
Frontiers in Immunology | www.frontiersin.

Edited by:
Huanfa Yi,

Jilin University, China

Reviewed by:
Kawaljit Kaur,

University of California, Los Angeles,
United States
Yuzhu Hou,

University of Chicago, United States

*Correspondence:
Yuxia Wang

lily31415926@126.com

Specialty section:
This article was submitted to

Cancer Immunity
and Immunotherapy,

a section of the journal
Frontiers in Immunology

Received: 30 September 2020
Accepted: 06 November 2020
Published: 25 January 2021

Citation:
Wang Y (2021) Advances in

Hypofractionated Irradiation-Induced
Immunosuppression of Tumor

Microenvironment.
Front. Immunol. 11:612072.

doi: 10.3389/fimmu.2020.612072

REVIEW
published: 25 January 2021

doi: 10.3389/fimmu.2020.612072
Advances in Hypofractionated
Irradiation-Induced
Immunosuppression of Tumor
Microenvironment
Yuxia Wang*

Department of Radiation Oncology, Peking University Third Hospital, Beijing, China

Hypofractionated radiotherapy is external beam irradiation delivered at higher doses in
fewer fractions than conventional standard radiotherapy, which can stimulate innate and
adaptive immunity to enhance the body’s immune response against cancer. The
enhancement effect of hypofractionated irradiation to immune response has been
widely investigated, which is considered an approach to expand the benefit of
immunotherapy. Meanwhile, increasing evidence suggests that hypofractionated
irradiation may induce or enhance the suppression of immune microenvironments.
However , the suppress ive e ffec ts o f hypof rac t ionated i r rad ia t ion on
immunomicroenvironment and the molecular mechanisms involved in these conditions
are largely unknown. In this context, we summarized the immune mechanisms associated
with hypofractionated irradiation, highlighted the advances in its immunosuppressive
effect, and further discussed the potential mechanism behind this effect. In our opinion,
besides its immunogenic activity, hypofractionated irradiation also triggers homeostatic
immunosuppressive mechanisms that may counterbalance antitumor effects. And this
may suggest that a combination with immunotherapy could possibly improve the curative
potential of hypofractionated radiotherapy.
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INTRODUCTION

Radiation therapy (RT) is the mainstay of treatment in cancers, and up to 50% of cancer patients
receive radiotherapy to improve local control, survival, or quality of life (1). Conventional
fractionated radiotherapy usually delivers in small fractions (1.8–2.0Gy per fraction) over a
number of weeks, while hypofractionated radiotherapy delivers higher dose (3–20Gy) in fewer
fractions (2, 3). Emerging evidence suggests that hypofractionated radiotherapy—clinically called
stereotactic body radiotherapy (SBRT) or radiosurgery (SRS)—may elicit a pronounced anti-tumor
effect (4, 5). In addition to directly killing tumor cells, hypofractionated irradiation can induce
tumor cells death via antitumor immunity (6) and vascular damage (7). There are two types of RT-
induced nontargeted effects: (1) the bystander effect, which describes the additional regression of
nonirradiated surrounding tumor sites after local radiation therapy (8, 9), and (2) the abscopal
effect, which describes the tumor regression of distant unirradiated tumor site (10, 11). Preliminary
org January 2021 | Volume 11 | Article 6120721

https://www.frontiersin.org/articles/10.3389/fimmu.2020.612072/full
https://www.frontiersin.org/articles/10.3389/fimmu.2020.612072/full
https://www.frontiersin.org/articles/10.3389/fimmu.2020.612072/full
https://www.frontiersin.org/articles/10.3389/fimmu.2020.612072/full
https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles
http://creativecommons.org/licenses/by/4.0/
mailto:lily31415926@126.com
https://doi.org/10.3389/fimmu.2020.612072
https://www.frontiersin.org/journals/immunology#editorial-board
https://www.frontiersin.org/journals/immunology#editorial-board
https://doi.org/10.3389/fimmu.2020.612072
https://www.frontiersin.org/journals/immunology
http://crossmark.crossref.org/dialog/?doi=10.3389/fimmu.2020.612072&domain=pdf&date_stamp=2021-01-25


Wang Hypofractionated Irradiation-Induced Immunosuppression of TME
studies suggest that radiation-induced immune responses are
probably dose-dependent (12, 13). Substantial work has
demonstrated that the nontargeted effects are attributed to the
interaction between tumor irradiation and the host immune
system (14, 15).

The tumor microenvironment (TME) is the stroma
surrounding cancer cells that modulates the progression of
cancer (16, 17). The TME consists of immune cells, tumor
blood vessels, fibroblasts, and epithelial cells (18–21). Immune
cells—such as tumor-associated macrophages (TAMs), tumor-
associated neutrophils (TANs), myeloid-derived suppressor cells
(MDSCs), mast cells, and natural killer (NK) cells—can produce
a variety of factors (chemokines, cytokines, and enzymes) that
directly or indirectly act as initiator or coordinator of the cellular
immune responses to irradiation. Among all the stromal cells
present in the TME, cancer-associated fibroblasts (CAFs) are one
of the most abundant components of the tumor mesenchyme,
which play a key role in promoting or retarding tumorigenesis in
a context-dependent manner (22). In addition, radiotherapy may
induce vascular damages or stimulate angiogenesis according to
different regimens (23).

A large number of studies have shown that hypofractionated
radiotherapy exerts a stimulating effect on the anti-tumor
immune responses by inducing tumor cell death, normalizing
aberrant tumor vasculature, releasing tumor associated antigens
(TAAs) and inflammatory cytokines (24, 25). However, pre-
clinical studies in some tumor models have suggested that
radiotherapy-induced changes in the TME may induce an
immunosuppressive TME, which may promote tumor invasion
and spread in some situations (26, 27).

In this review, we summarized the immune mechanisms
associated with hypofractionated radiotherapy, highlighted the
advances in its immunosuppressive effect, and further discussed
the potential mechanism behind this effect.
HYPOFRACTIONATED IRRADIATION
INFLUENCES IMMUNOLOGICAL
RESPONSES

Higher physical or biologic dose is associated with better local
control and with better survival in some cases (28–30). In clinical
practice, a typical example of hypofractionated radiotherapy is
stereotactic body radiation, which delivers one to five fractions of
doses above 6Gy per fraction to small target volumes (31). SBRT
achieved high local control in the treatment of many cancers,
such as early lung cancer, brain metastases, spinal metastases,
and so on. The excellent efficacy of SBRTmainly attributed to the
precisely delivered high dose to tumor site and the minimized
dose to adjacent normal tissue. Besides this, SBRT can induce
tumor cell death and tumor size reduction in non-radiotherapy
sites, named bystander effect and abscopal effect (8–11).

The radiobiological mechanisms of hypofractionated
radiotherapy are largely different from that of conventional
radiotherapy. The reoxygenation, repopulation, repair, and
redistribution (4Rs) are important components in the response of
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tumor to conventional fractionated radiotherapy (32, 33), and
tumor cells are killed directly through irreparable DNA double-
strand breaks in the forms of mitotic catastrophe and cellular
apoptosis (34). Low-dose irradiation induces DNA damage and
initiate apoptosis by activation of p53-dependent mechanisms,
upregulating plasma membrane death receptor, and activation of
the pro-apoptotic SAPK/JNK pathway (35, 36). However, in the
setting of high dose irradiation, tumor cells may be eliminated in
the form of necrosis (32). Necrosis is considered an immunogenic
pathway and often accompanied by the release of pro-inflammatory
cytokines and damage-associated molecular patterns, which
promote tumor cell killing by anti-tumor T cell response (37).

Hypofractionated radiotherapy may change the tumor
cell phenotype and the tumor microenvironment. After
hypofractionated irradiation, tumor cells demonstrate increased
cell-surface expression of immunogenic molecules, such as
adhesion molecules, death receptors, stress-induced ligands, heat
shock proteins, and stimulatory molecules (such as MHC-I and
CD80) (38, 39). These immunophenotype changes make human
tumors more amenable to be recognized by immune system and
more sensitive to T cell-mediated cytotoxicity (40). Additionally,
pro-inflammatory molecules and danger signals increase in the
tumor microenvironment (41–43). Immune cells, such as CD8+ T
cells and dendritic cells, are activated and recruited into the tumor
and play an important role in anti-cancer immunity (44).
TME PLAYS A CENTRAL ROLE IN
RESPONSE TO RADIOTHERAPY

The tumor microenvironment is the internal environment which
tumors depend on survival and development. TME is associated
with tumor growth, progression, and metastasis (16, 17). Cancer
is an extremely complex and heterogeneous disease. Cancer cells
present distinct features and various mutations, which is an
important clinical determinant of patient outcomes. Dynamic
changes occurring in the TME cause tumor cell variants
selection, which may promote the complexity of cancer
heterogeneity and impact the response to different treatment
strategies (45, 46).

The TME consists of tumor stroma cells, immune cells, and a
variety of factors produced by these cells (chemokines, cytokines,
and enzymes) (47–49). Tumor stroma cells include cancer-
associated fibroblasts, epithelial cells (ECs), and mesenchymal
stromal cells (MSCs). CAFs are the most abundant cells in TME
and play an important role in angiogenesis and tumor growth after
irradiation (22). The damage of ECs has been shown to be a major
factor in the biological mechanism in response to SBRT (50, 51).
Cells of the immune system include tumor-associatedmacrophages,
tumor-associated neutrophils, myeloid-derived suppressor cells,
natural killer cells (NKs), T cells, B cells, dendritic cells (DCs), and
mast cells. These cells significantly differ in radiosensitivity. In
general, NKs and B lymphocytes are the most radiosensitive
immune cells, while DCs, CAFs, and ECs are more radioresistant
cells (27). Among the immune cells, regulatory T cells (Tregs) are
more radioresistant than any other kinds of T cells (such as CD8+ T
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cells) and B cells (27). As a result, the response of TME after
irradiation varies according to the dose and fractionation schedule,
which causes different outcomes in different cell types in TME.

Radiotherapy is a double-edged sword that can activate or
suppress the immune response of TME under different
conditions. The “hot” TME refers to a “inflamed” phenotype with
highly infiltration of T cell lymphocytes (52, 53). Typical features
for a hot TME include high number of effector cells (NK cells,
CD8+ T cells, and Th1 cells) and functional antigen-presenting cells
(APCs), and TAMs with the M1 phenotype. On the contrary, the
“cold” TME refers to a “noninflamed” phenotype lack of T cell
lymphocytes infiltration (52, 53). Characteristics of a cold TME
include high numbers of Treg cells and MDSCs, lack of effector
cells, and enrichment of immunosuppressive cytokines (47, 54).
Activated NK cells and CD8+ T cells can eliminate tumor cells,
while immunosuppressive TME is associated with enhanced
metastasis and poor prognosis in patients (55, 56). Currently, it is
not fully understood what dose and fractional radiotherapy induces
the immune activated TME, and what dose and fractional
radiotherapy causes the immunosuppressive TME.
HYPOFRACTIONATED IRRADIATION
INDUCES ANTI-TUMOR IMMUNE
RESPONSES

Emerging evidence demonstrates that hypofractionated
radiotherapy can induce a pronounced anti-tumor effect ((57–
62), Figure 1). The immunoreactive effect of radiation therapy is
dose-dependent, and preclinical studies revealed that more than
8–10Gy per fraction are more effective in enhancing the anti-
Frontiers in Immunology | www.frontiersin.org 3
tumor immune response (63). In addition to the direct killing
effects, hypofractionated radiotherapy can induce immunogenic
death of tumor cells and orchestrate a spectrum of cellular and
molecular alterations in the anti-tumor immune response (64).

After high-dose irradiation, cellular and DNA damage facilitate
the generation and release of tumor-associated antigens, while
necrosis or apoptosis cancer cells can generate pro-inflammatory
“danger” signals and damage associated molecular patterns
(DAMPs) (24, 62, 65). DAMPs and “danger” molecules stimulate
dendritic cells via toll-like receptors (TLRs), and facilitate the uptake
of TAAs and their presentation on major histocompatibility
complex class 1 (MHC-1) to activate the tumor-specific cytotoxic
T lymphocytes (24, 66). Dendritic cells are the major antigen-
presenting cell that can process antigenic materials and present
TAAs to CD8+ T cells (57, 65–67). Many preclinical studies have
demonstrated that hypofractionated irradiation can increase
presentation of TAAs to CD8+ T cells and enhance the
antitumor T-cell-mediated immune response (68).

Irradiation also increases MHC-I expression by tumor cells,
which presents TAAs to specific cytotoxic T cells, leading to the
lysis of tumor cells (69). Garnett et al. (70) reported that, when
irradiated by a single dose of 10–20Gy, colon and lung cell lines
up-regulated the expression of MHC-I, while all of 4 prostate
cancer cell lines did not. These results may suggest that the
antitumor immunity response induced by hypofractionated
radiotherapy differs among different cancer types.

In addition, radiation therapy exerts an immunostimulating
activity by increasing NK cell cytotoxicity, facilitating the
infiltration and accumulation of CD8+ T cells and tumor-
associated M1 macrophages (inhibiting tumor growth),
reducing the infiltration of Tregs (71), enhancing the
FIGURE 1 | Immune-suppressor effects and immune-stimulatory effects of radiotherapy on tumor microenvironment. Radiotherapy, especially hypofractionated
irradiation, contributes to the induction of anti-tumor immune responses, which promote tumor control. Besides the immune-suppressor effects, radiotherapy also induces
immunosuppression of TME, resulting in tumor progression and recurrence. The high infiltration of T cell lymphocytes in TME, known as immune hot or inflamed
phenotype, is characterized by high number of effector cells (NK cells, CD8+ T cells, and Th1 cells) and functional antigen-presenting cells (APCs), and TAMs with the M1
phenotype. On the contrary, the lack of T cell lymphocytes infiltration in TME, known as immune cold or noninflamed phenotype, is characterized by high numbers of
Treg cells and MDSCs, lack of effector cells, and enrichment of immunosuppressive cytokines. However, it is not fully understood what dose and fractional radiotherapy
induces the immune activated TME, and what dose and fractional radiotherapy causes the immunosuppressive TME. Combination therapy targeting TME may help to
improve the therapeutic benefit of radiotherapy. TME tumor microenvironment, Tregs regulatory T lymphocytes, MDSCs myeloid-derived suppressor cells, M2-TAMs
tumor-associated M2 macrophages, NK cells natural killer cells, APCs antigen-presenting cells, M1-TAMs tumor-associated M1 macrophages.
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expression of Fas and IFN-g, and inhibiting the PD-1/PD-L1
pathway (24, 27).

Clinical evidences of the effect of radiation on TME include
bystander effect and abscopal effect, in which local irradiation
can induce regression in non-irradiated tumor or metastasis.
Clinical reports of bystander or abscopal effects induced by
radiation alone are relatively rare, and these phenomena are
mainly observed in relatively high-dose radiotherapy (10). Tubin
et al. (8, 9, 72, 73) conducted a series studies to explore the by
stander and abscopal effects in unresectable stage IIIB/IV bulky
non-small cell lung cancer (NSCLC), which were inoperable or
unsuitable for radical radio-chemotherapy. They delivered 1–3
fractions each of 10–12Gy to 30% of the bulky tumor. As a result,
they observed that the bystander and abscopal effects induced by
partial irradiation were 95% and 45% (8), respectively.
Furthermore, partial irradiation improved survival and tumor
control compared to the standard of care. The researchers
speculate that the induction of the bystander and abscopal
effect are attribute to the irradiation to the hypoxic clonogenic
cells and the sparing of peritumoral immune microenvironment
and regional circulating lymphocytes. These results imply that
irradiating a partial tumor may be enough to initiate
immune modulation.
HYPOFRACTIONATED IRRADIATION
INDUCES IMMUNOSUPPRESSIVE TME

Preclinical studies have suggested that irradiation-induced
changes in tumor microenvironment may favor tumor growth,
promoting tumor invasion and metastasis ((74, 75), Figure 1).
This issue must be taken seriously, because suppression of the
immune microenvironment not only leads to worse prognosis,
but it may also be a legitimate therapeutic target.

Radiotherapy could eliminate radiosensitive immune cells,
while radioresistant immune cells survive from it, thereby
changing the proportion of immune cells in TME and causing
suppression of the immune microenvironment. In the immune
system, NK cells are the most radiosensitive immune cells (25,
76). On the contrary, immunosuppressive Tregs and MDSCs are
more radioresistant than other population of T cells (27, 77).
Kachikwu et al. (78) evaluated the impact of 0, 10, or 20Gy
irradiation on Treg cells in murine model of prostate cancer.
They found that Treg cells are more resistant to radiation than
other lymphocytes, resulting in their preferential increase. In
addition, Shi et al. (79) demonstrated that local irradiation with
10, 20, or 30Gy in cervical cancer patients significantly decreases
CD8+ T cells, while having no effects on Tregs. Similarly, the
MDSCs have been shown to accumulate in TME and suppress
the activation of CD4+ and CD8+ T-cells (80, 81). Therefore,
after certain doses and fractionated irradiation, NK cells and
CD8+ T cells with anti-tumor effects are eliminated, while Treg
cells and MDSCs with immunosuppressive effects are left.
Changes in the types and numbers of immune cells result in
the TME transformation from sensitive to resistant for response
to radiotherapy (27).
Frontiers in Immunology | www.frontiersin.org 4
High dose irradiation induces tumor vascular damage, which
limits the infiltration of cytotoxic T lymphocytes into the tumor
and increases the area of hypoxia (82, 83), leading to the
resistance to radiotherapy (84, 85). Tumor blood vessels are
more permeable and morphologically immature, and they are
more sensitive to radiation (86). Vascular destruction is mainly
observed at dose greater than 5 to 10Gy (27, 87), which
drastically reduces the blood flow and induces hypoxia.
Sonveaux et al. (88) reported that irradiation by a 6Gy dose
up-regulates the expression and activity of endothelial nitric
oxide synthase (eNOS). This activates the nitric oxide (NO)
pathway in ECs and generates tumor angiogenesis. The process
of vasculogenesis leads to the recruitment of radioresistant
suppressor cells, including MDSCs, Tregs, and TAMs with the
M2 phenotype (87, 89).

CAFs are the most abundant cells in the tumor stroma and
play an important role in tumor angiogenesis, growth, and
metastasis (90–94). CAFS are radioresistant, being able to
survive at doses of up to 50Gy (95–97). CAFs can stimulate
the recruitment of cells, which promotes tumor blood vessel
formation and facilitates tumor recurrence (98, 99). The CAFs
also secrete enzymes such as matrix metalloproteinases, which
degrade the extracellular matrix, promote the migration of
CAFS, and facilitate the invasion of tumor cells (90, 100).
Furthermore, in vitro studies have demonstrated that a dose
>10Gy to fibroblasts induces an irreversible senescent phenotype.
Metabolically activated CAFs release growth factors, proteolytic
enzymes, and cytokines, inducing an environment that promotes
tumor growth and spread (82, 96, 101–103). However, the cancer
promoting effects of senescent fibroblasts may depend on the
dose and fraction of radiotherapy and vary in different tumor
types (104).

Understanding the immunosuppressive effects of
hypofractionated radiotherapy on the TME may help to explore
new treatment strategies to block the immunosuppressive
responses of radiotherapy and augment the antitumor effects
(105). Previous studies suggested that both enhancing the
function of tumor suppressor cells and inhibiting the function
of tumor promoting cells could improve the therapeutic
efficiency of radiotherapy (106–109). For example, the
combination of radiotherapy and immunotherapy may prevent
early exhaustion of anti-tumor immunity by boosting the
activation of NK cells and cytotoxic T lymphocytes (106, 107).
Moreover, inhibiting the immunosuppressive cells like Tregs,
MDSCs, and TAMs can induce durable anti-tumor immunity
and prevent tumor progression. A previous study by Xu et al.
(108) showed that inhibition of macrophage colony-stimulating
factor CSF-1 could reduce the recruitment of both TAMs and
MDSCs, thereby suppressing tumor growth more effectively than
irradiation alone. Furthermore, vascular-targeted agents
are demonstrated to alter the tumor microenvironment to
increase the radiosensitivity of tumor (110). Targeting the tumor
immune microenvironment is an interesting strategy to enhance
the efficacy of radiotherapy, and much remains to be
investigated before realizing its potential therapeutic
effects clinically.
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DISCUSSION

Recent technological advances in external beam radiotherapy have
allowed larger doses per fraction delivered to tumor, while
minimizing doses to normal tissues adjacent. However, despite
the increasing effectiveness of hypofractionated radiotherapy, we
still can’t completely avoid tumor recurrence and progression. A
large number of studies have shown that hypofractionated
radiotherapy can induce immune-activated TME and improve
treatment efficacy. However, increasing studies have suggested
that hypofractionated radiotherapy can promote immune-
suppressive TME and play a significant role in radioresistance
and tumor recurrence. There is a delicate balance between TME
suppression and activation triggered by hypofractionated
Frontiers in Immunology | www.frontiersin.org 5
irradiation. We still don’t know which doses and fractionation
schedule activate the anti-tumor immune response and which
induce the immune suppression. Moreover, different sites and
types of tumors may respond differently to the same dose and
fractionated irradiation. More knowledge is needed to optimize the
radiotherapy strategy. Understanding the immune effects of
hypofractionated radiotherapy on the TME may help to improve
therapeutic benefit and explore new combination therapy strategies.
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