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,e single-cell RNA sequencing (scRNA-seq) has recently been widely utilized to quantify transcriptomic profiles in single cells of
bulk tumors. ,e transcriptomic profiles in single cells facilitate the investigation of intratumor heterogeneity that is unlikely
confounded by the nontumor components. We proposed an algorithm (ATAXIC) to quantify the heterogeneity of transcriptomic
perturbations (TPs) in single cancer cells. ATAXIC calculated the TP heterogeneity level of a single cell based on the standard
deviations of the absolute z-scored gene expression values for tens of thousands of genes, reflecting the asynchronous degree of
transcriptomic alterations relative to the central (mean) tendency. By analyzing scRNA-seq datasets for eight cancer types, we
revealed that ATAXIC scores were likely to correlate positively with the enrichment scores of various proliferation and oncogenic
signatures, DNA damage repair, treatment resistance, and unfavorable phenotypes and outcomes in cancer. ,e ATAXIC scores
varied among different cancer types, with lung cancer and melanoma having the lowest average scores and clear cell renal cell
carcinoma having the highest average scores. ,e low TP heterogeneity in lung cancer and melanoma could bestow relatively
higher response rates to immune checkpoint inhibitors on both cancer types. In conclusion, ATAXIC is a useful algorithm to
quantify the TP heterogeneity in single cancer cells, as well as providing new insights into tumor biology.

1. Introduction

Single-cell technology is rapidly evolving to analyze mo-
lecular characteristics at the single cell level [1]. In particular,
the single-cell RNA sequencing (scRNA-seq) has shown its
power in analyzing gene expression profiles in thousands of
individual cells in one test [2, 3]. A major advantage of the
scRNA-seq technology is that it enables characterization of
sophisticated biological processes at single-cell resolution to
capture transcriptional snapshots of rare events [4, 5]. ,us,
this technology has recently been widely used to quantify
transcriptomic profiles in different components of bulk
tumors, including cancer cells, immune cells, stromal cells,
and normal cells [6–13]. Apparently, scRNA-seq demon-
strates the advantage of uncovering transcriptomic

heterogeneity among different tumor cells as compared to
bulk RNA sequencing, which measures the average ex-
pression of genes among different types of cells [14].
,erefore, scRNA-seq has evolved into a popular tool to
dissect cellular heterogeneity in an unbiasedmanner without
requiring any prior information of the cell population
[2, 15, 16]. Most of the scRNA-seqdata-based studies aimed
to characterize the tumor microenvironment, the cross-talk
among the different components of bulk tumors, and
intratumor heterogeneity (ITH). Previous studies on bulk
tumors have demonstrated that the transcriptomic pertur-
bations (TPs) are observed in a wide variety of cancers and
are heterogeneous within a tumor and across different tu-
mors [17, 18]. In fact, the heterogeneity of TPs is an intrinsic
feature of many cancers and is due to the presence of
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different subclones within one tumor, each of which has its
own unique features of gene expression profiles [19, 20].
Because the heterogeneity of TPs provides the fuel for drug
resistance, a precise measure of ITH resulting from it is
essential for the development of effective therapies [21].
However, the investigation into the TP profiles in single
cancer cells remains lacking to date.

In this study, we developed an algorithm (ATAXIC) to
quantify the TP heterogeneity in single cancer cells. ,e TP
heterogeneity score indicates the asynchronous degree of
transcriptomic alterations relative to the central tendency in
single cells. Using ATAXIC, we scored the TP heterogeneity
for single cells from eight cancer types, including glioma,
melanoma, lung cancer, prostate cancer, renal cell carci-
noma (RCC), liver cancer, breast cancer, and sarcoma. By
analyzing correlations of ATAXIC scores with various on-
cogenic signaling, clinical features, DNA damage repair
signatures, and treatment responses in these cancer types, we
demonstrated that the ATAXIC index likely increases with
tumor proliferation, progression, invasion, and metastasis
and thus is a risk factor for tumor development.

2. Materials and Methods

2.1. Data Collection and Preprocess. We obtained the data of
scRNA-seq gene expression profiles in single cells for eight
caner types from the Gene Expression Omnibus (GEO)
(https://www.ncbi.nlm.nih.gov/geo/), including glioma [13],
melanoma [12], lung cancer [10], prostate cancer [8], RCC

[6], liver cancer [9], breast cancer [7], and sarcoma (https://
www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc�GSE131309).
We excluded the patients with less than ten cancer cells
reported in this study. Low-quality cells were discarded if the
number of expressed genes was smaller than 300. Cells were
also removed if their mitochondrial gene expression was
larger than 10 percent. ,e numbers of patients and their
cancer single cells for each cancer type are presented in
Supplementary Table S1. We normalized all TPM normal-
ized gene expression values by adding 1 and then log2
transformation. In addition, we downloaded the data of drug
sensitivity of 578 cancer cell lines to 4686 compounds from
the Dependency Map (DepMap) (https://depmap.org/
portal/download/). We obtained the marker genes of pro-
liferation, differentiation, invasion, metastasis, stemness,
and damage repair signatures from the CancerSEA database
(http://biocc.hrbmu.edu.cn/CancerSEA/home.jsp). We
downloaded the pathway genes for the TGF-β, Wnt, PI3K-
Akt, JAK-STAT, Notch, Hedgehog, mismatch repair, and
homologous recombination pathways from KEGG [22]. ,e
marker or pathway gene sets are given in Supplementary
Table S2.

2.2. ATAXICAlgorithm. Given a normalized single cell gene
expression matrix, which contains m genes and t samples
(single cancer cells), the ATAXIC score of a single cell SC is
defined as
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where ex (Gi, SC) denotes gene Gi expression level in SC and
ex (Gi, SSj) denotes Gi expression level in the single cell
sample SSj.

ATAXIC calculated the TP heterogeneity level of a single
cell based on the standard deviations of the absolute z-scored
gene expression values for tens of thousands of genes. In
a single cancer cell, when most genes show close absolute z-
scored expression values, the single cancer cell will have
a low ATAXIC score, namely, low TP heterogeneity level;

otherwise, the single cancer cell will have a relatively high
ATAXIC score. Hence, the ATAXIC score reflects the
asynchronous degree of transcriptomic alterations relative to
the central (mean) tendency normalized by standard de-
viation in all single cancer cells for all genes in the gene
expression matrix (Figure 1). We present the R function for
the ATAXIC algorithm at the GitHub (https://github.com/
XS-Wang-Lab/ATAXIC/) under a GNU GPL open-source
license.
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2.3. Enrichment Scores of Molecular Signature or Pathways.
For a molecular signature or pathway, we defined its en-
richment score in a single cell as the average expression level
of its marker or pathway genes in the single cell.

2.4. Correlations of ATAXIC Scores with Drug Sensitivity.
We assessed the Spearman correlation of ATAXIC scores
with viability values to each of the 4686 compounds in 578
cancer cell lines.,e ATAXIC scores of cancer cell lines were
calculated based on their gene expression profiles. ,e
significant correlations were identified using a threshold of
false discovery rate (FDR)< 0.05.

2.5. Statistical Analysis. Because ATAXIC scores did not
follow the Gaussian distribution in most cases (Shapiro test,
P< 0.05), we used the one-tailed Mann–Whitney U test to
compare ATAXIC scores between two classes of samples.
We evaluated correlations between ATAXIC scores and
other variables using the Spearmanmethod and reported the
correlation coefficient (ρ) and adjusted P values. ,e ad-
justed P values were the FDRs calculated by the Benjamini
and Hochberg method [23]. We performed all the statistical
analyses in the R programming environment (version 4.0.2).

3. Results

3.1. ATAXIC Scores Likely Correlate Positively with Pro-
liferation and Differentiation Signatures in Cancer. We de-
fined the proliferation signature score in a single cell as the
average expression levels of its marker genes [24]. We found
that ATAXIC scores had a significant positive correlation

with proliferation signature scores in 5 of the 9 breast
cancers, 9 of the 10 gliomas, 9 of the 10 prostate cancers, 7 of
the 8 RCCs, 8 of the 12 sarcomas, 7 of the 12 melanomas, 10
of the 20 lung cancers, and 13 of the 15 liver cancers
(Spearman correlation, FDR< 0.05) (Figure 2(a)). Only in 1
sarcoma and 2 lung cancers, ATAXIC scores had a signifi-
cant negative correlation with proliferation signature scores.
,e cell cycle is a process of cell growth and division. We
found that ATAXIC scores were significantly and positively
correlated with the enrichment scores of the cell cycle
pathway in 7 breast cancers, 6 gliomas, 10 prostate cancers, 7
RCCs, 8 sarcomas, 4 melanomas, 10 lung cancers, and all the
15 liver cancers (Figure 2(b)). Only in 1 sarcoma, 2 mela-
nomas, and 2 lung cancers, ATAXIC scores had a significant
negative correlation with cell cycle scores. In addition,
ATAXIC scores had a significant positive correlation with
cell differentiation signature scores in most of these cancers,
including 9 breast cancers, 10 gliomas, 10 prostate cancers, 7
RCCs, 10 sarcomas, 9 melanomas, 11 lung cancers, and 15
liver cancers (Figure 2(c)). Together, these results indicate
that ATAXIC scores likely correlate positively with pro-
liferation and differentiation potential in cancer.

3.2. ATAXIC Scores Likely Correlate Positively with Invasion,
Metastasis, and Stemness Signatures in Cancer. We analyzed
correlations of ATAXIC scores with aggressive phenotypes
in single cancer cells, including invasion, metastasis, and
stemness signatures. We found that ATAXIC scores had
a significant positive correlation with invasion signature
scores in 6 breast cancers, 5 gliomas, 9 prostate cancers, 6
RCCs, 4 sarcomas, 5 melanomas, 6 lung cancers, and 15 liver
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Figure 1: ATAXIC scores showing the asynchronous degree of transcriptomic alterations relative to the central (mean) tendency in single
cancer cells.
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cancers (Spearman correlation, FDR< 0.05) (Figure 3(a) and
Supplementary Figure S1), compared to the significant
negative correlation between them in 1 sarcoma, 1 mela-
noma, and 4 lung cancers. Moreover, ATAXIC scores were
significantly and positively correlated with metastasis sig-
nature scores in 7 breast cancers, 10 gliomas, 9 prostate
cancers, 6 RCCs, 4 sarcomas, 5 melanomas, 5 lung cancers,
and 15 liver cancers (Spearman correlation, FDR< 0.05)

(Figure 3(b)), compared to the significant negative corre-
lation between them in 1 sarcoma, 1 melanoma, and 4 lung
cancers. In addition, ATAXIC scores had a significant
positive correlation with stemness signature scores in 8
breast cancers, 8 gliomas, 10 prostate cancers, 7 RCCs, 11
sarcomas, 10 melanomas, 11 lung cancers, and 15 liver
cancers (Spearman correlation, FDR< 0.05) (Figure 3(c)),
compared to the significant negative correlation with
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Figure 2: Correlations of ATAXIC scores with the proliferation and differentiation signatures in cancer. Spearman correlations between
ATAXIC scores and the enrichment scores of the proliferation signature (a), the cell cycle pathway (b), and the differentiation signature
(c) in single cells from individual patients of eight cancer types. BC: breast cancer; GBM: gliomas; PC: prostate cancer; RCC: renal cell
carcinoma; SyS12 (pt): SyS12 post treatment. ,e Spearman correlation coefficients (p) and adjusted P values (FDR) are shown.
∗ FDR< 0.05, ∗∗ FDR< 0.01, ∗∗∗ FDR< 0.001, ns: not significant (this also applies to the following figures).
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stemness signature scores ATAXIC scores display in 2 lung
cancers. Collectively, these results indicate that ATAXIC
scores likely have a positive correlation with the aggressive
phenotypes in cancer.

3.3. ATAXICScores LikelyCorrelate PositivelywithOncogenic
Signatures in Cancer. We analyzed correlations of ATAXIC
scores with several oncogenic pathways in single cancer cells,
including TGF-β, Wnt, JAK-STAT, PI3K-Akt, Notch, and
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Figure 3: Correlations of ATAXIC scores with the invasion, metastasis, and stemness signatures in cancer. (a) Spearman correlations
between ATAXIC scores and the enrichment scores of the invasion signature in single cells from liver cancer. Spearman correlations
between ATAXIC scores and the enrichment scores of the metastasis (b) and stemness signatures (c) in single cells from individual patients
of eight cancer types. ,e Spearman correlation coefficients and adjusted P values (FDR) are shown.
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Hedgehog signaling pathways. Overall, ATAXIC scores
likely correlated positively with the enrichment scores of
these pathways in single cancer cells. For example, ATAXIC
scores had a significant positive correlation with the en-
richment scores of TGF-β in 6 breast cancers, 9 gliomas, 10
prostate cancers, 7 RCCs, 6 sarcomas, 5 melanomas, 13 lung
cancers, and 14 liver cancers (Spearman correlation,
FDR< 0.05) (Figure 4 and Supplementary Figure S2A),
compared to the significant negative correlation between
them in 1 sarcoma and 2 lung cancers. ATAXIC scores
significantly and positively correlated with the enrichment
scores of Wnt in 7 breast cancers, 8 gliomas, 10 prostate
cancers, 7 RCCs, 7 sarcomas, 5 melanomas, 11 lung cancers,
and 15 liver cancers (Figure 4 and Supplementary
Figure S2B), compared to the significant negative correlation
between them in 1 melanoma and 3 lung cancers. In 8 breast
cancers, 9 gliomas, 10 prostate cancers, 7 RCCs, 9 sarcomas,
10 melanomas, 11 lung cancers, and 15 liver cancers, there
were a significant positive correlation between ATAXIC and
JAK-STATscores (Figure 4 and Supplementary Figure S2C),
compared to the significant negative correlation between
them in 2 lung cancers. Similar results were observed in the
correlations between ATAXIC scores and the enrichment
scores of PI3K-Akt, Notch, and Hedgehog (Figure 4 and
Supplementary Figure S2D-2F) signaling pathways.

3.4. ATAXIC Scores Likely Correlate Positively with DNA
Damage Repair Signatures in Cancer. We analyzed corre-
lations of ATAXIC scores with DNA damage repair sig-
natures in single cancer cells. First, we found that ATAXIC
scores had a significant positive correlation with the scores of
DNA damage in 7 breast cancers, 7 gliomas, 10 prostate
cancers, 6 RCCs, 5 sarcomas, 5 melanomas, 10 lung cancers,
and 15 liver cancers (Spearman correlation, FDR< 0.05)
(Figure 5(a)), compared to the significant negative corre-
lation between them in 2 sarcomas, 1 melanoma, and 2 lung
cancers. Second, ATAXIC scores were significantly and
positively correlated with the enrichment scores of the
mismatch repair pathway in 5 breast cancers, 7 gliomas, 10
prostate cancers, 5 RCCs, 6 sarcomas, 2 melanomas, 7 lung
cancers, and 15 liver cancers (Figure 5(b)), compared to the
significant negative correlation between them in 1 sarcoma,
2melanomas, and 2 lung cancers.,ird, ATAXIC scores had
a significant positive correlation with the enrichment scores

of the homologous recombination pathway in 7 breast
cancers, 8 gliomas, 10 prostate cancers, 4 RCCs, 9 sarcomas,
1 melanoma, 9 lung cancers, and 15 liver cancers
(Figure 5(c)), compared to the significant negative corre-
lation between them in 1 sarcoma, 1 melanoma, and 3 lung
cancers. ,e mismatch repair and homologous re-
combination are two key pathways involved in DNA-
damage repair processing in cancer [25]. ,us, our results
suggest that ATAXIC scores likely correlate positively with
DNA damage repair signatures in cancer.

3.5. ATAXIC Scores Likely Correlate Negatively with Clinical
Outcomes in Cancer. We found that ATAXIC scores were
significantly higher in metastatic than in primary tumor in
sarcoma and lung cancer (one-tailedMann-WhitneyU test,
P< 0.01) (Figure 6(a)). ,is is consistent with the positive
association between ATAXIC scores and metastasis signa-
ture scores in cancer. In breast cancer and lung cancer,
ATAXIC scores tended to be higher in late-stage than in
early-stage tumors (P< 0.1) (Figure 6(b)). In RCC, ATAXIC
scores were significantly higher in higher-grade (G4) than in
lower-grade (G3) tumors (P< 0.001) (Figure 6(c)). In lung
cancer and RCC, ATAXIC scores displayed marked cor-
relations with treatment outcomes. For example, ATAXIC
scores were significantly higher in progressive than in re-
gressive or stable lung cancers after treatment (P< 0.001)
(Figure 6(d)). ATAXIC scores were lower in the tumors
treated with VEGF inhibitors than those not treated with
them in RCC (P< 0.09) (Figure 6(e)). In addition, ATAXIC
scores were lower in the tumors treated with immune
checkpoint inhibitors (ICIs) than those not treated with
them in RCC (P< 0.001) (Figure 6(e)). Within the RCC
tumors treated with ICIs, ATAXIC scores were lower in the
tumors responsive to ICIs versus the tumors not responsive
to ICIs (P< 0.001) (Figure 6(f )). Overall, these results
suggest that the ATAXIC TP heterogeneity is associated with
unfavorable clinical outcomes in cancer. Interestingly,
ATAXIC scores were significantly lower in smoker than in
nonsmoker lung cancers (P< 0.001) (Figure 6(g)).

3.6. ATAXIC Scores across and within Individual Cancer
Types. We found that themean ATAXIC score of single cells
in a cancer was significantly and positively correlated with its

Hedgehog.signaling

BC GBM PC RCC Sarcoma Melanoma Lung cancer Liver cancer FDR
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Notch.signaling

Figure 4: Correlations of ATAXIC scores with oncogenic pathways in cancer. Heatmap showing the FDR of the Spearman correlation
between ATAXIC scores and the enrichment scores of the TGF-β, Wnt, JAK-STAT, PI3K-Akt, Notch, and Hedgehog signaling pathways in
single cells from individual patients of eight cancer types.
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Figure 5: Correlations of ATAXIC scores with DNA damage repair signatures in cancer. Spearman correlations between ATAXIC scores
and the enrichment scores of the DNA damage signature (a), the mismatch repair pathway (b), and the homologous recombination pathway
(c) in single cells from individual patients of eight cancer types. ,e Spearman correlation coefficients and adjusted P values (FDR)
are shown.
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number of single cells in all the individual cancer types
except sarcoma (Spearman correlation, FDR< 0.05; ρ> 0.68)
(Figure 7(a)). It suggests that the average TP heterogeneity
level likely increases with the growth of the scale of single
cells in individual cancer types. In addition, we calculated
the ATAXIC scores of single cells based on the gene ex-
pression profiles in all single cells of each cancer type. ,e
mean ATAXIC score of single cells in lung cancer, mela-
noma, liver cancer, glioma, sarcoma, prostate cancer, breast
cancer, and RCC was 0.829, 0.830, 0.833, 0.838, 0.858, 0.876,
0.884, and 0.946, respectively, while it showed no a signifi-
cant correlation with the number of single cells in each
cancer type (FDR� 0.93; ρ� 0.048) (Figure 7(b)). It suggests
that the significant positive association between the average
TP heterogeneity level and the number of single cells within
individual cancer types is not established across different
cancer types. ,is disparity may refer to the intertumor
heterogeneity among different cancer types. It should be
noted that melanoma and lung cancer are two cancer types
responding best to ICIs [26], which showed the lowest TP
heterogeneity among the eight cancer types. It supports that
tumor heterogeneity may hold back antitumor immune
response. ,e variation of ATAXIC scores of single cells
varied among these cancer types, with the largest value of
0.134 in prostate cancer and the smallest value of 0.019 in
breast cancer (Figure 7(c)). Interestingly, breast cancer had
a relatively large mean value but the smallest variation of
ATAXIC scores. In contrast, lung cancer had the smallest
mean value but a relatively large variation of ATAXIC
scores. Again, these results indicate the intertumor het-
erogeneity among different cancer types.

3.7. ATAXIC Scores Likely Correlate Negatively with Drug
Sensitivity in Cancer. We analyzed correlations between
ATAXIC scores and drug sensitivity of 578 cancer cell lines
to 4686 compounds using the PRISM Repurposing Primary
Screen data from the Dependency Map (DepMap) (https://
depmap.org/portal/download/). ,e viability value of
a cancer cell line treated with a compound represents the
drug sensitivity of the cancer cell line to the compound. ,e
lower the viability value, the more sensitive the cell line is to
the compound. Among the 4686 compounds, 728 showed
a significant positive correlation between the viability values
and ATAXIC scores in the 578 cancer cell lines, compared to
82 showing a significant negative correlation between them
(Supplementary Table S3). ,ese results indicate that
ATAXIC scores likely have a significant negative association
with drug sensitivity in cancer, supporting that tumor
heterogeneity promotes cancer therapeutic resistance [21].

4. Discussion

For the first time, we developed an algorithm to evaluate the
TP heterogeneity in single cancer cells. It should be noted
that this is the first algorithm tomeasure the heterogeneity of
gene expression perturbations in single cancer cells. We
revealed that the TP heterogeneity was associated with
proliferation and differentiation signatures, various onco-
genic signaling, DNA damage repair, treatment resistance,
and unfavorable phenotypes and outcomes in cancer. ,ese
characteristics in single tumor cells are in line with those
displayed in the bulk tumors [27]. Furthermore, we dem-
onstrated that the TP heterogeneity of single cells varied

RCC
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Figure 6: Correlations of ATAXIC scores with clinical characteristics. ATAXIC scores are higher in metastatic versus primary tumors (a), in
late-stage versus early-stage tumors (b), in higher-grade (G4) versus lower-grade (G3) tumors (c), and in progressive versus regressive or
stable tumors (d). (e) ATAXIC scores are lower in the tumors treated with VEGF inhibitors than those not treated with them and lower in
the tumors treated with immune checkpoint inhibitors (ICIs) than those not treated with them in RCC. (f ) ATAXIC scores are lower in the
tumors responsive to ICIs versus the tumors not responsive to ICIs in RCC. (g) ATAXIC scores are lower in smoker than in nonsmoker lung
cancers. ,e one-tailed Mann–Whitney U test P values are shown.
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Figure 7: Comparisons of ATAXIC scores across and within individual cancer types. (a) Spearman correlations between ATAXIC scores
and the numbers of single cells in individual cancer types. (b) ,e mean ATAXIC scores of single cells in each of the eight cancer types and
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among different cancer types, with lung cancer and mela-
noma having the lowest average TP heterogeneity level while
RCC having the highest average TP heterogeneity level. ,e
low TP heterogeneity in lung cancer and melanoma could
bestow relatively higher response rates to ICIs on both
cancer types. Interestingly, among the eight cancer types,
two most common hormone-associated cancer types
(prostate cancer for males and breast cancer for females)
displayed significantly different variations of the single cell
TP heterogeneity level, which had the large and smallest
variations, respectively. Overall, the average TP heteroge-
neity level has a significant positive correlation with the
number of single cells in individual cancer types. It is jus-
tified since more tumor cells furnish higher intratumor
heterogeneity. However, the average TP heterogeneity level
shows no significant positive correlation with the number of
single cells across different cancer types. ,e intertumor
heterogeneity among different cancer types could explain for
this disparity.

DNA damage repair deficiency often causes genomic
instability to drive intratumor heterogeneity [28, 29]. We
observed the significant correlations of the single cell TP
heterogeneity with DNA damage and its repair signaling
pathways, such as mismatch repair and homologous re-
combination. It confirms the marked associations among
DNA damage repair, genomic instability, and tumor
heterogeneity at the single cell level. ,at is, DNA damage
repair deficiency as well as genomic instability could be
the major source of the TP heterogeneity in single
cancer cells.

,is study has several limitations. First, because there are
relatively small numbers of cancer patient samples in most
single scRNA-seq datasets, the analysis of correlations be-
tween the TP heterogeneity level and clinical parameters was
restricted. Second, due to lack of the data on genomic al-
terations (such as somatic mutations and copy number
alterations) in single cells, the analysis of correlations be-
tween the TP heterogeneity level and genomic alterations
was missing. Finally, this study investigated only eight
cancer types, although the analysis of a wider variety of
cancers would strengthen the validity of conclusions.

5. Conclusions

ATAXIC is an algorithm to evaluate TP heterogeneity in
single cancer cells. ,e TP heterogeneity by ATAXIC has
significant associations with increased cell proliferation,
oncogenic signaling, DNA damage repair, treatment re-
sistance, and unfavorable outcomes in cancer. ,us,
ATAXIC is a useful algorithm to quantify the TP hetero-
geneity in single cancer cells and provide new insights into
cancer biology as well as potentially valuable markers for
cancer diagnosis and treatment.
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