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Prediction of new drug-target interactions is critically important as it can lead the researchers to find 
new uses for old drugs and to disclose their therapeutic profiles or side effects. However, experimental 
prediction of drug-target interactions is expensive and time-consuming. As a result, computational 
methods for predictioning new drug-target interactions have gained a tremendous interest in recent 
times. Here we present iDTI-ESBoost, a prediction model for identification of drug-target interactions 
using evolutionary and structural features. Our proposed method uses a novel data balancing and 
boosting technique to predict drug-target interaction. On four benchmark datasets taken from a 
gold standard data, iDTI-ESBoost outperforms the state-of-the-art methods in terms of area under 
receiver operating characteristic (auROC) curve. iDTI-ESBoost also outperforms the latest and the best-
performing method found in the literature in terms of area under precision recall (auPR) curve. This is 
significant as auPR curves are argued as suitable metric for comparison for imbalanced datasets similar 
to the one studied here. Our reported results show the effectiveness of the classifier, balancing methods 
and the novel features incorporated in iDTI-ESBoost. iDTI-ESBoost is a novel prediction method that 
has for the first time exploited the structural features along with the evolutionary features to predict 
drug-protein interactions. We believe the excellent performance of iDTI-ESBoost both in terms of 
auROC and auPR would motivate the researchers and practitioners to use it to predict drug-target 
interactions. To facilitate that, iDTI-ESBoost is implemented and made publicly available at: http://
farshidrayhan.pythonanywhere.com/iDTI-ESBoost/.

Targeted drug design is one of the key techniques in therapeutic drug discovery1. Prediction of new drug target 
interactions can help researchers to find new uses for old drugs and to discover their therapeutic profiles or side 
effects2–4. Since experimental prediction of drug-target interaction is expensive and time-consuming, computa-
tional methods have been gaining increasing popularity in recent years5,6.

During the past two decades, a wide range of computational approaches such as ligand-based methods7,8, 
target or receptor based methods9,10, gene ontology based methods11, literature text mining methods12,13 have 
been proposed to address the drug-target interaction. The performance and effectiveness of the ligand-based 
methods degrade due to the decrease in the the number of known ligands of a target protein. Receptor based 
methods often use docking simulation14 and heavily rely on the available three dimensional native structure 
of the protein targets. It is important to note that finding three-dimensional structures of the proteins is by it 
self is a costly and time-consuming task which is done using experimental methods such as NMR and X-ray 
Crystallography. Moreover, three dimensional structures are very difficult to predict for ion channel proteins 
and G-protein coupled receptors (GPCRs). In addition, the tremendous growth in the Biomedical literature has 
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increased the redundancy problem of the compound names or the gene names and has been the main obstacle for 
literature based systematic text mining methods.

Recently, chemo-genomic methods15 have been attempted to identify drug-target interactions. This type of 
methods are mainly based on machine learning16,17, graph theory18,19 and network methods20,21. In the literature 
of the supervised learning setting, several classification algorithms have been found to be applied for this task. 
Examples include support vector machine22,23, deep learning24, fuzzy logic25, and nearest neighbor26. Yamanishi 
et al.16 first proposed a mechanism to formalize the inference of the drug–target identification as a supervised 
learning problem. In that pioneering work, they also proposed a gold standard dataset that had been later used 
extensively in the literature22,24,27. In a subsequent work, the same authors27 explored the association among 
pharmacological space and chemical space with the network topology of drug-target interactions and applied 
distance-based learning. Wang et al. proposed RLS-KF28 that uses regularized least squares method integrated 
with nonlinear kernel fusion. Drug-based similarity inference (DBSI) was proposed in21 utilizing two dimensional 
chemical structural similarity. Another method, KBMF2K, was proposed in29 that used chemical and genomic 
kernels and bayesian matrix factorization. Later on other noteworthy methods such as NetCBP30, DASPfind31, 
SELF-BLM23 have been proposed to solve thi sproblem. Recently22 used bigram based features extracted from 
Position Specific Scoring Matrix (PSSM) as molecular fingerprint to tackle this problem.

Since the three dimensional native structure of most of the protein targets are not available, most of the super-
vised learning methods in the literature do not exploit the structure based features. Huang et al.32 used extremely 
randomized trees model and represented the proteins as pseudo substitution matrix generated from its amino 
acid sequence information and the drugs as moelcular fingerprint. In another recent work, Wang et al.33 explored 
PSSM based features and drug fingerprints and used rotation forest based predictor. Among other recent works 
are similarity based method used by Yuan et al.34, self organizing theory used by Duran et al.35,36 and ensemble 
method used by Ezzat et al.37,38. Recently, a comprehensive literature review on the computational methods in 
drug-target interaction prediction was conducted by Chen et al.39.

In this paper, we present iDTI-ESBoost, a method for identification of Drug Target Interaction Using 
Evolutionary and Structural Information with Boosting. We exploit the structural features along with the evo-
lutionary features to predict drug-protein interactions. Our work was inspired due to the modern successful 
secondary structural prediction tools like SPIDER240,41 and its use to generate features in supervised learning 
and classification42,43. Our proposed method uses a novel set of features extracted using structural information 
along with the evolutionary features and molecular fingerprints of drugs. To handle the large amount of imbal-
ance in the data, we propose a novel balancing method and use it along with a boosting algorithm. As a result, 
iDTI-ESBoost has shown to be superior due to its prediction results on a widely used gold standard data set 
compared to the other existing methods found in the literature. Our method is publicly available to use at: http://
farshidrayhan.pythonanywhere.com/iDTI-ESBoost/.

The rest of the paper is organised as follows which is suggested in44: description of dataset, formulation of 
statistical samples, selection and development of a powerful classification algorithm, demonstration of the perfor-
mance of the predictor using cross-validation, implementation of web server followed by a conclusion.

Results and Discussion
In this section, we present the results of our experiments. All the methods were implemented in Python lan-
guage using Python3.4 version and Scikit-learn library45 of Python was used for the implementation of the 
machine learning algorithms. All experiments were conducted on a Computing Machine hosted by CITS, United 
International University. Also, each of the experiments was carried out 5 times and the average of the results is 
reported. We perform several types of experiments. In particular, we conduct four different sets of experiments 
as follows. First we investigate effectiveness and applicability of the different feature groups as mentioned in 
Table 1. Note that, in Table 1, four different feature groups, namely, A, B, C and D, were formed. Secondly, we 
investigate the effectiveness of the classifiers used in our research. Subsequently, we investigate the effectiveness 
of the balancing methods applied on our highly imbalanced datasets. Finally, we compare iDTI-ESBoost against 
the state-of-the-art methods found in the literature.

Effectiveness of Feature Groups.  We created four different feature groups to see the effects of the different 
sets of features on the classifier performance. The feature groups have already been reported in Table 1. Group A 
contains 1281 features and was previously used in22. We further added other groups, namely, B, C and D, incre-
mentally in that order with the base feature group i.e., Group A and achieve features of size 1293, 1403 and 1476, 
respectively. We have performed two sets of experiments to test the effectiveness of the feature groups. In both 
of these experiments we changed the feature groups and used different classifiers and applied different balancing 
methods on the data to analyze the effect. Results of these experiments are reported respectively in Tables 2 and 3.

Table 2 reports the performance of three different classifiers on the four datasets during our experiments. In 
this step, we have produced the results for different combination of feature groups by adding them in a forward 
selection scheme by sorting them based on their individual performance for Nuclear Receptors. For the Nuclear 
Receptors, the best results achieved using Feature group A, and followed by B, C, and D, consequently. We used 
the individual performance for Nuclear Receptors as it produced the most distinguished performance for differ-
ent input feature group. Therefore, we first evaluate the performance using feature group A, then added B, C, and 
finally D, sequentially. We have produced the results for each feature group as well as different combination of 
these feature gorups based on sequential forward selection. These results are available and provided as a supple-
mentary material (Supplementary File 1).

Note that, though this experiment was intended for classifier selection, we clearly see that the best results in 
terms of auPR and auROC were found only when the structural features were added. For enzymes dataset, the 
best result in terms of auPR was 0.66 found with the combination A, B, C which is using structural composition 
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and structural auto-covariance groups with PSSM-bigram and molecular fingerprint based features. This result 
is slightly better than the case when we use all the features A, B, C, D and get auPR of 0.66. In terms of auROC, 
the results are somewhat comparable to each other; however, the best result is achieved when all the four fea-
ture groups are used together. Thus enzyme dataset shows the effectiveness of structural information based fea-
tures. Using iDTI-ESBoost for ion channels and GPCRs datasets we attain similar performance in terms of auPR. 
However it achieved highest auPR value when only the composition features (Group B) were added with the base 
features for Nuclear receptors dataset. The increase in the value of auROC clearly reveals the effectiveness of the 
structural features (Groups B, C, D) when added to the base feature (Group A).

As it is shown in Table 2, due to differences in the explored problems in this study, the results for different 
combination of feature groups, and different classifiers are not fully consistent. However, The aim of this experi-
ment is to compare and analyse the performance of our method with respect to different combination of feature 
groups and different problems and find the best combination for that given specific problem. By conducting this 
comprehensive comparison, we are able to find the best classifier among those that we investigated here with 
respect to the combination of feature groups that we studied for a given problem.

The next set of experiments were run to show the performance of different balancing or under sampling meth-
ods in the training data using various feature groups. These results are shown in Table 3. These experiments were 
run using the AdaBoost classifier. The results in Table 3 clearly shows that for all the datasets, the best results in 
terms of auPR and auROC were found when structural features have been added. In case of the GPCRs, the auPR 
was found to be the highest at 0.5 when three feature groups, namely, Groups A, B, and C have been combined. 
Apart from this, in all other datasets, the combination of all four groups has shown superior performance both in 
terms of auPR and auROC. Our hypothesis that the added structural features play a significantly important role 
in the prediction of drug-target interaction is thus justified according to these experiments.

Effectiveness of the AdaBoost Classifier.  To test and select the suitable classifier for our problem, we test 
three different classifiers namely, AdaBoost ensemble classifier46 with decision tree as its weak learner, Random 
Forest47 and Support Vector Machines (SVM)48. For these experiments, we used random under sampling as the 
balancing method. As features, four different combinations were used as has been mentioned already. The results 
in terms of auPR and auROC are presented in Table 2. Here for each of the datasets and feature groups combina-
tions bold faced values in the table represents the highest values achieved for that combination. It is evident that 
except for one case in the enzymes dataset, AdaBoost classifier has shown superior performance in terms of auPR 
across all feature groups combinations. It is also worth-noting that for all datasets, the highest auPR value was 
achieved by AdaBoost. The precision-recall curves for these experiments across all feature groups combinations 
are illustrated in Fig. 1.

In case of the ROC curves, achieved results are also in support of the selection of AdaBoost as a classifier. 
AdaBoost provides the highest auROC values for all the four datasets and it gives better auROC values for 11 out 
of 16 dataset-feature groups combinations. In other cases, SVM has achieved the highest auROC values, but only 
marginally so. The ROC curves for different classifiers across all feature groups combinations are illustrated in 
Fig. 2.

Considering the values of auPR and auROC curves on different datasets as shown in Table 2 and illustrated 
through the curves in Figs 1 and 2, we select AdaBoost as the classifier for iDTI-ESBoost. Note that, because of the 
huge imbalance in the datasets, with positive samples being much lower than the negative ones, the auPR curve 
is more important compared to the auROC curve and AdaBoost clearly outperforms the other two classifiers in 
terms of auPR values.

Feature Group Number of Features Feature Type Group

Molecular finger print 881 drug

PSSM bigram 400 target A

Secondary Structure 
Composition 3

target BAccessible Surface Area 
Composition 1

Torsional Angles 
Composition 8

Torsional Angles Auto-
Covariance 80

target C
Structural Probabilities 
Auto-Covariance 30

Torsional Angles bigram 64
target DStructural Probabilities 

bigram 9

Total 1476

Table 1.  Summary of evolutionary and structural features used for protein targets and fingerprint features for 
drugs. The “Group” column shows different feature groups used in our experiments and will be discussed in a 
later section.
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Effectiveness of the Balancing Methods.  The next set of experiments were run to test the effectiveness 
of the two different sampling methods on the datasets. The parameters used with AdaBoost classifier for random 
and cluster based under sampling are reported in Table 4.

Dataset Feature Combination Classifier auPR auROC

enzymes

A

AdaBoost 0.54 0.9530

Random Forest 0.43 0.9457

SVM 0.64 0.9647

A, B

AdaBoost 0.51 0.9431

Random Forest 0.49 0.9445

SVM 0.48 0.9502

A, B, C

AdaBoost 0.66 0.9638

Random Forest 0.48 0.9334

SVM 0.41 0.9360

A, B, C, D

AdaBoost 0.65 0.9689

Random Forest 0.50 0.9493

SVM 0.63 0.9628

ion channels

A

AdaBoost 0.36 0.9271

Random Forest 0.33 0.9232

SVM 0.25 0.9467

A, B

AdaBoost 0.33 0.9191

Random Forest 0.30 0.8898

SVM 0.23 0.9213

A, B, C

AdaBoost 0.34 0.9202

Random Forest 0.31 0.8734

SVM 0.23 0.9213

A, B, C, D

AdaBoost 0.43 0.9369

Random Forest 0.40 0.9234

SVM 0.14 0.6723

GPCRs

A

AdaBoost 0.29 0.8856

Random Forest 0.23 0.8743

SVM 0.18 0.7832

A, B

AdaBoost 0.29 0.8834

Random Forest 0.22 0.8698

SVM 0.15 0.7802

A, B, C

AdaBoost 0.35 0.9116

Random Forest 0.31 0.9034

SVM 0.15 0.7945

A, B, C, D

AdaBoost 0.31 0.9128

Random Forest 0.30 0.9168

SVM 0.21 0.7896

nuclear receptors

A

AdaBoost 0.41 0.8145

Random Forest 0.23 0.7519

SVM 0.19 0.7898

A, B

AdaBoost 0.43 0.7969

Random Forest 0.29 0.7723

SVM 0.20 0.6789

A, B, C

AdaBoost 0.36 0.7590

Random Forest 0.21 0.7234

SVM 0.21 0.6971

A, B, C, D

AdaBoost 0.33 0.7946

Random Forest 0.29 0.7145

SVM 0.20 0.7287

Table 2.  Performance of AdaBoost, Random Forest and Support Vector Machine classifiers on the gold 
standard datasets in terms of area under Receiver Operating Characteristic (ROC) curve (auROC) and area 
under precision recall curve (auPR) using different feature group combinations and random under sampling.
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For each of the datasets, we used four feature group combinations and used random and cluster based under 
sampling and report auPR and auROC values from cross-validation experiments in Table 3. We also show the 
ROC curves and auPR curves for all four datasets using all the features in Figs 3 and 4.

From the results reported in Table 3, it is worth-mentioning that in terms of auPR for all four datasets, cluster 
based sampling significantly outperforms random under sampling method. However, in terms of auROC curve, 
random sampling is slightly better than cluster based sampling in enzymes and ion channel datasets but the 
situation is in favor of cluster based sampling in GPCRs and nuclear receptors where it outperforms the random 
sampling method.

We have also analyzed the effect of the imbalance ratio of the four datasets with the different balancing meth-
ods used in this paper. Note that the performance of the random sampling and clustered sampling are similar in 
terms of auPR in the dataset enzymes with higher imbalance ratio. The performance drustically falls for random 
sampling for the nuclear receptor dataset which have the lowest imbalance ratio. In case of the other two datasets 
ion channels and GPCRs, though their imbalance ratio is similar the difference in the auPR resutls differ signif-
icantly for these two balancing methods. Thus we can not conclude any correlation of imbalance ratio with that 
of the performance of the balacning methods. Rather the number of instances seems to affect the performance of 
the balancing methods. Enzymes and ion channels datasets with larger number of samples seems to favor random 
sampling and relatively smaller datasets GPCRs and nuclear receptors produces best resutls when using clustered 
sampling.

Comparison with Other Methods.  Since the pioneering work of Yamanishi et al.16, many supervised 
learning methods have been applied to predict drug-target interactions on these standard benchmark gold stand-
ard datasets. However, a few of these methods24,28 do not use cross validation techniques and others3,23 do not use 
the same standard datasets. Our method uses molecular fingerprints and evolutionary and structural features 

Dataset
Feature 
Combination

Balancing 
Method auPR auROC

enzymes

A
random 0.54 0.9530

clustered 0.58 0.9493

A, B
random 0.51 0.9431

clustered 0.59 0.9353

A, B, C
random 0.66 0.9638

clustered 0.63 0.9577

A, B, C, D
random 0.65 0.9689

clustered 0.68 0.9598

ion channels

A
random 0.36 0.9271

clustered 0.38 0.8982

A, B
random 0.33 0.9191

clustered 0.41 0.8902

A, B, C
random 0.34 0.9202

clustered 0.45 0.9021

A, B, C, D
random 0.43 0.9369

clustered 0.48 0.9051

GPCRs

A
random 0.29 0.8856

clustered 0.48 0.9189

A, B
random 0.29 0.8834

clustered 0.49 0.8968

A, B, C
random 0.35 0.9116

clustered 0.50 0.8890

A, B, C, D
random 0.31 0.9128

clustered 0.48 0.9322

nuclear receptors

A
random 0.41 0.8145

clustered 0.79 0.9270

A, B
random 0.43 0.7969

clustered 0.32 0.8715

A, B, C
random 0.36 0.7590

clustered 0.57 0.8935

A, B, C, D
random 0.33 0.7946

clustered 0.79 0.9285

Table 3.  Performance of Adaboost classifier on different datasets in terms of area under Receiver Operating 
Characteristic (ROC) curve (auROC) and area under precision recall curve (auPR) using different feature group 
combinations and balancing methods.
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for this supervised classification problem. Similar methods, albeit without utilizing the structural features and 
balancing techniques are reported in22,49. Most of the papers in the literature have used auROC curve as the main 
evaluation metric. We have compared the performance of our method on these four datasets with that of DBSI21, 
KBMF2K29, NetCBP30, Yamanishi et al.16, Yamanishi et al.27, Wang et al.18 and Mousavian et al.22 using auROC. 
The auROC values for all these methods along with iDTI-ESBoost are reported in Table 5.

From the values shown in bold in Table 5, we see that for all the datasets iDTI-ESBoost is able to significantly 
outperform all other previous state-of-the-art methods in terms of auROC. All the auROC values are greater than 
90% which indicates the effectiveness of the classifier, balancing methods and the novel features proposed in this 
paper.

Moreover, in22 the authors argued in favor of auPR curve as a measure of evaluating the performance of clas-
sifiers for skewed datasets, especially in drug-target interaction where negative samples outnumber the positive 
samples. This argument does have merit as, logically, a mis-classification of positive samples or false negative 
should be more penalized in the score. To compare the performance in terms of auPR among iDTI-ESBoost with 
that in22, we reported the auPR values of the two predictors in Table 6. The results clearly shows that our method 
iDTI-ESBoost outperforms the predictor in22 in terms of auPR as well.

In Table 7, we report specificity, sensitivity, precision, MCC and F1-Score for four datasets using different 
feature group combinations as achieved by iDTI-ESBoost in experiments. Specificity and sensitivity are very high 
as reported in this table.

Predicting New Interactions.  In addition to these, we have analyzed the results produced by the classifica-
tion algorithm. From the false negatives predicted by iDTI-ESBoost, we noticed that there are a number of false 
negatives for which the prediction probability is very high for it to be considered as a negative sample. Similar 
approaches were adopted in16,27. In this paper, we suggest that the false negative interactions which are labeled 
as positive by our method with a very high prediction probability could be potential candidates for finding new 
positive interactions. A list of such interactions for four group of targets are given in Table 8. Ten interactions are 
reported for each of the datasets with highest prediction probability.

Web Server Implementation.  We have also implemented our method as shown in Fig. 5 as a separate web 
server. The web server is freely available to use at: http://farshidrayhan.pythonanywhere.com/iDTI-ESBoost/. The 

Figure 1.  Precision-Recall curves of different classifier algorithms using random under sampling and all the 
feature combinations on four datasets: (a) enzymes (b) ion channels (ic) (c) GPCRs (d) nuclear receptors (nr).

http://farshidrayhan.pythonanywhere.com/iDTI-ESBoost/
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mechanism of the web-server is very simple. We also provide the pre-learned models for each of the datasets. The 
interface of the web server is easy to use. It requires an user first to select the target group and provide the PSSM 
and SPD files for the target protein. These files can be easily generated by PSI-BLAST and SPIDER2 software using 
their online available tools.

To specify drug, one can select from a drop down list. The drugs are pre-fetched in our system from KEGG 
website. After selecting the drug and specifying target files, one can click the prediction button to find the pre-
diction for that drug-target pair. The web-server also have a simple page with easy to-use instructions. We have 
made all the code and programs necessary for implementation of this paper freely available at: https://github.com/
farshidrayhanuiu/iDTI-ESBoost to facilitate the use of the other users.

Figure 2.  Receiver operating characteristic (ROC) curves of different classifier algorithms using random under 
sampling and all the feature combinations on four datasets: (a) enzymes (b) ion channels (ic) (c) GPCRs (d) 
nuclear receptors (nr).

Balancing method Dataset Max depth Min sample split Min samples Leaf Criterion

random

enzymes 100 16 1 Gini impurity

ion channels 8 4 1 Gini impurity

GPCRs 6 3 1 Gini impurity

nuclear receptors 5 7 2 Gini impurity

clustered

enzymes 110 1 1 Gini impurity

ion channels 9 2 1 Gini impurity

GPCRs 6 3 1 Gini impurity

nuclear receptors 150 2 1 Gini impurity

Table 4.  Parameters of AdaBoost Algorithm used with decision tree as weak classifier along with different 
balancing methods on four datasets.

https://github.com/farshidrayhanuiu/iDTI-ESBoost
https://github.com/farshidrayhanuiu/iDTI-ESBoost
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Materials and Methods
In this section, we provide the detail information of the benchmark datasets, feature extraction and balancing 
methods, classifiers and evaluation metrics used in this study. Figure 5 depicts the training module of our pro-
posed method, iDTI-ESBoost. The training dataset of iDTI-ESBoost contains both interacting (positive) and 
non-interacting drug-target pairs. For each instance of drug-target pair, a drug is searched in the DrugBank data-
base50 to fetch the drug chemical structure in SMILES format. Similarly, a target protein sequence is first fetched 
from KEGG database51 and then fed to SPIDER240,41 and PSI-BLAST52 in order to receive, respectively, structural 
information as an SPD file and position specific scoring matrix (PSSM) based profile containing evolutionary 
information. A feature extraction module then uses these files to generate three types of features: drug molecular 
fingerprints, PSSM bigram and structural features based on the output of the secondary structure prediction 
software namely SPIDER2. Features generated in this phase is then fed to an AdaBoost classifier that learns the 
model for prediction purposes.

The prediction module is very similar to that of the training module shown in Fig. 5. For prediction, a query 
drug-target pair is fed to the system in a similar way to extract three types of features and then the trained and 
stored model is used to predict whether the given drug-target pair is interacting or non-interacting.

Drug-target Interaction Datasets.  In this paper, we have used the gold standard datasets introduced by 
Yamanishi et al. in16. These datasets are publicly available at: http://web.kuicr.kyoto-u.ac.jp/supp/yoshi/drugtar-
get/. Yamanishi et al. used DrugBank53, KEGG BRITE54, BRENDA55 and SuperTarget56 to extract information 
about drug-target interactions. They used the known drugs to four types of protein targets, namely, enzymes, ion 
channels, g-protein coupled receptors (GPCRs) and nuclear receptors. The number of target proteins in these 
groups are 664, 204, 95 and 26, respectively that interact with 445, 210, 223 and 54 drugs through 2926, 1476, 635 
and 90 known interactions, respectively. A brief summary of these datasets are given in Table 9. These benchmark 
datasets have been used in many studies in the literature21,22,24,27 and are referred to as the ‘gold’ standard.

Graph Construction from the Dataset.  Based on the interactions of four types of proteins with known 
drugs, we build positive and negative samples for each dataset using a method similar to the one used in22 as fol-
lows. The drug-target interaction network for each dataset is a bipartite graph, G = (V, E), where the set of vertices 

Figure 3.  Receiver operating characteristic (ROC) curves of AdaBoost classifier showing differences between 
random under sampling and cluster based sampling using all the feature combinations on four datasets: (a) 
enzymes (b) ion channels (ic) (c) GPCRs (d) nuclear receptors (nr).

http://web.kuicr.kyoto-u.ac.jp/supp/yoshi/drugtarget/
http://web.kuicr.kyoto-u.ac.jp/supp/yoshi/drugtarget/


www.nature.com/scientificreports/

9SCientifiC ReportS |  (2017) 7:17731  | DOI:10.1038/s41598-017-18025-2

is ∪=V D T  such that D is the set of drugs and T is the set of targets, ∩ = ∅D T  and the set of edges is E. Here, 
any edge e = (d, t) ∈ E denotes an interaction only between a drug, d ∈ D with a protein target, t ∈ T. Now, for a 
particular graph from a dataset, all the known interactions in the graph represented by its edges are considered to 
be positive samples and the non-existent edges are taken as negative samples. Note that, here, non-existent edges 
refer to the possible valid edges only that are not there; i.e., they do not include edges among the vertices of the 
same partite set. Formally, a dataset is an union of positive and negative sets as follows:

Figure 4.  Precision vs Recall curves of AdaBoost classifier showing differences between random under 
sampling and cluster based sampling using all the feature combinations on four datasets: (a) enzymes (b) ion 
channels (ic) (c) GPCRs (d) nuclear receptors (nr).

Dataset DBSI21 KBMF2K29 NetCBP30
Yamanishi  
et al.16

Yamanishi  
et al.27

Wang  
et al.18

Mousavian  
et al.22

iDTI-
ESBoost

enzymes 0.8075 0.8320 0.8251 0.904 0.8920 0.8860 0.9480 0.9689

ion channels 0.8029 0.7990 0.8034 0.8510 0.8120 0.8930 0.8890 0.9369

GPCRs 0.8022 0.8570 0.8235 0.8990 0.8270 0.8730 0.8720 0.9322

nuclear receptors 0.7578 0.8240 0.8394 0.8430 0.8350 0.8240 0.8690 0.9285

Table 5.  Performance of iDTI-ESBoost on the four benchmark gold datasets in terms on area under receiver 
operating characteristic curve (auROC) with comparison to other state-of-the-art methods.

Predictor Enzymes
Ion 
channels GPCRs

Nuclear 
receptors

Mousavian et 
al.22 0.546 0.390 0.282 0.411

iDTI-ESBoost 0.680 0.480 0.500 0.790

Table 6.  Comparison of the performance of iDTI-ESBoost on the four benchmark gold datasets in terms on 
area under the precision-recall curve (auPR) with the state-of-the-art method in Mousavian et al.22.
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  ∪= + − (1)

Here,  = ∈ ∈ ∈+ u v u D v T u v E{( , ): , , ( , ) }, and  = ∈ ∈ ∉− u v u D v T u v E{( , ): , , ( , ) }. For example, 
in the nuclear receptor, there are 54 drugs and 26 proteins with possible 54 × 26 = 1404 interactions. Since 90 
interactions are known, these are treated to be positive and the rest 1314 as negative. The same procedure was 
followed for each of the datasets. As expected, the constructed datasets using this technique are imbalanced as the 
number of negative samples far outnumbers that of positive samples. This issue is attended to later by applying 
some balancing techniques. The majority class is the class denoting negative interaction. We define imbalance 
ratio as the number of instances in the majority class to the number of instances in the minority class. The imbal-
ance ratio of each of the datasets used in this paper is reported in Table 9. Note that the enzymes dataset is with 
highest imbalance ratio near 100 and nuclear receptor dataset has got the lowest imbalance ratio.

Feature Extraction.  A dataset constructed in this way has drug-target pairs as instances. In the feature 
extraction phase, a drug identifier is looked up in the KEGG databased54 and the corresponding SMILES format 
is downloaded from the DrugBank database50. The features based on drugs are generated using this SMILES data.

Similarly, a protein target of each pair is first searched within the KEGG database54 to fetch the pro-
tein sequence. This protein sequence is then fed to two different software: Position Specific Iterated BLAST 
(PSI-BLAST)52 to fetch evolutionary profile based Position Specific Scoring Matrix (PSSM) and a secondary 
structure prediction tool called SPIDER240,41 to generate SPD files that contains the structural information. Three 
groups of features are extracted using these three files. The details are described in the rest of this section.

SMILES Based Features.  Several descriptors are used to represent the features or properties of drug com-
pounds57. To this end, one of the most popular features is molecular fingerprints which is widely used for 
similarity searching58, clustering59, and classification22. Each drug compound is represented by 881 chemical sub-
structures defined in PubChem database60. The presence (absence) of a particular substructure is encoded as 1 
(0). Thus the length of this molecular fingerprint based feature is 881. We used the rcdk package of R61 to extract 
these molecular fingerprints based features.

PSSM Based Features.  We used the PSSM matrix returned by the PSI-BLAST software to generate evolutionary 
features from the protein target sequences. Each PSSM file contains a PSSM matrix that is constructed after multi-
ple sequence alignment using the non redundant (NR) database. The PSSM file contains a matrix M of dimension 
L × 20, where L is the length of the protein and each of the entries in this matrix, mij, represents the probability of 
substitution of the j-th amino acid in the i-th location of the given protein sequence. We first convert this matrix 
M to a normalized matrix using a normalization technique similar to that proposed in62,63. The dimension of 
this matrix is same as the original matrix M. After that we generate PSSM-bigram features using the following 
equation:

∑= ≤ ≤ ≤ ≤
=

−

+‐ k l
L

N N k lPSSM bigram( , ) 1 (1 20, 1 20)
(2)i

L

i k i l
1

1

, 1,

Bigram features for PSSM were first proposed in64 and subsequently used successfully in drug-target interaction 
prediction in22. Total number of features generated using this method is 400.

Dataset Feature Group Specificity Sensitivity Precision MCC F1 score

enzymes

A 0.83 0.9 0.05 0.1962 0.10

A, B 0.82 0.89 0.05 0.1812 0.09

A, B, C 0.83 0.87 0.05 0.1762 0.09

A, B, C, D 0.85 0.85 0.15 0.1889 0.10

Ion channels

A 0.78 0.81 0.13 0.2615 0.22

A, B 0.78 0.84 0.14 0.256 0.24

A, B, C 0.8 0.86 0.12 0.2980 0.20

A, B, C, D 0.78 0.84 0.13 0.2913 0.20

GPCRs

A 0.78 0.84 0.12 0.254 0.20

A, B 0.8 0.85 0.11 0.2760 0.20

A, B, C 0.79 0.89 0.11 0.2797 0.19

A, B, C, D 0.8 0.84 0.11 0.2647 0.19

Nuclear receptors

A 0.85 0.91 0.16 0.2141 0.27

A, B 0.77 0.88 0.11 0.2154 0.19

A, B, C 0.81 0.88 0.12 0.1798 0.20

A, B, C, D 0.92 0.87 0.14 0.2253 0.24

Table 7.  Specificity, Sensitivity, Precision, MCC and F1 score for four datasets as achieved by iDTI-ESBoost 
using different feature groups.
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Structure Based Features.  The traditional drug discovery is a lock-key problem, where the lock is the target. 
The structure of the target thus plays a very important role in traditional drug discovery and is at the center of 
the docking based software. We make a hypothesis that even if the full structure is not present for the targets, 
estimated structural properties still can play an important role in drug-target interaction prediction. Structural 
features are generated using the structural information generated and stored in SPD files by SPIDER2 software. 
The information generated by SPIDER2 are: accessible surface area (ASA), secondary structural (SS) motifs, tor-
sional angles (TA) and structural probabilities (SP)65–67. Following features are generated using these information:

	 1.	 Secondary Structure Composition: This feature is the normalized count or frequency of the structural 
motifs present at the amino-acid residue positions. There are three types of motifs: α-helix (H), β-sheet (E) 
and random coil (C). SPIDER2 returns a vector SS of dimension L × 1 containing this information. Thus 
we can define this feature as following:

∑= ≤ ≤
=

‐ i
L

c iSS Composition( ) 1 , 1 3
(3)j

L

ij
1

Dataset Protein Id Drug Id Drug Name Score

Enzymes

hsa:10825 D00041 Threonine (USP) 0.7207

hsa:4759 D00041 Threonine (USP) 0.7163

hsa:129807 D00041 Threonine (USP) 0.7163

hsa:4953 D00041 Threonine (USP) 0.7095

hsa:1845 D00041 Threonine (USP) 0.7078

hsa:9610 D00041 Threonine (USP) 0.7073

hsa:6652 D00041 Threonine (USP) 0.7034

hsa:1734 D00136 Haloperidol (JP17/USP/INN) 0.6995

hsa:1178 D03643 Dalvastatin (USAN/INN) 0.6985

hsa:8435 D03643 Dalvastatin (USAN/INN) 0.6962

Ion channels

hsa:285242 D00294 Diazoxide (JAN/USP/INN) 0.9407

hsa:779 D00294 Diazoxide (JAN/USP/INN) 0.9366

hsa:2561 D00294 Diazoxide (JAN/USP/INN) 0.9357

hsa:785 D00294 Diazoxide (JAN/USP/INN) 0.9353

hsa:11254 D00294 Diazoxide (JAN/USP/INN) 0.935

hsa:3775 D00225 Alprazolam (JP17/USP/INN) 0.9339

hsa:6263 D00294 Diazoxide (JAN/USP/INN) 0.932

hsa:6324 D02261 Quinine hydrochloride hydrate (JP17) 0.9305

hsa:6324 D02262 Quinine sulfate (USP) 0.9305

hsa:6332 D02262 Quinine sulfate (USP) 0.8464

GPCRs

hsas:9052 D04625 Isoetharine (USP) 0.9311

hsa:9052 D00632 Dobutamine hydrochloride (JP17/USP) 0.9311

hsa:9052 D03880 Dobutamine lactobionate (USAN) 0.9311

hsa:9052 D03881 Dobutamine tartrate (USP) 0.9311

hsa:1909 D03621 Cyclizine (INN) 0.931

hsa:57105 D01712 Theophylline sodium acetate (JAN) 0.9307

hsa:155 D02671 Mesoridazine (USAN/INN) 0.9306

hsa:148 D02614 Denopamine (JAN/INN) 0.9303

hsa:155 D00480 Promethazine hydrochloride (JP17/USP) 0.9302

hsa:1909 D00480 Promethazine hydrochloride (JP17/USP) 0.9302

Nuclear receptors

hsa:2099 D01132 Tazarotene (JAN/USAN/INN) 0.9792

hsa:2101 D00956 Nandrolone phenpropionate (USP) 0.9755

hsa:2101 D00443 Spironolactone (JP17/USP/INN) 0.9758

hsa:2099 D00316 Etretinate (JAN/USAN/INN) 0.9602

hsa:9971 D00316 Etretinate (JAN/USAN/INN) 0.9593

hsa:2101 D00327 Fluoxymesterone (JP17/USP/INN) 0.9591

hsa:2101 D00088 Hydrocortisone (JP17/USP/INN) 0.9571

hsa:2101 D00075 Testosterone (JAN/USP) 0.9558

hsa:2099 D00565 Fenofibrate (JAN/INN) 0.9557

hsa:2101 D00462 Oxandrolone (JAN/USP/INN) 0.9557

Table 8.  New prediction made by iDTI-ESBoost for four gold standard datasets used in this paper.
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Here, L is the length of the protein and

=





=
c

SS f1, if
0, elseij

j i

Here, SSj is the structural motif at position j of the protein sequence and fi is one of the 3 different motif symbols.
	 2.	 Accessible Surface Area Composition: The accessible surface area composition is the normalized sum of 

accessible surface area defined by:

∑=
=

‐
L

ASA iASA Composition 1 ( )
(4)i

L

1

Here ASA is the vector of accessible surface area of dimension L × 1 containing the values of accessible 
surface area for all the amino acid residues.

	 3.	 Torsional Angles Composition: Four different types of torsional angles: ϕ, ψ, τ and θ are returned by 
SPIDER2 for each residue. First, we convert each of them into radians from degree angles and then take 
sign and cosine of the angles at each residue position. Thus we get a matrix of dimension L × 8. We denote 
this matrix by T. Torsional angles composition is defined as:

Figure 5.  Schematic diagram of the training module of iDTI-ESBoost showing the steps of the training phase.

Dataset Drugs Proteins
Positive 
Interactions

Imbalance 
Ratio

Enzyme 445 664 2926 99.98

Ion Chanel 210 204 1476 28.02

GPCR 223 95 635 32.36

Nuclear Receptor 54 26 90 14.6

Table 9.  Description of the gold standard datasets16.
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∑= ≤ ≤
=

‐
L

T kTA Composition(k) 1 (1 8)
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L
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1

,

	 4.	 Torsional Angles Bigram: The Bigram for the torsional angles is similar to that of the PSSM matrix and is 
defined as:

∑= ≤ ≤ ≤ ≤
=

−

+‐ k l
L

T T k lTA bigram( , ) 1 (1 8, 1 8)
(6)i

L

i k i l
1

1

, 1,

	 5.	 Structural Probabilities Bigram: Structural probabilities for each position of the amino-acid residue are 
given in the SPD2 file as a matrix of dimension L × 3, which we denote by P. The Bigram of the structural 
probabilities is similar to that of PSSM matrix and is defined as:

∑= ≤ ≤ ≤ ≤
=

−

+‐ k l
L

P P k lSP bigram( , ) 1 (1 3, 1 3)
(7)i

L

i k i l
1

1

, 1,

	 6.	 Torsional Angles Auto-Covariance: This feature is also derived from the torsional angles and is defined 
as:

∑= ≤ ≤ ≤ ≤
=

−

+‐ ‐ k j
L

T T j k DFTA Auto Covariance( , ) 1 (1 8, 1 )
(8)i

L k

i j i k j
1

, ,

This feature group depends on parameter DF which is the distance factor. In this study, we used DF = 10 
and this value was selected for the parameter DF as it was shown as the most effective window size to ex-
tract features based on torsion angles and similar properties40,65,67,68.

	 7.	 Structural Probablities Auto-Covariance: This feature is also derived from the structural probabilities 
and is defined as:

∑= ≤ ≤ ≤ ≤
=

−

+‐ ‐ k j
L

P P j k DFSP Auto Covariance( , ) 1 (1 3, 1 )
(9)i

L k

i j i k j
1

, ,

A brief summary of the three group of features derived from each drug-target pair is given in Table 1. Note 
that there are two types of features. Drug related features and target related features in four groups A, B, C and D.

Balancing Methods.  As it was specified earlier, our employed datasets are all imbalanced. Several sampling 
techniques in the literature have been employed to balance these data such as: random under sampling22, syn-
thetic over sampling69, balanced random sampling (BRS)68,70, neighborhood cleaning rule71, and cluster based 
under sampling72,73. In this paper, we explore random under sampling (RUS) method as done previously for 
drug-target interaction prediction in22. We also propose a novel modified cluster based under sampling method 
based on73 as follows.

In this method, the dataset is first divided into two subsets as major class and minor class. In the major class 
k-means clustering is applied to divide the major class samples in k clusters while the minor class samples are kept 
unchanged. After that from the k clusters of major class samples, subsamples are chosen randomly to represent 
the entire major class. We denote this method as cluster based under sampling (CUS) throughout this paper. The 
random under sampling will be denoted as random under sampling (RUS). The pseudo-code for the CUS algo-
rithm is given in Algorithm 1.

Our CUS algorithm depends on two parameters, namely, k and h. In our experiments, we have varied k for 
values from 5 30 and found the the best performing value to be 23. However, more sophisticated clustering 
algorithms can be applied on this data. The role of the parameter h is to control the random under sampling of the 
clustered majority class samples. The details of the experimental results for selecting this hyper parameter h is 
given as supplementary material (Supplementary File 2).

Algorithm 1.  Cluster Based Under Sampling (dataset, k, h).
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Description of the classifier.  We have selected the adaptive boosting algorithm (AdaBoost)46 as our classi-
fication algorithm. Adaptive boosting is a meta or ensemble classifier that uses several weak learning algorithms 
or weak classifiers and improves over their performance. We choose decision tree classifiers as the weak classifiers. 
AdaBoost is a meta-classifier of the following form:

∑α=
=

g h x( )
(10)t

T

t t
1

AdaBoost iteratively adds up a weak classifier ht(x) at each iteration of the algorithm weighted by αt where 
αt is the weight achieved from the error function εt for the weak classifier ht(x) at iteration t. Each of these weak 
classifiers is chosen in a way so as to minimize the error on the training sample weighted by the distribution Dt:

∑∈ ≠ =
∈ ∼ ∈ =

≠h argmin h x y argmin DPr [ ( ) ] 1
(11)t

h H i D
t i

h H i

m

t h x y
1

( )
t

t i

The algorithm of AdaBoost46 is sketched in Algorithm 2 following the notations of 74.

Performance Evaluation.  A large variety of performance metrics are used in the literature to compare the 
performance of supervised learning methods75. The gold datasets that are used in the literature of drug-target 
interaction prediction are largely imbalanced and the number of negative samples largely outnumbers that of the 
positive samples. Therefore, the typical measures like accuracy does not make much sense. Moreover, the output 
of the classifier generating probabilistic outputs depends on the thresholds or the values predicted by it for each of 
the predicting classes. In such cases, thresholds or values play an important role on the sensitivity and specificity 
of the classifiers. Two measures that are independent of the values or thresholds set for decision making are area 
under curve for Receiver Operating Characteristic (auROC) and area under precision recall curve (auPR). These 
two measures are widely used in the literature of drug-target interaction prediction22,24,30,76 and thus have become 
standard metrics for comparison.

Lets assume, P is the total number of positive samples in a dataset and N is the total number of negative sam-
ples in a dataset. Let TP denote the number of true positives, TN denote the number of true negatives, FN denote 
the number of false negatives and FP denote the number of false positives predicted by a classifier. True positives 
(negatives) are correctly classified positive (negative) samples by the classifier. Conversely, false positives (neg-
atives) are negative (positive) samples incorrectly predicted as positives (negatives) by the classifier. Following 
these notions, we can define sensitivity or true positive rate as follows:

=
+

Sensitivity TP
TP FN (12)

Therefore, sensitivity is the ratio of correctly predicted positive samples to the total number of positive sam-
ples. Precision is defined as the positive predictive rate (PPV) as follows:

=
+

Precision TP
TP FP (13)

Therefore, precision shows the percentage of positive predictions by the classifiers that are accurate. Another 
important measure is specificity (SPC) or true negative rate defined as follows:

Algorithm 2.  AdaBoost (dataset = (X, Y)).
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=
+

SPC TN
TN FP (14)

Fall-out or false positive rate (FPR) is the ration of the number of wrongly classified negative instances to the 
total number of negative instances defined as follows:

=
+

= −FPR FP
FP TN

SPC1
(15)

F1 Score is a statistical score based on precision and sensitivity and defined as follows:

=
+ +

F TP
TP FP FN

1 2
2 (16)

All theses performance measures have values within the range [ 0 1], 0 being the worst and 1 being the best.
Another score that is often used in comparison is called defined as follows:

=
× − ×

+ + + +
MCC TP TN FP FN

TP FP TP FN TN FP TN FN
( ) ( )

( ) ( ) ( ) ( ) (17)

Value of this coefficient ranges from −1 to +1, where +1 means a perfect predictor and −1 means a total 
disagreement.

Receiver operating characteristic (ROC) curve plots true positive rate or sensitivity against false positive rate 
or (1-specificity) at various threshold values. The performance of a predictor is calculated by the area under the 
ROC curve (auROC). A perfect classifier have a auROC value of 1 and a random classifier have a value of 0.5. 
However, for imbalanced datasets like ours, area under precision recall curve (auPR) is of more significance22 as 
follows: auPR curve plots the precision rate vs the recall rate at different threshold values. This score penalizes the 
false positives more as compared to auROC and thus more suitable for skewed datasets. The value of auPR ranges 
from 0 to 1 and the higher the value is the better.

It is very important to test the methods to check and balance the bias-variance trade-off77. Various methods 
of sampling are used to measure the performance of supervised learning algorithms78. Among them mostly used 
are k–fold cross validation and jack knife tests. Because of the high imbalance, dimensionality and cardinality of 
the datasets, in most of the methods in the literature, 5-fold cross validation have been preferred and used as the 
sampling method22,24,30,76. We also use the 5-fold cross validation to test our method for the sake of fair compari-
son with the other state-of-the-art methods.

In the 5-fold cross validations, first the dataset is randomly split into five equal parts retaining the ratio of 
imbalance in each split same to the original dataset. Each time one part of the dataset is used as test and the 
other four are used as training data. First the balancing techniques are applied to the training data (clustered or 
random) and then the classifier is used to train the data into a model. The stored model is used subsequently to 
predict the labels for the test data. Thus all the drug-target pairs in the datasets are used in testing the classifier 
performance using cross-validation. The measures reported are the average of all 5-fold results.

Data and Material availability.  All the data and materials used in this paper are available at: http://farshi-
drayhan.pythonanywhere.com/iDTI-ESBoost/.

Conclusion
In this paper, we have presented iDTI-ESBoost, a novel method to predict and identify drug-target interactions. 
iDTI-ESBoost is unique in its exploitation of structural features along with the evolutionary features to predict 
drug-protein interactions. It also uses a novel balancing technique and a boosting technique. We have conducted 
extensive experiments to test and analyze the performance of iDTI-ESBoost. On four benchmark datasets known 
as the gold standard data in the literature, iDTI-ESBoost outperforms the state-of-the-art methods in terms of 
area under Receiver Operating Characteristic (auROC) curve.

Notably, the gold standard datasets used in the literature as benchmarks to analyze the performance of the 
methods for drug-target interactions prediction and identification are highly imbalanced with negative samples 
far outnumbering the positive samples. In the literature it has been argued that area under Precision Recall (auPR) 
curve is the most appropriate metric for comparison for such imbalanced datasets. To this end, iDTI-ESBoost also 
outperforms the latest and the best-performing method in the literature to-date in terms of area under precision 
recall (auPR) curve. We believe that the excellent performance of iDTI-ESBoost both in terms of auROC and 
auPR would motivate the researchers and practitioners to use it to predict drug-target interactions. To facilitate 
that, iDTI-ESBoost is publicly available for use at: http://farshidrayhan.pythonanywhere.com/iDTI-ESBoost/.

In addition of target proteins, there are some types of RNA molecules so called non-coding RNAs and ncRNAs 
which are not translated into proteins. These RNA molecules als can make a new class of drug targets. Recently, 
a new database called NRDTD has been developed to collect the experimentally validated associations between 
drugs and ncRNAs79. In the future, our aim is to use NRDTD database as a gold standard dataset for predicting 
new associations between drugs and ncRNAs which have not been experimentally verified. By replacing features 
of target proteins with a set of informative features for ncRNAs, which have been published in the literature, the 
model presented in this study can also be used for predicting drug-ncRNA interaction prediction.

http://farshidrayhan.pythonanywhere.com/iDTI-ESBoost/
http://farshidrayhan.pythonanywhere.com/iDTI-ESBoost/
http://farshidrayhan.pythonanywhere.com/iDTI-ESBoost/
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