable accelerated usage, but also
guarantee a sufficiently high degree of sustainability.

We further systematically categorized the 92 repurposable drugs
into 70 categories based on their domains of application and molecu-
lar mechanism. According to this, we identified and highlighted sev-
eral drugs that target host proteins that the virus needs to enter
and subsequently hijack human cells. One such example is Capto-
pril, which directly inhibits the production of Angiotensin-Converting
Enzyme-2 (ACE-2), in turn already known to be a crucial host factor
for SARS-CoV-2. Further, we identified Primaquine, as an antimalaria
drug used to prevent the Malaria and also Pneumocystis pneumonia
(PCP) relapses, because it interacts with the TIM complex TIMM29
and ALG11. Moreover, we have highlighted drugs that act as DNA
replication inhibitor (Niclosamide, Anisomycin), glucocorticoid recep-
tor agonists (Medrysone), ATPase inhibitors (Digitoxigenin, Digoxin),
topoisomerase inhibitors (Camptothecin, Irinotecan), and proteasomal
inhibitors (MG-132). Note that some drugs are known to have rather

severe side effects from their original use (Doxorubicin, Vinblastine),



Artificial Intelligence In Medicine 134 (2022) 102418S. Ray et al.
but the disrupting effects of their short-term usage in severe COVID-19
infections may mean sufficient compensation.

In summary, we have compiled a list of drugs, when repurposed, are
of great potential in the fight against the COVID-19 pandemic, where
therapy options are still urgently needed. Our list of predicted drugs
suggests both options that had been identified and thoroughly discussed
before, as well as new opportunities that had not been pointed out
earlier. The latter class of drugs may offer valuable chances for pursuing
new therapy strategies against COVID-19.
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