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Abstract

The incorporation of the extracellular matrix (ECM) is essential for generating in vitro models

that truly represent the microarchitecture found in human tissues. However, the cell-cell and

cell-ECM interactions in vitro remains poorly understood in placental trophoblast biology.

We investigated the effects of varying the surface properties (surface thickness and stiff-

ness) of two ECMs, collagen I and Matrigel, on placental trophoblast cell morphology, viabil-

ity, proliferation, and expression of markers involved in differentiation/syncytial fusion. Most

notably, thicker Matrigel surfaces were found to induce the self-assembly of trophoblast

cells into 3D spheroids that exhibited thickness-dependent changes in viability, proliferation,

syncytial fusion, and gene expression profiles compared to two-dimensional cultures.

Changes in F-actin organization, cell spread morphologies, and integrin and matrix metallo-

proteinase gene expression profiles, further reveal that the response to surface thickness

may be mediated in part through cellular stiffness-sensing mechanisms. Our derivation of

self-assembling trophoblast spheroid cultures through regulation of ECM surface alone con-

tributes to a deeper understanding of cell-ECM interactions, and may be important for the

advancement of in vitro platforms for research or diagnostics.

Introduction

The human placenta is pivotal in the growth and survival of the fetus during pregnancy due to

its involvement in maternal-fetal exchange, immune and barrier protection, and endocrine

regulation [1, 2]. To achieve an understanding of the complex processes underpinning this

rapidly developing tissue requires a diverse range of experimental approaches including both

in vivo and in vitro models. There has recently been great interest in emulating placental bar-

rier function utilizing in vitro models comprised of monolayers of trophoblast cells or more

complex assemblies of multiple cell types referred to as microphysiological systems [3–5].

However, many of these in vitro platforms are developed in the absence of the non-cellular
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scaffold present in vivo known as the extracellular matrix (ECM) [6, 7]. The ECM is not

routinely incorporated in most culture systems, where cells are simply cultured on two-dimen-

sional (2D) polystyrene or glass surfaces. The physical properties of these 2D surfaces are

known to be quite distinct from that which exists in vivo [8]. Considering that the ECM pro-

vides numerous biochemical and biomechanical cues that are important for regulating cell

behavior [9], the incorporation of ECM for in vitro modeling and testing may be of central

importance to accurately understanding placental barrier function.

While the importance of considering the three-dimensional (3D) ECM for in vitro cell cul-

ture models is becoming evident [10], our understanding of the regulatory role of cell-matrix

interactions on cell function is still incomplete. Specific to placental development, trophoblast

cells grown on various ECMs have demonstrated phenotypic changes, such as altered gene

and protein expressions, that are indicative of a more differentiated population [11–15]. Yet,

the functional consequences of these biointerface-driven changes in phenotype have yet to be

fully elucidated. In particular, there is a disparity in our understanding of parameters such as

surface thickness and stiffness in the context of trophoblast biology. As ECM properties may

provide key cues to direct cell fate and behaviour [16, 17], inconsistencies in tuning the growth

surface may have implications on the translatability of resultant findings. Hence, there is a

need to understand how the ECM parameters employed during in vitro culture impact tropho-

blast growth and function. While the literature does not provide highly defined measures of

human placental ECM thickness and stiffness, we do know that changes in these parameters

are associated with placental pathologies such as intrauterine growth restriction [18]. There-

fore, when developing in vitro microphysiological systems, failure to clearly define the ECM

may result in abnormal representation of cellular function.

In the current study, we investigated the impact of the ECM on placental trophoblast cells

in vitro. We hypothesized that altering ECM surface thickness and stiffness would affect cellu-

lar organization, function, and expression profiles. A deeper understanding of the biointer-

face-driven effects of ECM thickness on trophoblast cell phenotype will be fundamental in the

development of more in vivo-like models for pregnancy research, drug/toxin testing, and prog-

nosis of placental pathologies.

Materials and methods

ECM hydrogel surface fabrication

Collagen I (Corning; 2 mg/mL) and Matrigel (Corning; 5 mg/mL) were used as ECM hydro-

gels for this study as they are two of the most commonly-utilized ECM growth surfaces for

cells [19, 20]. Matrigel is a reconstituted basement membrane extract from the Engelbreth-

Holm-Swarm mouse sarcoma, which consists of approximately 60% laminin, 30% collagen

IV, 8% entactin, and other proteins and growth factors (Corning). Growth factor-reduced

Matrigel was used in this study to minimize the effect of growth factors and to increase compa-

rability to collagen I, which is also growth factor-free [21]. Two surface thicknesses (50 and

250 μm) were selected on basis of the most commonly used ranges previously seen in literature

for trophoblast culture [11–15]. In order to calculate the volume of hydrogel required to pro-

duce a specific surface thickness, the following equation was used: Volume = (surface area of
cell growth) x (calculated thickness). A controlled volume of liquid hydrogel material was

deposited onto glass or polystyrene surfaces via micropipetting and spread evenly over the sur-

face. Matrigel was gelled via incubation at 37˚C for 1 hour. Collagen I was gelled via the addi-

tion of 10X phosphate-buffered saline (PBS) and 1N sodium hydroxide, and incubated at 37˚C

for 1 hour, according to the manufacturer’s protocol.
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Analysis of ECM surface properties and mechanical testing of substrate

stiffness

Analysis and mechanical testing of ECM surfaces were carried out using the MicroSquisher

instrument (CellScale). Images were captured using the MicroSquisher camera and the data

was recorded using the SquisherJoy software (CellScale). Actual thicknesses of the surfaces

were measured by cross-sectional imaging of the hydrogel and glass coverslip and using a mea-

surement tool within the SquisherJoy software. A total of five measurements were taken per

sample along the edge to the centre of the ECM surface.

A 2 mm x 2 mm steel plate glued to a cylindrical cantilever of 203.2 μm diameter was used

to perform the mechanical testing for the experiment. All samples were tested in phosphate-

buffered saline bath at room temperature. The cantilever was lowered until it made gentle con-

tact with the top of the ECM sample. Samples were compressed to 10% engineering strain at a

strain rate of 1.61 μm/second and held at a constant deformation for 10 s followed by a release

strain rate of 1.61 μm/second. Force was measured during the compression, deformation and

release cycle. All the gels showed an elastic region between 3–5% of the strain values which

were used for analysis. Substrate stiffness was determined by assessing the force required to

compress the sample to a constant displacement.

Cell culture

BeWo cells (ATCC) are one of the most extensively-used cell lines in placental trophoblast

research to model villous trophoblasts, syncytial fusion, and many aspects of placental function

and disease [22, 23]. BeWo cells were cultured at 37˚C in 95% room air/5% CO2 in F-12 media

(Corning) supplemented with 10% fetal bovine serum, 1% L-glutamine, and 1% penicillin-

streptomycin. The media was changed every two days. Cells between the passages of 10–15

were used for all experiments, and seeded at an initial density of 1x104 cells/cm2 on glass cover-

slips or 6-well polystyrene plates that were either uncoated (2D control) or coated with varying

thicknesses of collagen I or Matrigel.

Live cell imaging of cellular organization

Cells were imaged under a phase-contrast filter and images captured using an AE2000 inverted

microscope (Motic) and Moticam X2 camera (Motic). Images of cellular organization were

captured at 4x objective magnification.

Immunofluorescence

Cells were fixed for 10 minutes in 2% paraformaldehyde with 0.1% glutaraldehyde and per-

meabilized for 5 minutes with 0.1% Triton X-100 in PBS. Samples were then blocked for 2

hours using 0.01% Tween-20, 10% goat serum and 1% bovine serum albumin (BSA) in PBS.

Afterwards, samples were incubated with either Anti-E-Cadherin primary antibody (Abcam;

ab40772; rabbit monoclonal; 1:500) overnight at 4 degrees and then incubated with Goat Anti-

Rabbit IgG H&L Alexa Fluor1 488 secondary antibody (Abcam; ab150077; goat polyclonal;

2μg/mL) for 1 hour, or with CytoPainter Phalloidin-iFluor 555 reagent (Abcam; ab176756;

1:1000) for 1 hour. All blocking and incubations were performed at room temperature, unless

otherwise stated. Samples were counterstained with 40,6-diamidino-2-phenylindole dihy-

drochloride (DAPI; Santa Cruz; 1.5 μg/mL) and mounted onto glass slides using Fluoro-

mount™ Aqueous Mounting Medium (Sigma-Aldrich). Slides were visualized using an Eclipse

Ti-E Inverted Fluorescence Microscope (Nikon). Z-stack images were taken in 0.5 μm steps to

capture all layers. Images were analyzed using Fiji (National Institutes of Health) and NIS
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Elements software (Nikon). To assess syncytial fusion, E-Cadherin was visualized to identify

cell borders (as E-Cadherin is localized to the plasma membrane [24]) and DAPI to identify

cell nuclei. When merged, E-Cadherin and DAPI enabled the visualization of syncytial fusion

[25]. Cell fusion may be quantified with the following equation [26]: Total Fusion Percentage
(%) = (Number of nuclei in syncytia/Total number of nuclei) x 100%. Cell spread area was deter-

mined by quantifying the binary area of Phalloidin staining, normalized to the mean intensity

of DAPI as an indicator of cell number [27].

Cell viability and proliferation

BeWo cells were incubated with Calcein AM (Thermo Scientific; C1430; 1:200) and Ethidium

homodimer-1 (Thermo Scientific; E1169; 1:200) and imaged using an Eclipse Ti-E Inverted

Fluorescence Microscope (Nikon). Green fluorescence indicated live cells and red fluorescence

indicated dead cells. Images were analyzed using Fiji (National Institutes of Health) and NIS

Elements software (Nikon), and the percentage ratio of live to dead cells were calculated by

dividing the mean intensity of live cells (as determined by fluorescence of Calcein AM stain)

by the mean intensity of the dead cells (as determined by fluorescence of Ethidium homodi-

mer-1 stain).

Cell proliferation was determined using a CellTiter 961 AQueous Non-Radioactive Cell

Proliferation Assay kit (MTS Assay; Promega). The absorbance was measured at 490 nm on a

Multiskan1 Spectrum spectrophotometer (Thermo Scientific). Given that the absorbance is

directly proportional to the number of live cells, relative rate of cell proliferation was deter-

mined by calculating the fold change in absorbance compared to the 2D control. Matrigel sam-

ples with no cells seeded were used to correct for any potential background absorbance.

RNA extraction and real-time Quantitative Polymerase Chain Reaction

(qPCR)

Cells were isolated from hydrogels using Cell Recovery Solution (Corning). Total RNA was

extracted from cells using TRIzol Reagent (Invitrogen) and Direct-zol RNA MiniPrep Kit

(Zymo Research), following the manufacturer’s protocol. A total of 1 μg of RNA was reverse-

transcribed to cDNA using High-Capacity cDNA Reverse Transcription Kit (Applied Biosys-

tems). Primer sets directed against gene targets of interest were designed through National

Center for Biotechnology Information’s Primer-BLAST primer designing tool and synthesized

at McMaster’s Mobix Labs (Table 1). Quantitative analysis of mRNA expression was per-

formed via qPCR using fluorescent nucleic acid dye PerfeCTa SYBR Fastmix (Quanta) and

CFX384 Touch Real-Time PCR Detection System (BioRad). The cycling conditions were 95˚C

for 10 min, followed by 40 cycles of 95˚C for 10 secs and 60˚C for 10 secs and 72˚C for 15 secs.

Relative fold changes were calculated using the comparative cycle times (Ct) method, normal-

izing all values to an endogenous control gene (18S). The endogenous control gene was

selected based on experimentally-determined Ct stability across all treatment groups. Given

that all primer sets had equal priming efficiency, the ΔCt values for each primer set were cali-

brated to the average of all control Ct values, and the relative abundance of each primer set

compared with calibrator was determined by the formula 2ΔΔCt, in which ΔΔCt was the nor-

malized value. Matrigel samples with no cells seeded were also analyzed to ensure that any

potential traces of RNA found in hydrogels alone did not confound measurements.

Enzyme-Linked Immunosorbent Assay (ELISA)

Cell media was collected and protein levels of secreted hCGβ were analyzed via ELISA. In

brief, 96-well high binding polystyrene microtiter plates (Costar) were coated with a detector
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anti-hCGβ antibody (Meridian; mAF05-19; monoclonal mouse; 2.94 μg/mL) for 2 hours, and

then blocked with 1% BSA in tris-buffered saline overnight at 4˚C. Media samples were then

incubated in the wells for 2 hours. Plates were incubated with a reporter anti-hCG antibody

(Hytest; 27E8; monoclonal mouse; 0.3 μg/mL) conjugated to horseradish peroxidase for 1

hour. Plates were then incubated with TMB substrate (Sigma; T8665) for 30 minutes. Absor-

bances was measured at 550 nm and 450 nm on a Multiskan1 Spectrum spectrophotometer

(Thermo Scientific), and 450 nm values were subtracted from 550 nm values to correct for

optimal imperfections in microplate. Protein levels were normalized to the absorbance calcu-

lated from the MTS proliferation assay, as the absorbance is directly proportional to the num-

ber of live cells (method adapted from [15]).

Statistical analysis

All statistical analyses were performed using Prism 5 software (GraphPad). Results were

expressed as means of normalized values ± standard error of the mean (SEM). Experiments

were repeated at least three times (n�3), unless otherwise specified. The significance of differ-

ences (p<0.05) between normalized mean values were then evaluated using unpaired t-test or

one-way analysis of variance (ANOVA) followed by Tukey’s post-test, as appropriate for the

experiment.

Results

ECM surface type and thickness differentially regulates cellular

organization and morphology

BeWo cells were seeded onto 2D polystyrene surfaces, or thin or thick surfaces of collagen I or

Matrigel, and live cellular organization was examined using phase-contrast microscopy. Dif-

ferences in cellular organization were seen within 24 hrs of seeding (day 1; Fig 1A–1E), with

long, strand-like morphologies particularly evident on thin Matrigel surfaces (Fig 1D), and

small aggregates seen on thick surfaces (Fig 1E). By day 7, BeWo cells cultured on thin collagen

I and Matrigel appeared more densely populated than the 2D control, but retained sheet-like,

Table 1. Forward and reverse sequences for the primers used for qPCR.

Gene Forward Reverse GenBank

18S (RNA18S5) CACGCCAGTACAAGATCCCA AAGTGACGCAGCCCTCTATG NR_003286.2

Glial Cells Missing Homolog 1 (GCM1) CCTCTGAAGCTCATCCCTTGC ATCATGCTCTCCCTTTGACTGG NM_003643.3

Placental Lactogen (PL) GCCATTGACACCTACCAG GATTTCTGTTGCGTTTCCTC V00573.1

Endogenous Retrovirus Group W Member 1, Envelope; Syncytin-1 (ERVWE1) GTTAATGACATCAAAGGCACCC CCCCATCTCAACAGGAAAACC NM_014590

Endogenous Retrovirus Group FRD Member 1, Envelope; Syncytin-2 (ERVFRD1) GCCTACCGCCATCCTGATTT GCTGTCCCTGGTGTTTCAGT NM_207582.2

Chorionic Gonadotropin, Alpha (CGA) GCAGGATTGCCCAGAATGC TCTTGGACCTTAGTGGAGTGG V00518.1

Chorionic Gonadotropin,
Beta (CGB)

ACCCCTTGACCTGTGAT CTTTATTGTGGGAGGATCGG J00117.1

Matrix Metalloproteinase (MMP) 2 TCTCCTGACATTGACCTTGGC CAAGGTGCTGGCTGAGTAGATC NM_004530.5

MMP9 CCGGCATTCAGGGAGACGCC TGGAACCACGACGCCCTTGC NM_004994.2

Tissue Inhibitor Of Metalloproteinases (TIMP)1 GGGCTTCACCAAGACCTACA TGCAGGGGATGGATAAACAG NM_003254.2

TIMP2 GAAGAGCCTGAACCACAGGT GGGGGAGGAGATGTAGCAC NM_003255.4

Integrin Subunit Alpha (ITGA) 1 CAGTCTATCCACGGAGAAATG GGCTCAAAATTCATGGTCAC NM_181501.1

ITGA5 CCAAAAGAAGCCCCCAGCTA TCCTTGTGTGGCATCTGTCC NM_002205.4

ITGAV TCACTAAGCGGGATCTTGCC AGCACTGAGCAACTCCACAA EF560727.1

Integrin Subunit Beta (ITGB) 3 GAAGCAGAGTGTGTCACGGA TGCATCATTCCTCCAGCCAA NM_000212.2

https://doi.org/10.1371/journal.pone.0199632.t001
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confluent growth and were no longer distinct in terms of cellular organization (Fig 1F, 1G

and 1I). However, BeWo cells cultured on thick collagen I formed undefined aggregates at day

7 (Fig 1H), whereas cells cultured on thick Matrigel self-assembled into distinct, spheroid-

shaped aggregates at day 7 (Fig 1J). By day 21, BeWo cells cultured on thin surfaces no longer

appeared different in organization compared to the 2D control (Fig 1K, 1L and 1N). In con-

trast, the cultures grown on thick collagen I samples did not exhibit differences compared to

the 2D control (Fig 1K and 1M). Notably, thick Matrigel-induced trophoblast spheroids main-

tained in shape and integrity, but grew in size from day 7 to day 21 (Fig 1J and 1O). Collec-

tively, thick surfaces were required for aggregate formation, and thick Matrigel was specifically

required for spheroid self-assembly and maintenance.

Matrigel led to thickness-dependent increases in cell viability and

proliferation

Self-assembling, 3D cell spheroids and microtissues are of great interest as they have been

shown to better recapitulate the phenotypes redolent of their respective organs compared to

two-dimensional (2D) cultures, such as tissue-specific cell density, microarchitecture, cell-cell

interactions [10, 28–31]. Given the potential value, we further characterized the thick Matri-

gel-induced trophoblast spheroids at day 7. Cell viability, as determined through the ratio of

live to dead cells, significantly increased in a thickness-dependent manner (p<0.05 for 2D to

thin; p<0.001 for 2D to thick; p<0.01 for thin to thick; Fig 2A and 2B), with the greatest via-

bility in cells grown on the thick Matrigel surface (91.3 ± 0.2%). Interestingly, the mean of the

cell proliferation rate appeared to increase in a thickness-dependent manner, with significant

differences evident in the thick Matrigel surface when compared to the other two groups

(181.0 ± 29.3%, p<0.001 for 2D to thick; p<0.05 for thin to thick; Fig 2C).

Fig 1. Thick Matrigel regulates self-assembly of trophoblast spheroids as determined by live cell imaging. BeWo cells cultured for 1 day on (A) 2D

control surface, (B) thin collagen I, (C) thin Matrigel, (D) thick collagen I, and (E) thick Matrigel. BeWo cells were grown for 7 days on (F) 2D control

surface, (G) thin collagen I, (H) thin Matrigel, (I) thick collagen I, and (J) thick Matrigel. BeWo cells were grown for 21 days on (K) 2D control

surface, (L) thin collagen I, (M) thin Matrigel, (N) thick collagen I, and (O) thick Matrigel. All images were taken at 4x objective magnification and

scale bar indicates 500 μm. n = 3.

https://doi.org/10.1371/journal.pone.0199632.g001
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Fig 2. Thickness-dependent increases in cell viability and proliferation in BeWo cells cultured on Matrigel after 7

days. (A) Immunofluorescent images of BeWo cells stained with Calcein AM (green) and Ethidium homodimer-1

(red). All images were taken at 10x objective magnification and scale bar indicates 100 μm. (B) Percentage ratio of

mean intensities of live and dead cells cultured on 2D, thin, and thick surfaces. (C) Relative rates of proliferation of

cells cultured on 2D, thin, and thick surfaces as assessed via MTS assay. Significant differences between treatment

groups determined by one-way ANOVA followed by Tukey’s post-test; n� 3. Significant differences between means

determined by post-tests were indicated by � (p<0.05), �� (p<0.01), or ��� (p<0.001).

https://doi.org/10.1371/journal.pone.0199632.g002
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The effect of ECM surface thickness on syncytial fusion

Due to the robust effects on cellular organization, spheroid self-assembly, viability, and prolif-

eration, we investigated the impact of surface thickness on syncytial fusion, which is an essen-

tial feature of syncytiotrophoblast differentiation. Interestingly, BeWo cells grown on thick

Matrigel appeared to be very highly fused with minimal E-Cadherin staining at the center of

spheroids compared to cells grown on 2D or thin Matrigel (Fig 3A–3C). However, due to the

high density of DAPI-positive nuclear clustering in thin and thick Matrigel surfaces, it was not

possible to accurately distinguish nuclei from one another, preventing the accurate quantifica-

tion of the percentage of syncytial fusion. Thus, we assessed the degree of syncytial fusion

through gene expression profiling to verify this qualitative fusion increase seen in thick Matri-

gel-induced spheroids.

Thick Matrigel-induced spheroids exhibited a significant two-fold increase in mRNA levels

of glial cells missing homolog 1 (GCM1), a transcription factor for many syncytialization-

related genes [32], compared to cells grown on 2D surfaces (p<0.05; Fig 4A). Placental lacto-

gen (PL) mRNA levels were significantly increased in a thickness-dependent manner (p<0.01

for 2D to thin; p<0.001 for 2D to thick; Fig 4B). Endogenous retrovirus group W member 1

(ERVWE1) mRNA levels only increased in the thin Matrigel group (p<0.05 for 2D to thin; Fig

4C), but endogenous retrovirus group FRD member 1 (ERVFRD1) mRNA levels contrastingly

decreased (p<0.01 for 2D to thick; p<0.05 for thin to thick; Fig 4D). Human chorionic gonad-

otropin α (CGA) mRNA levels were unchanged (Fig 4E), but human chorionic gonadotropin

β (CGB) mRNA levels were significantly increased in a thickness-dependent manner (p<0.05

for 2D to thin; p<0.001 for 2D to thick; p<0.01 for thin to thick; Fig 4F). Collectively, surface

thickness/stiffness alone was able to induce increases in several key markers of syncytial fusion

(GCM1, PL, ERVWE1, CGB).

In accordance, surface thickness alone also induced significant increases in secreted protein

levels of human chorionic gonadotropin β (hCGβ) in the cell media (p<0.05; Fig 5).

Cellular stiffness response to changes in ECM surface thickness

As substrate stiffness inversely correlated with changes in surface thickness, as seen in our

findings (S1 Fig) and that of others [16], we were interested in further elucidating potential

Fig 3. Immunofluorescent staining of E-Cadherin and DAPI to visualize syncytial fusion. BeWo cells grown on (A) 2D, (B) thin

Matrigel, or (C) thick Matrigel surfaces. Green fluorescence indicates E-Cadherin staining and blue fluorescence indicates DAPI

staining for cell nuclei. Images were taken at 20x magnification and scale bar indicates 100 μm.

https://doi.org/10.1371/journal.pone.0199632.g003
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stiffness-sensing mechanisms involved in spheroid formation with the thick Matrigel ECM.

The cells’ ability to spread over a surface is a known stiffness-response marker [16], and may

be assessed via F-actin (phalloidin) immunofluorescent staining. At day 3, cell spread areas

were significantly decreased as surface thickness increased (p<0.001; Fig 6A and 6B), and a

similar trend was present at day 7 (p<0.001; Fig 6A and 6C).

Fig 4. The effect of Matrigel thickness on gene markers of differentiation and syncytial fusion. Normalized mRNA levels of (A) GCM1, (B) PL,

(C) ERVWE1, (D) ERVFRD1, (E) CGA, and (F) CGB after 7 days of growth on various surface thicknesses. (E) Normalized protein levels of secreted

hCGβ in media. Significant differences between treatment groups determined by one-way ANOVA followed by Tukey’s post-test; n�3. Significant

differences between means determined by post-tests were indicated by � (p<0.05), �� (p<0.01), or ��� (p<0.001).

https://doi.org/10.1371/journal.pone.0199632.g004

Fig 5. The effect of Matrigel thickness on the secretion of human chorionic gonadotropin β (hCGβ) in the cell

media. Normalized protein levels of secreted hCGβ in media. Significant differences between treatment groups

determined by one-way ANOVA followed by Tukey’s post-test; n�3. Significant differences between means

determined by post-tests were indicated by �� (p<0.01).

https://doi.org/10.1371/journal.pone.0199632.g005
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Thick ECM surface up-regulated genes related to stiffness sensing and

invasion

Lastly, we investigated the impact of Matrigel thickness on expression of genes related to stiff-

ness sensing and invasion/migration. At day 7, ITGA1 and ITGA5 mRNA levels significantly

increased in cells grown on thin and thick Matrigel surfaces compared to the 2D control

(p<0.001 and p<0.05, respectively; Fig 7A and 7B). MMP2 and TIMP1 mRNA levels also sig-

nificantly increased in cells grown on thin and thick Matrigel surfaces compared to the 2D

control (p<0.001 and p<0.05, respectively; Fig 7E and 7G). mRNA levels of ITGAV, ITGB3,

MMP9, and TIMP2 did not significantly change across various surface thicknesses (Fig 7C,

7D, 7F and 7H).

Fig 6. Thick Matrigel leads to decreased F-actin cell spread areas. (A) Immunofluorescent images of Phalloidin staining at

days 3 and 7 across various surface thicknesses. Red fluorescence indicates phalloidin staining for F-actin and blue fluorescence

indicates DAPI staining for cell nuclei. Images were taken at 20x magnification and scale bar indicates 100 μm. Average cell

spread areas as determined by quantifying the normalized binary area of phalloidin stain at (B) day 3 and (C) day 7. Significant

differences between treatment groups determined by one-way ANOVA followed by Tukey’s post-test; n = 3. Significant

differences between means determined by post-tests were indicated by ��� (p<0.001).

https://doi.org/10.1371/journal.pone.0199632.g006
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Discussion

The current study demonstrates that the nature of the ECM alone impacts not only the self-

assembly behaviour of trophoblast cells, but also the expression profiles of genes related to dif-

ferentiation and cell-ECM interaction, and functionally alter syncytial fusion and hormone

secretion. The ability to manipulate surface thickness, as a parameter to alter substrate stiff-

ness, allows for the evaluation of how cellular function and phenotype are regulated by chang-

ing ECM stiffness without altering the composition of the ECM hydrogel. The importance

of exploring such relationships is underscored in reports that have demonstrated that self-

assembling spheroids are of great value as they are known to possess cellular interactions and

densities that are more similar to the in vivo state than 2D cultures [10, 29, 30]. While the gen-

eration of placental trophoblast spheroids has been attempted by a few prior studies [33–36],

the cellular phenotype and techniques required for their derivation had yet to be well-charac-

terized. Some studies utilized non-adherent or rotating wall vessel bioreactors to generate

spheroids, but these models lack the cell-ECM interactions that are essential in vivo [33–36].

Fig 7. Gene expression profiling of cellular stiffness response to ECM surface thickness. Normalized mRNA levels

of (A) ITGA1, (B) ITGA5, (C) ITGAV, (D) ITGB3, (E) MMP2, (F) MMP9, (G) TIMP1, and (H) TIMP2. Significant

differences between treatment groups determined by one-way ANOVA followed by Tukey’s post-test; n�3. Significant

differences between means determined by post-tests were indicated by � (p<0.05), �� (p<0.01), or ��� (p<0.001).

https://doi.org/10.1371/journal.pone.0199632.g007
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Our study reveals the importance of understanding the cell-ECM interactions to influence

cell-cell interactions, as seen through spheroid formation. Importantly, the novelty in our

work demonstrates that the physical properties of the ECM contributes to not only to cellular

reorganization, but also alters key cellular functions such as the trophoblasts’ secretion of

hCGβ, which is crucial in regulating hormone production, trophoblast fusion and invasion,

and many other aspects of maternal and fetal health in vivo [37, 38]. This connection between

ECM and cellular function may prove to be a vital factor in dictating adverse pregnancy out-

comes. Therefore, in vitro models of placental function using trophoblasts should consider

clearly defining the ECM used within these constructs.

In the current manuscript, we demonstrate that the type of ECM plays a key role in regulat-

ing the self-assembly and maintenance of 3D trophoblast spheroids in BeWo cells. The differ-

ential abilities of collagen I and Matrigel in maintaining spheroid integrity is consistent with

the work of Nguyen-Ngoc, Cheung (39) showing that human breast cancer cells exhibited

greater disassociation from pre-formed tumour spheroids when grown on or embedded in col-

lagen I compared to Matrigel alone [19, 39]. Collectively, this suggests that Matrigel is a more

appropriate biomaterial than collagen I at maintaining 3D trophoblast spheroid integrity. Fur-

thermore, the additional ECM proteins present in Matrigel (e.g., laminin, entactin) compared

to 2D surfaces or collagen I alone may also contribute to cellular differentiation. For example,

knocking out laminin (α5 subunit) led to placental abnormalities and embryonic lethality in

mice [40], and silencing laminin α4 or its receptor led to impaired trophoblastic functions (e.

g., decreased invasion, migration, and tube formation) in human placental trophoblast cells,

suggesting unique roles among the varying ECM proteins in development and differentiation.

Indeed, our thick Matrigel-driven trophoblast spheroids exhibited higher degrees of syncytial

fusion and gene (GCM1, PL, ERVWE1, CGB) and protein (hCGβ) expression profiles indica-

tive of a more differentiated population compared to cells grown on 2D surfaces. The lack of

change seen in CGA mRNA levels are not particularly surprising given the known differential

temporal regulation of CGA and CGB expression during pregnancy (where hCGβ normally

peaks around 10–12 weeks, whereas hCGα increases gradually until term. Importantly, the

extent of fusion evident in the BeWo cells cultured on thick Matrigel were visibly greater than

on 2D surfaces in conjunction with increases in hCGβ secretion, collectively supporting the

enhancement of cell fusion via increased ECM thickness and/or decreased stiffness. In addi-

tion to activating cellular differentiation, ECM surfaces were previously reported to activate

cellular invasion [11, 33, 34]. During invasion, MMP expression and activity is increased to

degrade collagens [41–44], which was also seen in our study. A hydrogel surface solely consist-

ing of isolated collagen, such as collagen I, is likely to be more impacted by the degradation

compared to an ECM protein cocktail-based hydrogel, like Matrigel, when faced with invasive,

MMP-expressing trophoblasts [41–44]. Therefore, the lack of spheroid structures on collagen I

at day 21 may be attributed to higher degrees of surface degradation over time, enabling cells

to contact the coverslip and return to confluent growth, whereas Matrigel remained more

robust as a scaffold due to a more diverse ECM composition. However, supplementary studies

characterizing the ECM protein composition, and actual changes to integrity and surface

topography of these surfaces during and after trophoblast invasion are required to verify these

speculations.

While hydrogel surface-induced placental cell aggregation was previously reported by a

small number of other studies [11–13, 15], our study provides a more precise definition of the

surface-casting parameters (e.g., surface thickness and stiffness). Our data suggests that a criti-

cal surface thickness is required for spheroid formation, and variations in thickness can regu-

late spheroid phenotype. Kliman and Feinberg (14) cultured primary trophoblasts and JEG3

cells on a gradual slope of Matrigel (thicknesses reported between 0–60 μm), and elegantly
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demonstrated variations in cell morphology across the thicknesses [14]. Although they did not

report spheroid formation due to the short duration of their study (24–72 hours), they did see

rounded and individually-seeded cells when cultured on 14–60 μm-thick Matrigel, which

resembled a pre-spheroid state. Interestingly, their placental cells eventually entirely degraded

thinner coats of Matrigel to resume growth on the underlying glass coverslip [14]. This pro-

vides a plausible explanation for why the distinct strand-like cellular formations seen in BeWo

cells cultured on thin Matrigel at day 1 were not maintained over time. The thickness-depen-

dent changes seen throughout our study also propose that the cells can grade their behaviour

based on sensing the actual thickness of the surface, or perhaps by sensing another property

directly affected by thickness, such as stiffness. Indeed, crosslinking poly(ethylene) glycol net-

works within Matrigel to increase gel stiffness was demonstrated to alter the invasion and dis-

persion behaviours of mammary organoids and mesenchymal stem cells [17, 45]. Others have

also consistently reported increased invasive activity on ECM surfaces in vitro in various cell

types [39, 46–48]. We tested this hypothesis in our model through mechanical testing to show

that ECM thickness was inversely correlated with stiffness. Moreover, the quantitative reduc-

tion in cell spreading correlates with reduction in matrix stiffness and suggests that trophoblast

cells possess the ability to sense the ECM thickness via stiffness-sensing and invasion mecha-

nisms. This was similarly seen in the work of Mullen et al. (2015) in osteogenic cells [16]. Inter-

estingly, even in the absence of a traditional stimulus for invasion (i.e., nutrient or oxygen

gradient), small, but significant, increases in ITGA1, ITGA5, MMP2, and TIMP1 mRNA levels

were detected in BeWo cells cultured on both thin and thick Matrigel, likewise demonstrating

that the presence of ECM is sufficient to induce expression of some underlying genes. It is

understood that the integrin subunits αv, α5, α1 and/or β3 link to the actin cytoskeleton

through focal adhesion kinase anchoring points, regulating MMP expression and subsequent

cellular invasion via a cellular mechano-sensing pathway [49–53]. However, though capable of

invasion, BeWo cells traditionally display a less invasive phenotype [54], which may explain in

part why we did not observe robust changes across all the genes (e.g., ITGAV, ITGB3, MMP9,

and TIMP2). Additional studies should investigate the effects of a stronger stimulus for inva-

sion (i.e., nutrient or oxygen gradient) on actual spheroid invasion and whether additional

invasion/migration genes (ITGAV, ITGB3, MMP9, TIMP2, etc.) may also change.

Spheroid formation also coincided with thickness-dependent increases in expression of sev-

eral syncytialization-related genes, GCM1, PL, CGB, and its secreted protein product, hCGβ.

While human CG is produced by several placental cell types, its main source is from syncytio-

trophoblasts–the fusogenic, non-proliferative, terminally-differentiated, endocrine cells [55].

In effect, increased CG expression in our trophoblast spheroids acts as a biochemical marker

of syncytiotrophoblast differentiation and fusion [32, 56], thereby, providing semi-quantitative

support for the increased syncytial fusion seen in immunofluorescent images of thick Matri-

gel-derived spheroids. Interestingly, these increases coincided with minimally-changed

ERVWE1 and decreased ERVFRD1 mRNA levels. While the syncytins have been demonstrated

to play a role in syncytial fusion, the timing of their expression and functional involvement

remain unclear [57]. For example, Syncytin-B knock-out mice (analogous to ERVFRD1/syncy-

tin-2 in humans) resulted in abnormal placentation, but the placentas still exhibited some syn-

cytialization and the offspring were viable, suggesting compensatory mechanisms or the

existence of alternative fusogenic proteins [58]. Taken together, our data suggest that the

Matrigel ECM potentiates modest syncytial fusion, even in the absence of fusogenic agents

such as forskolin, but future studies are required to further profile and characterize the intri-

cate gene expression patterns underlying these changes. This increased differentiation and

syncytialization achieved further validates the importance of the ECM conditions in modelling

placentation and emphasizes the benefits of spheroid formation in trophoblast cultures.
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Conclusion

As the sophistication of in vitro research grows through the incorporation of ECM biomateri-

als, so does the necessity to better characterize the biological response of cells involved. Bearing

in mind the collective implications on cellular organization, behaviour, and differentiation-

related gene and protein expression profiles, our findings emphasize the importance of charac-

terizing the ECM surface parameters used in spheroid/organoid-based assays and cultures.

The generation of self-assembling spheroid cultures through regulation of ECM surface type

and thickness also contributes to a deeper understanding of cell-ECM interactions. In consid-

eration of the increased usage of 3D bioprinting and microfluidic “placenta-on-a-chip” devices

within the last several years [5, 59–61], a proper understanding and integration of ECM bio-

materials will be a crucial step towards generating more in vivo-like models.

Supporting information

S1 Fig. Analysis of ECM surface properties. (A) Schematic representing thin and thick ECM

surface samples. (B) Representative images of ECM surfaces as captured by MicroSquisher

camera. (C) Measurements of actual thicknesses of ECM surface based on theoretical calcula-

tions for 50 and 250 μm. (D) Measurements of ECM surface stiffness based on surface thick-

ness. Significant differences between means indicated by ��� (p<0.001), as determined by

unpaired t-Test; n = 3.
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