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Abstract
The Aviv fluorescence detection system (Aviv-FDS) has allowed the performance of sedimentation velocity experiments on 
therapeutic antibodies in highly concentrated environments like formulation buffers and serum. Methods were implemented in 
the software package SEDANAL for the analysis of nonideal, weakly associating AUC data acquired on therapeutic antibod-
ies and proteins (Wright et al. Eur Biophys J 47:709–722, 2018, Anal Biochem 550:72–83, 2018). This involved fitting both 
hydrodynamic, ks, and thermodynamic,  BM1, nonideality where concentration dependence is expressed as s = so/(1 + ksc) and 
D = Do(1 + 2BM1c)/(1 + ksc) and so and Do are values extrapolated to c = 0 (mg/ml). To gain insight into the consequences 
of these phenomenological parameters, we performed simulations with SEDANAL of a monoclonal antibody as a function 
of ks (0–100 ml/g) and  BM1 (0–100 ml/g). This provides a visual understanding of the separate and joint impact of ks and 
 BM1 on the shape of high-concentration sedimentation velocity boundaries and the challenge of their unique determination 
by finite element methods. In addition, mAbs undergo weak self- and hetero-association (Yang et al. Prot Sci 27:1334–1348, 
2018) and thus we have simulated examples of nonideal weak association over a wide range of concentrations (1–120 mg/
ml). Here we demonstrate these data are best analyzed by direct boundary global fitting to models that account for ks,  BM1 
and weak association. Because a typical clinical dose of mAb is 50–200 mg/ml, these results have relevance for biophysical 
understanding of concentrated therapeutic proteins.

Keywords 2nd Virial coefficient · Diffusion · Hydrodynamic nonideality · Sedimentation velocity · Thermodynamic 
nonideality

Introduction

There is great interest in the biotechnology field in studying 
high concentration therapeutic monoclonal antibody (mAb) 
solutions. Monoclonal antibodies are typically administered 
by IV or subcutaneous (SC) injection at high concentrations 
(Rituxan: 10 mg/ml; Avastin: 25 mg/ml; Simponi: 100 mg/
ml; Humira: 100 mg/ml; Herceptin: 150 mg/ml; Xolair: 
150 mg/ml). This requires that mAbs be highly soluble and 
stable under formulation conditions. Analytical Ultracentrif-
ugation (AUC) sedimentation velocity (SV) is highly appro-
priate for studying mAbs because it can reveal the presence 
of unfolding, dissociation, aggregation and undesirable 
reversible association over a wide range of concentrations 
(Berkowitz 2006; Philo 2009; Liu et al. 2005). To address 
the needs of therapeutic protein development, experiments 
at high concentration and in complex solution environments 
are required (Shire et al. 2004; Liu et al. 2015). The fluores-
cence detection system (FDS) developed by Tom Laue and 
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colleagues (MacGregor et al. 2004; Kroe and Laue 2009; 
Kingsbury and Laue 2011) and, until recently, available 
from Aviv, is an extremely useful technique for studying 
high concentrations and heterogeneous systems like serum. 
FDS experiments with mAbs in serum can reveal unusual 
interactions that do not occur in typical formulation buffer 
conditions (Demeule et al. 2009). Nonideality is represented 
by the following phenomenological equations for sedimenta-
tion and diffusion (Fujita 1962).

In these equation so and Do are values extrapolated to 
zero protein concentration, c is concentration in mg/ml, ks is 
hydrodynamic nonideality and  BM1 is thermodynamic non-
ideality (the 2nd virial coefficient B times molecular weight), 
both expressed as ml/mg to match the units of concentration. 
The antibody field has used orthogonal techniques like static 
light scattering (SLS) to measure a second virial coefficient, 
 BM1, and DLS to measure concentration dependence of dif-
fusion, kD. This is typically summarized as kD = BM1 − ks 
(Harding and Johnson 1985) suggesting concentration 
dependence of diffusion involves both a hydrodynamic and 
thermodynamic component. Many studies combined light 
scattering, AUC and DLS to investigate the behavior of anti-
body solutions, emphasizing the complementary informa-
tion gathered on nonideality and, where present, association 
(Solovyova et al. 2001; Saluja et al. 2010; Yadav et al. 2011a, 
b). The goal in part is to survey formulation conditions for 
the presence of aggregation (Saluja et al. 2010), the avoid-
ance of high viscosity (Yadav et al. 2012), or conditions 
that favor crystallization (Solovyova et al. 2001). The dis-
cussion often focuses on the algebra, do ks + kD equal  BM1, 
and the problems with subtracting small values,  BM1 − ks, 
that nearly cancel. This algebraic expression shown above is 
valid only in the absence of association. Thus, if ks, kD and 
 BM1 are negative, a nonideal association model should be 
implemented, such that the nonideality and the association 
contributions can be accounted for separately. This is gen-
erally not feasible by DLS and/or not implemented by SLS 
methods. The analysis of weak, nonideal association and 
the extraction of both nonideality and association constants 
by AUC methods is challenging; it cannot be done with dis-
tribution analysis (Rowe 2011; Wright et al. 2018a). On the 
other hand, rigorous analysis requires nonlinear least squares 
(NLLS) global fitting of AUC SV data sets to an explicit 
model that includes both nonideality (ks and  BM1) and asso-
ciation. This approach is feasible in SEDANAL because of 
the ModelEditor feature that allows one to construct any 
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number of simple or complex nonideal associating fitting 
models (Stafford and Sherwood 2004; Correia and Stafford 
2015; Sherwood and Stafford 2016).

Here we present a series of simulations of the impact 
of ks and  BM1 on high concentration antibody solutions of 
the therapeutic IgG Simponi. We present this over a range 
of values (0–100 ml/g) individually, ks and  BM1 alone, and 
together, both ks and  BM1, to allow a basis set of features 
that reveal their impact on SV boundary shape. We then 
choose realistic ks and  BM1 values, and simulate a wide 
range of protein concentrations (1–120 mg/ml) that over-
lap Simponi’s SC therapeutic dose, 100 mg/ml, and dem-
onstrate the range of data feasible for experimental deter-
minations. Finally, in three recent studies, we showed that 
all mAb IgG’s weakly self-associate and hetero-associate 
with other classes of IgG (Wright et al. 2018a, b; Yang et al. 
2018). Thus, we present here simulations of nonideal, weak 
association to demonstrate the challenge of dissecting out 
basis sets for ks,  BM1 and association. This analysis has 
been possible with SEDANAL for a decade. The full power 
of the method required the implementation of features first 
described by Todd and Haschemeyer (1981), and this only 
recently was included in SEDANAL version 6.97 and above. 
These simulations provide graphical and conceptual insight 
for AUC users, and encourage the use of rigorous and robust 
global direct boundary fitting methods for nonideal, weakly 
associating systems.

Methods

Simulations were performed with SEDANAL, version 6.97 
or later, a software package developed to fit AUC data for 
complex, nonideal associating systems (Stafford and Sher-
wood 2004). The models simulated include ks (hydrody-
namic nonideality),  BM1 (thermodynamic nonideality), 
and weak self-association, represented here as dimeriza-
tion, K2. The mAb modeled is golimumab or Simponi, with 
a molecular weight of 146,909, an extrapolated so = 6.6 s, 
an experimentally measured buoyancy (1 − νρ) of 0.26623. 
Simulations in absorbance mode were done with no added 
noise. Since in silico absorbance or interference experiments 
are not limited by optical constraints, we adjusted the extinc-
tion coefficient for different path cells and present normal-
ized plots. Data were simulated with 1500 points, and output 
with 650 points between 5.9 and 7.2 cm to match typical 
absorbance experiments.

Simulations of FDS tracer mode were done by set-
ting the signal strength (extinction coefficient × quantum 
yield, referred to here as ε1) for monomer at 1 mg/ml to 
1000. To produce a constant signal in tracer mode each 
apparent extinction coefficient was calculated as 1000/co, 
where co is in mg/ml. For example, cell 2 is 5 mg/ml so 
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ε2 = 1000/5 = 200; cell 3 is 10 mg/ml so ε3 = 100; cell 9 is 
120 mg/ml so ε9 = 8.333. All FDS simulations have added 
Gaussian noise of 10 corresponding to 1% of signal. SEDA-
NAL global fitting of these data sets uses ~ 60–100 scans per 
data set, which amounts to up to 200,000 total data points, 
using the Levenberg–Marquardt algorithm to minimize 
standard deviation. Experimental in vitro or in serum opti-
cal constraints are addressed in the discussion.

Values of ks and  BM1 were varied over a wide range 
(0–100 ml/g) to investigate and display their impact on 
boundary shapes. Experimentally we have shown that Sim-
poni exhibits ks and  BM1 values of ~ 10 ml/g (Wright et al. 
2018b). (SEDANAL internally uses concentration units of 
mg/ml and thus ks and  2BM1 have units of ml/mg to make 
ksc or  2BM1c dimensionless (Eqs. 1 and 2). However, the 
field uses ml/g (Rowe 1977; Harding and Johnson 1985; 
Solovyova et al. 2001; Saluja et al. 2010; Yadav et al. 
2011a, b) and thus we plot data vs mg/ml, but report data 
in units of ml/g (Table 1). This avoids reporting numbers 
with lots of digits (0.010 ml/mg vs 10.0 ml/g).) Thus, we 
also separately constrained ks and  BM1 to 10 ml/g and 
varied total concentration from 1 to 120 mg/ml. Weak 
self- and hetero-association of therapeutic mAbs has been 
demonstrated (Wright et al. 2018a,b; Yang et al. 2018), 
and is assumed to be dimerization because of the small 
extent of reaction. The goal of these simulations was to 
present graphical basis sets that demonstrate the impact 
of ks and  BM1 on boundary shapes. Thus, simulations are 
initially presented over a wide range of values to give a 
picture of what nonideality looks like in an experimental 
setting. Simulations were also performed at fixed values of 
ks and  BM1 and as a function of concentration (1–120 mg/
ml) to mimic therapeutic samples and to establish what 
is required to extract experimental values of the param-
eters. We observed that all mAbs self-associate and hetero-
associate with other antibodies. To explore this, nonideal 

association (ks,  BM1, K2) simulations as a function of 
small K2 values are presented. In addition, all mAbs con-
tain small amounts of dimeric and trimeric aggregates, 
and these are included in the model to mimic realistic 
heterogeneity.

All ks and  BM1 values are provided as matrices, with 
elements, kij and BijMi, representing self- and cross-term 
interactions (Table S1 and S2; Correia and Stafford 2015; 
Wright et al. 2018a). This represents a family of phenom-
enological equations for each component that explicitly 
includes all species concentrations. For example, s1 (or 
sA) can be written

where c2 corresponds to dimer concentrations, c3 to trimer 
concentrations, and k12 and k13 are cross-term nonideality 
terms reflecting the effect of dimer and trimer concentra-
tions on monomer s1. Other species like reversible dimers 
or irreversible dimers and trimers have similar expressions 
(see Supplemental equations S1–S4). In addition, D1 (or DA) 
can be written

with similar expressions for dimers and trimers (Correia and 
Stafford 2015; Stafford 2016). Note we assume the cross 
terms kij and BijMj for dimers and trimers are the same as 
monomers on a weight scale; this is reasonable since experi-
mentally mAb aggregates have the same frictional ratio, f/fo 
(Philo 2003), but this is adjustable in the matrix if required. 
(See Supplemental Methods section for more details.)

SEDANAL simulates and fits SV data by the method 
of Claverie (1976) which uses finite-element solutions to 
the Lamm equation, the partial differential equation that 
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Table 1  SEDANAL analysis of high concentration FDS data

ABC model is a monomer-aggregated dimer-aggregated trimer model plus nonideality.  AA2BC model is the same model plus a reversible mono-
mer–dimer association. Values in parentheses correspond to fractional error determined by a bootstrap analysis and correspond to one standard 
deviation

Concentrations s ks ml/g BM1 ml/g rms

ABC Ks  BM1 model
 1–120 mg/ml 6.5994 (0.007%) 10.0 (0.025%) 9.99 (0.137%) 14.153
 1–40 mg/ml 6.5996 (0.008%) 10.00 (0.06%) 10.00 (0.458%) 14.145
 1–20 mg/ml 6.5997 (0.009%) 10.00 (0.10%) 10.04 (0.94%) 14.161

Concentrations s ks ml/g BM1 ml/g K2  M−1 rms

AA2BC ks  BM1 K2 model
 1–120 mg/ml 6.5989 (0.013%) 10.00 (0.08%) 10.06 (0.22%) 5008 (0.34%) 14.106
 1–40 mg/ml 6.5993 (0.019%) 9.99 (0.17%) 9.93 (0.67%) 4998 (0.38%) 14.116
 1–20 mg/ml 6.5991 (0.025%) 10.00 (0.25%) 9.993 (1.94%) 5006 (0.56%) 14.106
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describes simultaneous sedimentation and diffusion in a 
sector shaped cell (Todd and Haschemeyer 1981).

The si and Di terms are concentration-dependent and 
defined as above (Eqs. 3 and 4) to reflect nonideal behavior. 
If mAb samples are heterogeneous, paucidisperse systems 
and contain small amounts of dimeric or trimeric aggregates, 
simultaneous Lamm equations for the dimer and trimer are 
solved (Correia and Stafford 2015). Reversible association 
is included by adding a relationship that links dimer con-
centration to monomers through equilibrium or kinetic rate 
constants (Stafford and Sherwood 2004). Figure 1 presents 
an example of a SEDANAL fitter model for simulation. All 
antibody samples contain small amounts of irreversible 
dimer and trimer aggregates, set here to 10% and 5% weight 
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fraction. In addition, antibodies can undergo reversible non-
ideal association represented here as monomer–dimer  (AA2) 
plus ks and  BM1. Thus, in this model system,  AA2 refers to 
reversible dimer formation and BC or dimer aggregates and 
trimer aggregates refers to irreversible dimers and trimers.

High concentration solutions to the Lamm equation are 
intrinsically unstable, primarily due to numerical instabil-
ity in the base region of the cell (SEDANAL detects this 
as a “Check Grid” error). Todd and Haschemeyer (1981) 
were the first to develop curve-fitting methods using 
Claverie’s rapid numerical solutions to the Lamm equa-
tion; the Claverie method was for comparing simulations 
to real data (Claverie 1976). We constrained parameters 
to deal with this instability. The most significant of these 
are defined as ε (epsilon) and η (eta), where s/so = 1 − ε 
and D/Do = 1 − η (Eqs. 3 and 4). For realistic parameters, 
meaning ks and  BM1 equal and positive, D/Do < 2 (Figure 
S1A); other choices give less restrictive ranges (Figure 

Fig. 1  Screen shot of a SEDANAL AUC SV simulation of Simponi at 40  K  rpm, 10  mg/ml, with ks = 0.01  ml/mg,  BM1 = 0.01  ml/mg, and 
K2 = 5000 M−1, with 10% dimer and 5% trimer. Other details are visible in the figure
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S1B). These constraints are provided to the SEDANAL 
fitter to set the upper limit on D/Do. SEDANAL also 
allows concentrations at the base to be limited.

We restrict ks and  BM1 to positive values because neg-
ative values imply association, and therefore, nonideal 
associating systems are modeled by an explicit nonideal, 
association scheme (see Fig. 1). Otherwise, the magni-
tude of ks and  BM1 reflect the sum of multiple attractive 
and repulsive interactions and are difficult to interpret 
(Laue 2012; Wright et al. 2018b; Laue and Shire 2020). 
Sedimentation and diffusion coefficients vary across the 
cell due to nonideality and to local changes in concentra-
tion as the boundary components sediment and fractionate 
(Figure S2). This fractionation or boundary separation 
has been called demixing by Kingsbury and Laue (2011). 
This variation in the effect of nonideality is especially 
true in the base region, where concentrations can increase 
by two or more orders of magnitude, and calculations 
of concentration become numerically unstable. SEDA-
NAL has been upgraded to handle these effects (Todd and 
Haschemeyer 1981), and all the data simulated and fit in 
this study exhibited stable solutions.

Simulated data are analyzed by Wide Distribution 
Analysis (WDA) an option in SEDANAL, and plotted as 
s*g(s*) vs log(s*). This transformation follows from the 
definition of g(s*) = dc/ds; thus s*dc/ds* = dc/d(ln(s*)) 
(Stafford and Braswell 2004; Sherwood and Stafford 
2016). WDA was developed for multi-speed experiments 
but we have found it useful for rapid analysis of single-
speed runs as well. We plot data as normalized s*g(s*) vs 
log(s*) for convenient reading of the scale and for direct 
comparison of trends in the distributions. The WDA 
method allows all data scans to be included, with early 
scans providing information about large components (out 
to 1000 S in these simulations), and late scans providing 
information about small species. One can choose different 
radial positions to view sedimentation at different extents 
of resolution (Figure S3). A standard DCDT analysis 
(Stafford 1992) cannot mimic this degree of resolution 
because it is limited to a narrow span of data scans, in 
this case a region where the monomer boundary is near 
6.4–6.5 cm. Nonetheless,  DCDT+ analysis (Stafford 1992; 
Philo 2006) can be compared with s*g(s*) (Figure S4) 
to reveal the precision and advantages of both methods. 
 DCDT+ and WDA generate sw and integrated signal area 
under the curve from results extrapolated to the initial 
concentration, co (Kegeles and Gutter 1951; Patel et al. 
2018). Both methods are used to construct 1/sw vs c plots 
(Figs. 6 and 10) to explore the limitations of linear graphi-
cal analysis.

Results

Figure  2 shows a family of simulations performed at 
10 mg/ml and over the ks range 0–100 ml/g. This cor-
responds to a k11c1 range, ml/mg times mg/ml, of 0.01 to 
1.0 at co, or an initial sapp range of 6.6–3.3 s. Thus, the 
monomer boundary slows, and, since (1 + k11c1) is also in 
the denominator for D (Eq. 2), the monomer boundary is 
sharper. Note, the concentrations vary with radial posi-
tion and time in the simulation due to demixing and radial 
dilution, and thus the exact sapp correction is a function of 
radial position and time throughout the cell and involves 
contributions from monomer, dimer and trimer species, 
si = (1 + ki1c1 + ki2c2 + ki3c3) (Figure S2). The boundaries 
for dimer and trimer sediment in the plateau region of the 
monomer, and are thus dominated by the kij cross terms for 
the larger monomer concentration. Note that the aggregate 
peak widths do not change significantly because they are in 
the presence of a nearly constant concentration of mono-
mer. This is in contrast to the monomer boundary where 
low concentration on the centripetal side of the boundary 
speeds up sedimentation, and high concentration on the 
centrifugal side slows sedimentation leading to sharpen-
ing, increased concentration and a negative concentration 
gradient. This is the classic Johnston-Ogston (JO) effect 
(Johnston and Ogston 1946; Correia et al. 1976, 2016). 
Oddly enough, even at 10% dimer, the JO effect is evident 

Fig. 2  Simulation of ABC or monomer–dimer-trimer model, at 
10 mg/ml Simponi plus 10% dimer and 5% trimer irreversible aggre-
gates, where all kij values (self and cross term; Table S1) vary from 
0 to 100 ml/g. Data are plotted as normalized s*g(s*) vs s* on a log 
scale
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in the monomer boundary as it interacts with the dimer 
boundary (Figure S2). The JO effect is more pronounced 
at both high ks and high concentrations since it is due to 
a product, ksc.

Typical ks values for mAbs are 4–11  ml/g (Wright 
et al. 2018b; Yang et al. 2018). However, experimentally 
ks is known to increase dramatically for asymmetric pro-
teins (Creeth and Knight 1965). For example, fibrinogen is 
15.5 ml/g; TMV is 33.8 ml/g; myosin is 49–73 ml/g; col-
lagen is 265 ml/g. Pegylated proteins (Li et al. 2012) and 
IDPs like ELP (Correia et al. 2016) also have very large ks 
values. Thus, Fig. 2 demonstrates a wide range of expected 
behaviors for compact to moderately asymmetric proteins.

Figure 3 shows a family of simulations performed at 
10 mg/ml and over the  BM1 range 0–100 ml/g. Since  BM1 
only influences D, the boundary spreads, the peak posi-
tion drifts, but on average does not sediment differently 
(Sw = 7.12  s ± 0.019  s or 0.27%). This corresponds to a 
2B11M1c1 range, ml/mg times mg/ml, of 0.02–2.0 at co, or 
an initial D/Do range of 1–3 corresponding to the (1 + BijM-
jcj) term. Note the broadening of the monomer region and an 
equal degree of broadening of the dimer and trimer regions 
due to cross term nonideality. This will reduce the resolution 
of these minor peaks for single sample analysis. Also note 
this broadening in the monomer region makes the boundary 
appear more heterogeneous (see “Discussion”).

Both ks and  BM1 are caused by a combination of excluded 
volume, charge and shape effects (Tanford 1961; Rowe 
1977). As discussed above and in the literature, ks and  BM1 
have similar magnitudes, and thus this range of values is rea-
sonable in principle (Yadev et al. 2012; Wright et al. 2018b; 
Chaturvedi et al. 2019; Chaturvedi and Schuck 2019). To 

demonstrate this similarity we simulate 10 mg/ml Sim-
poni and vary both kij and BijMj equally from 0 to 100 ml/g 
(Fig. 4). This range of parameter values should impact s 
values in a manner similar to Fig. 2, but D values now have 
changes to both the numerator and denominator that off-
set each other (Eq. 4). In this case the ratio (1 + B11Mc1)/
(1 + k11c1) will vary from 1 to 1.5, but as described above 
the concentrations of all species vary with radial position 
and time in the run due to demixing and radial dilution, and 
thus the exact D/Do value is a function of radius and time 
throughout the cell (Eq. 4). This increase in D/Do causes the 
dimer and trimer regions to broaden and thus reduces the 
resolution of the dimer and trimer peaks. Note also that these 
data exhibit a JO effect at the monomer–dimer interface in a 
concentration-dependent manner according to the value of 
kij cross terms (Figure S2).

These first three sets of simulations (Figs. 2, 3 and 4) 
vary nonideality at a fixed protein concentration. Figure 5 
shows concentration-dependent simulations of Simponi from 
1 to 120 mg/ml plus 10% dimer and 5% trimer aggregates. 
(Figure S6A presents the  DCDT+ g(s*) vs s* version of this 
plot). Nonideality parameters, kij and BijMj, (self and cross 
term) are constrained to experimentally reasonable values 
of 10 ml/g (Wright et al. 2018a). The increase in hydro-
dynamic nonideality reduces sapp in a manner similar to 
Fig. 2. The ratio of thermodynamic to hydrodynamic terms 
(1 + 2BijMjc)/(1 + kijc) in the plateau region of the simula-
tions increases D/Do from 1.01 to 1.58. This is most evi-
dent in the dimer and trimer zones where discrete peaks are 
broadened and more difficult to resolve. As the protein sedi-
ments the concentration dramatically increases at the base 

Fig. 3  Simulation of ABC model, at 10  mg/ml Simponi plus 10% 
dimer and 5% trimer aggregates, where all BijMj values (self and 
cross term) vary from 0 to 100 ml/g. Data are plotted as normalized 
s*g(s*) vs s* on a log scale

Fig. 4  Simulation of ABC model, at 10  mg/ml Simponi plus 10% 
dimer and 5% trimer aggregates, where all kij and BijMj values (self 
and cross term) vary from 0 to 100 ml/g. Data are plotted as normal-
ized s*g(s*) vs s* on a log scale
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(Figure S5A), causing significant spreading or back diffusion 
in the base region of nonideal samples that precludes using 
radial values too close to the base for WDA (Figure S5B). 
(It is worth noting that filling a cell to only 6.1 or 6.2 cm 
reduces the usable radial range for analysis and may be prob-
lematic for these highly nonideal systems, especially in FDS 
experiments where the base is already cutoff optically.)

These simulations emphasize three features of highly, 
nonideal systems due to either large kij values or high con-
centrations. First, the boundary will be hyper-sharp during 

sedimentation, due to concentration dependence of sapp, 
and second, the base region will be very broad due to back 
diffusion into the plateau region caused by an increase in 
Dapp. This second feature is entirely due to thermodynamic 
nonideality and reduces the radial region of data that can 
be analyzed by typical software packages. Thirdly, minor 
aggregates typically found in mAb solutions will experience 
significant broadening making their determination challeng-
ing for single sample analysis. In more heterogeneous solu-
tions like serum, the high concentrations at the base cause 
density gradients that lead to banding of some lipoprotein 
species. (Analysis of serum samples by AUC FDS methods 
will be discussed in a future paper). It is worth noting that 
Figs. 4 and 5 look identical in normalized mode, but Fig. 5 is 
a concentration series, and thus the signal actually increases 
dramatically unless done in tracer mode (see below).

AUC data collected as a function of concentration are typ-
ically analyzed by linear plots of s vs c or 1/s vs c to extract 
ks. The first plot is based upon the equation s = so(1 − k′sc), 
a Taylor expansion of Eq. (1), while the second plot is the 
linear rearrangement of Eq. (1); 1/s = 1/so + (ks/so)*c. We 
have previously discussed the relationship between these 
two coefficients, ks and k′s (Wright et al. 2018b). A 1/sw vs c 
plot of the data in Fig. 5 is presented in Fig. 6 using sw of the 
full boundary, the WDA monomer peak positions or  DCDT+ 
sw of the monomer region. The data from WDA and  DCDT+ 
are plotted vs total concentrations or concentrations cor-
rected for radial dilutions (Patel et al. 2018). Matching the 
sw with the appropriate concentration is the challenge in the 
analysis of mixtures by a graphical method. The extrapolated 
so for monomers are reasonably close to the simulated value 
6.6 S. The ks values approach the expected value of 10 ml/g 
but cannot precisely capture the more dynamic nonideality 
effect of radial dilution and demixing of the species (see 
“Discussion”). A simulation of just monomers (0% dimers, 
trimers) gives better but also not perfect estimates of ks (data 
not shown). The sw data for the full boundary also approach 
the correct s0

w and ks values, but fail to capture the dynam-
ics of nonideality and demixing (Kegeles and Gutter 1951; 
Patel et al. 2018).

Choosing the appropriate concentration and sw seems to 
be the challenge in this linear analysis (Patel et al. 2018). To 
rigorously deal with sedimentation, radial dilution and spe-
cies demixing (Kingsbury and Laue 2011), the data should 
be globally fit to an appropriate model as a function of con-
centration and time using finite-element solutions to the 
Lamm equation. To demonstrate the need for global fitting, 
we simulated FDS tracer data for this same ks,  BM1 model 
over the concentration range of 1–120 mg/ml. A global 
SEDANAL fit of the data is presented in Fig. 7. The best 
fit returns s = 6.5994, ks = 10.0 ml/g and  BM1 = 9.99 ml/g 
with an rms = 14.153 which is the expected value for the 
added noise, 10, increased by the √2 for the ΔC method 

Fig. 5  Simulation of ABC model, at 1 to 120  mg/ml Simponi con-
centrations plus 10% dimer and 5% trimer aggregates. Nonideality 
parameters kij and BijMj values (self and cross term) are constrained to 
10 ml/g. Data are plotted as normalized s*g(s*) vs s* on a log scale

Fig. 6  1/s vs c plots of the data in Fig.  5 analyzed with  DCDT+ or 
WDA. The heavy dashed line represents monomer with an intercept 
at 6.6  s and ks = 10  ml/g. The heavy dot-dash line corresponds to a 
mixture of monomer–dimer-trimer with a so

w = 7.174 and ks = 10 ml/g
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used by SEDANAL. All the dimer and trimer weight ratios 
are correct within 1%. Our conclusion is that a full concen-
tration series, analyzed by global direct boundary fitting with 
a proper ks,  BM1 heterogeneous model is the most rigorous 
and accurate way to analyze high concentration AUC SV 
data. A bootstrap analysis of these data reveals very tight 
error bars as expected for simulated data (with 217,450 
points; Table 1), but the error bars for  BM1 are ~ 6 × larger 
than for ks. This is consistent with our experimental obser-
vation that  BM1 is much more difficult to measure than ks 
by SV analysis.

We observed that all mAbs exhibit weak self-association 
properties (Wright et al. 2018a, b; Yang et al. 2018). To 
include this in the analysis we have simulated a nonideal 
self-associating model at 10 mg/ml and increasing values 
of K2 (Fig. 8). At 10 mg/ml and no association (K2 = 0) the 
curve clearly exhibits nonideality relative to the known 

monomer s value. At 1000 M−1 the main peak is still slightly 
nonideal meaning the monomer peak runs at less than 6.6 s. 
The impact of this is that ks,app will be smaller than expected 
because it is masked by the association (Wright et al. 2018a; 
Yang et al. 2018). As K2 increases the main peak shifts to 
the right indicating association, although it is worth noting 
the boundary is still nonideal, but now the nonideality is 
partially masked by weak association.

To investigate this further we simulated a nonideal con-
centration series for all four K2 values (Fig. 9 presents data 
for K2 = 5000 M−1) and then plotted all the data as 1/sw vs 
c, corrected for radial dilution (Fig. 10). Up to ~ 10 mg/ml 
the data shifts to increasing s values, indicating association, 
and then shifts to lower s values reflecting an increasing 
effect of nonideality (Stafford 1980). For weak association, 
the linear portions of the curve give a reduced apparent ks 
value consistent with masking of nonideality by association 

Fig. 7  A global SEDANAL fit of nine FDS data sets to an ABC-ks-
BM1 model with 10% dimer and 5% trimer aggregates. Data were 
simulated with a tracer amount of labeled Simponi corresponding to 
1000 counts of monomer, and increasing amounts of unlabeled mAb. 

To produce a constant signal in tracer mode each apparent extinction 
coefficient is set to 1000/co where co is in mg/ml. In this in silico FDS 
tracer mode, extinction coefficient is held constant and concentration 
is fit
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(Wright et al. 2018a). Above 20 mg/ml nonideality becomes 
dominant, and with increasing K2 values, the slope and inter-
cept approach but do not equal ks and so values expected 
for the dimer. Nonideality and association are concentra-
tion-dependent and thus give different apparent answers at 
different concentrations. These results support the overlap-
ping impact of radial dilution and fractionation during sedi-
mentation on nonideality and association and the challenge 
of extracting these values by linear graphical methods. As 

stressed above, the rigorous analysis of these data requires 
NLLS global fitting to the primary SV data.

To demonstrate the requirement for NLLS fitting, we 
simulated FDS tracer data for this same ks,  BM1, K2 model 
over the concentration range of 1–120 mg/ml for a non-
ideal system with K2 = 5000 M−1 (Fig. 11). The best global 
fit of these data returns s = 6.5989, ks = 10.00 ml/g and 
 BM1 = 10.06 ml/g, K2 = 5008 M−1 and an rms = 14.106. 
The weight ratio of dimer and trimer aggregates are 
returned correctly to less than 1%. Bootstrap analysis 
reveals a 3 × larger uncertainty on  BM1 vs ks consistent 
with the observation above (Table 1; 184,340 points). The 
 BM1 and K2 data have a surprisingly small correlation 
coefficient (R = 0.34). Thus, we conclude that rigorous 
analysis of high concentration, nonideal, weak, associating 
systems requires global direct boundary fitting. At present 
only SEDANAL does global direct boundary analysis of 
AUC SV data to a nonideal associating model over this 
concentration range. There are other AUC approaches to 
analysis of high concentration SV data (Chaturvedi et al. 
2018, 2019; Chaturvedi and Schuck 2019) that use a non-
ideal version of the c(s) method cNI(s). These methods esti-
mate ks by a plot of sw versus concentration, a problematic 
approach as discussed above, and do not do global fitting. 
Combining sedimentation equilibrium analysis to indepen-
dently measure  BM1 is certainly a reasonable approach, 
but it is not as useful for heterogeneous solutions like 
serum (see “Discussion”). Examples of additional fitting 

Fig. 8  Simulation of nonideal self-association models as a function of 
K2 at 10 mg/ml, ks = BM1 = 10 ml/g. Results for K2 values of 0, 1000, 
5000, 1e4, and 5e4  M−1 are presented. (Note these K2 values in  M−1 
correspond to Kd of 0, 73.4, 14.7, 7.3 and 1.47  mg/ml, or K2 (mg/
ml)−1 = 2 × K2 (M)−1/146,909) The monomer s value is indicated by 
the vertical dashed line

Fig. 9  Simulation of nonideal self-association (ks = BM1 = 10  ml/g, 
K2 = 5000  M−1) as a function of concentration (1–120  mg/ml). The 
data are plotted as Norm s*g(s*) vs s* on a log scale

Fig. 10  A plot of 1/sw vs concentration for ks,  BM1, K2 data in Fig. 9 
and repeated for data simulated with K2 = 1000,  1e4 and  5e4  M−1. 
The data were analyzed by integration of the full boundaries with 
 DCDT+. The linear portions of the curves were fit to a straight line to 
extract apparent ks values and extrapolated so values. The dotted line 
is pure monomer with so = 6.6 S and ks = 10 ml/g. The dashed line is 
pure dimer with so = 9.9 S and ks = 10 ml/g
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requirements for real experimental data will be presented 
in a separate publication.

Discussion

The goal of this work is to present graphical distributions 
from SV simulations of nonideal mAbs solutions at high 
concentrations up to and exceeding the therapeutic con-
centration. This allows extraction of features that are direct 
consequence of hydrodynamic and thermodynamic nonide-
ality. This should provide the opportunity to see the impact 
of ks and  BM1 in SV data sets. Is the boundary hypersharp 
and running more slowly than expected? Is the base region 
much broader than typically observed? Is there evidence 
of negative gradients in the plateau region because of the 
JO effect, consistent with the presence of mixtures? The 

phenomenological or empirical parameters ks and  BM1 are 
best determined from their concentration-dependence. It is 
imperative that experiments be done as a function of load-
ing concentration, the wider the range the better. We simu-
lated data up to 120 mg/ml to exceed the therapeutic dose 
of Simponi. We also explored the range of 1–100 ml/g for 
ks and  BM1. As discussed above, this range corresponds to 
compact, globular and moderately asymmetric proteins.

mAbs appear to have ks values in the range of 4–11 ml/g 
(Wright et al. 2018a, b; Yang et al. 2018), but this is sensitive 
to conditions, especially salt concentration, and methods of 
analysis. Weak self-association will mask ks and  BM1 values, 
and thus proper models that include both nonideality and 
association are required (Wright et al. 2018a). Strongly asso-
ciating mAbs are rare, but there are reports of much larger 
ks and  BM1 values that may reflect asymmetric complex for-
mation, linear chains of mAbs in an extended conformation 

Fig. 11  A global SEDANAL fit of nine FDS data sets to an 
 AA2BC-ks-BM1-K2 model with 10% dimer and 5% trimer aggre-
gates and K2 = 5000 M−1. Data were simulated with a tracer amount 
of labeled Simponi corresponding to 1000 counts of monomer, and 

increasing amounts of unlabeled mAb. To produce a constant signal 
in tracer mode each apparent extinction coefficient is set to 1000/co 
where co is in mg/ml
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(Liu et al. 1995; Hopkins et al. 2018). This discussion is 
based upon the assumptions outlined by Rowe (1977) that ks 
is due to swollen volume Vs and f/fo effects according to the 
equation ks = 2v(Vs/v + (f/fo)3) where v is vbar. The effects of 
pH and salt on ks are also of great interest. Yang et al. (2018) 
showed that increasing salt suppresses mAb association and 
allows ks values to increase and approach values of 10 ml/g. 
Recently Chaturvedi et al. (2019) and Connolly et al. (2012) 
reported ks values > 20 ml/g in low salt conditions. Many 
investigations vary salt concentration and observe a sup-
pression of association and reduction in viscosity (Yadev 
et al. 2012). Changes in pH have a surprisingly small impact. 
Direct charge measurements by membrane-confined electro-
phoresis (Moody and Shepard 2004) show a rather constant 
mAb charge as a function of pH. They speculate that mAbs 
buffer charge due to  Cl− or anion binding (Yadav et al. 2012; 
Yang et al. 2018).

The simulations presented here were done in absorbance 
mode in the absence of added noise. Interference could have 
worked equally well because in silico has no optical limita-
tions. In practice absorbance experiments on typical mAbs 
at 280 nm, assuming a generous useable range of 2 OD, are 
limited to ~ 1.1 mg/ml in a 12 mm cell, to ~ 13 mg/ml in a 
1 mm cell. Collecting data at the UV minimum near 254 nm 
will expand this range, depending upon Trp/Tyr content, by 
a factor of 2. Interference has a much wider dynamic range 
and can be useful for AUC SV experiments up to 50 mg/
ml (Chaturvedi et al. 2018). Nanolytics has produced a new 
interference system (Schilling and Krause 2015) that claims 
to work up to 150 mg/ml. Both of these claims about inter-
ference optics are dependent upon accurate optical focusing 
and conditions, especially speed, since fringe resolution is 
strongly dependent upon the gradient steepness. As shown 
in Figure S3, resolution of sedimenting species is strongly 
speed-dependent. Conditions also imply proper dialysis, the 
use of meniscus matching centerpieces, and may be influ-
enced by formulation buffers. It is worth pointing out that 
both absorbance and interference are mostly limited to single 
component systems like pure mAbs.

Our approach to high concentration experiments uses 
FDS in a tracer mode, referred to as BOLTS or Biological 
On-Line Tracer Sedimentation by Laue (2009), where an 
Alexa-488 labeled mAb is run in a high concentration back-
ground of unlabeled mAb (Wright et al. 2018a). This allows 
no significant limit to the concentration ranges explored, 
besides solubility, and has the further advantage of being 
useful in serum, cell, and tissue extracts. As described 
above, this approach also allows a constant fluorescence 
signal to be used and thus provides better signal/noise char-
acteristics for data analysis (Husain et al. 2015; Lyons et al. 
2013). Our preference is ~ 500–1000 counts (out of 4096 
max), which is a function of label efficiency, but generally 
means 100–200 nM in typical mAb samples. This is the 

range of FDS data we simulate and fit in Figs. 7 and 11. 
The results are remarkably good with excellent accuracy and 
precision. Not all mAb are available to typical users over a 
range of 1–120 mg/ml. Thus experiments may only be pos-
sible over 1–40 or 1–20 mg/ml ranges. Fitting of these more 
limited concentration ranges also gives excellent results with 
the expected slightly wider uncertainty limits, especially in 
 BM1 (Table 1). These considerations will be explored in 
subsequent experimental work.

It has been standard practice in the AUC field to extract 
ks values from concentration dependent SV analysis mostly 
through linear plots (Figs. 6 and 10; Kegeles and Gutter 
1951; Creeth and Knight 1965; Rowe 1977; Li et al. 2012; 
Patel et al. 2018; Wright et al. 2018a, b). Although it has 
been proposed (Solovyova et al. 2001; Wright et al. 2018a, 
b), it is less common to extract  BM1 values from SV analy-
sis. Thus, it is worth asking, what is the consequence of not 
including  BM1 in a direct boundary fit of data like Figs. 7 
and 11? To investigate this we refit the  AA2BC data in 
Table 1 without  BM1. The 1–120 mg/ml data set returned 
an increase in rms (rms/rmso where  rmso is the fit with 
 BM1) of 23%, while for the 1–40 mg/ml data the rms/rmso 
increased by 3.5%, and for the 1–20 mg/ml data the rms 
increased by only 0.8%. To achieve these fits the so values 
increased slightly while K2 decreased (not shown). The 
surprising result was that the aggregated dimer to monomer 
fraction, B/A in the model (Fig. 1), increased dramatically 
while the monomer fraction decreased. As mention above 
for Fig. 3, the impact of  BM1 is to broaden the boundary 
making it appear heterogeneous. Thus, in the absence of 
 BM1 the best fit now increases B/A, the aggregated dimer/
monomer fraction, to match the apparent heterogeneity of 
the boundary shape. Thus, not including  BM1 in the fit 
appears to make aggregation seem to increase. To investi-
gate the coupling between  BM1 and the other parameters, 
we repeated the simulations without aggregated dimers 
and trimers, i.e. without species B or species C, and then 
compared fitting with and without  BM1 (Table 2). Now the 
rms/rmso values were increased by 5.5%, 19% and 90%, 
respectively, for the three concentration ranges. This was 
also matched by slightly larger  so values and smaller K2 
values, with so and K2 values highly correlated, R = 0.85. 
Thus, in the absence of aggregated dimers, the omission 
of  BM1 in the fit has a larger impact on the best NLLS fit. 
These large rms/rmso deviations are consistent with weak 
correlation between  BM1 and the other parameters in the 
full fits (K2 vs  BM1, R = 0.12; s vs  BM1, R = 0.18; ks vs 
 BM1, R = 0.14). Since BM1 seems to be nearly orthogo-
nal to the other parameters, s, ks or K2 cannot compensate 
for the absence of  BM1 in the fit. In practice, this will be 
complicated by the actual presence of molecular heteroge-
neity due, for example, to variable glycosylation states or 
mixtures of other mAb conformations.
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As previously reported, the FDS dynamic range in our 
hands is low nM to low µM. Linearity of signal is the main 
concern (Lyons et  al. 2013). In the case of associating 
systems, constant ratio of signal/mg upon association is 
assumed but must be proven. The main concern with using 
labeled samples is that the label does not interfere with the 
molecular behavior. It is possible that label–label interac-
tions occur in complexes that quench or enhance the sig-
nal intensity. This is not usually seen in tracer experiments; 
experiments with 100% labeled material are more likely to 
exhibit quenching behavior depending upon the locations or 
separation of the labels in oligomeric complexes. (An exam-
ple of quenching in FDS data will be presented elsewhere.)

The nonideality equations used here (1–4) are referred 
to as phenomenological equations meaning empirical or 
experimental. Thermodynamic nonideality,  BM1, refers 
to excluded volume (Tanford 1961) and charge effects 
as described by the Donnan term in osmotic pressure 
(Scatchard 1946) or sedimentation equilibrium experiments 
(Roark and Yphantis 1971). Hydrodynamic nonideality, ks, 
also refers to excluded volume and charge effects as reflected 
in the backflow during an SV experiment where displaced 
solvent must replace the volume a macromolecule vacates 
during sedimentation. The sedimenting particle has an 
effective solvated volume Vs that reflects hydration, shape 
through an f/fo term, and the entrained solvent captured 
within the Debye length (Fuoss 1959; Fuoss and Onsager 
1932; Rowe 1977, 1992). It is worth noting that the effec-
tive charge is much smaller than typically assumed due to 
charge screening and anion binding (Laue 2011; Laue and 
Shire 2020). This in principle reflects the Stokes radius of 
the effective electroneutral sphere. We are aware that a good 
ks model system that controls for shape and charge would be 
useful here for investigating the dependence of ks on charge. 
Our purpose is not to assign theoretical values but rather 

to present the impact of typical empirical values for these 
parameters. It is more important that the impact of these 
values is graphically presented, and that their measurement 
by NLLS fitting to proper models, nonideality plus associa-
tion, be clearly outlined.

It is generally assumed that the correct concentration 
scale for high concentration work is volume fraction (Ross 
and Minton 1977) and recent AUC studies on high concen-
tration use the volume fraction Φ scale (Chaturvedi et al. 
2018; Chaturvedi and Schuck 2019). The conversion is in 
principle a linear transformation, as simple as νc (Broide 
et al. 1991), but more realistically Vsc where the swollen 
or effective volume is used (Rowe 1992; Chaturvedi and 
Schuck 2019). At high volume fraction the shape and pack-
ing considerations may become important for mAbs (Garidel 
et al. 2017). The conversion of weight concentration to vol-
ume fraction can be verified from intrinsic viscosity meas-
urements: Φ

eff
= [�]c∕2.5 , where 2.5 is for spheres (Cantor 

and Schimmel 1980). Therefore, we are currently making 
viscosity measurements on mAbs and serum proteins and 
will present those data in a subsequent publication along 
with AUC SV measurements. It has also been observed 
that mAbs deviate from linear viscosity behavior above 
approximately 50 mg/ml. (The Shire group has investigated 
the impact of association on viscosity and the problems it 
causes for drug delivery by injection (Liu et al. 2005; Yadav 
et al. 2011b, 2012).) We have confirmed these nonlinear 
viscosity observations and furthermore observe similar 
deviations in sw vs concentration plots. This has implica-
tions for SEDANAL analysis and requires a second order 
term, ks2c2, in the s/so and D/Do phenomenological Eqs. (3, 
4). This and a higher order 3rd virial coefficient,  CM1, were 
previously incorporated into SEDANAL. The polymer 
field refers to this nonlinear deviation as clustering or low 
energy attraction (~ 5 kT or 3 kcal/mol) near the boundary 

Table 2  SEDANAL analysis 
of  AA2 ks  BM1 K2 = 5000 FDS 
model

AA2 model is a reversible monomer–dimer association with nonideality ks and  BM1. To explore the cross-
correlation of  BM1 with ks and K2, we re-simulated without species B or C, meaning without aggregated 
dimer-aggregated trimer. Values in parentheses correspond to fractional error determined by a bootstrap 
analysis and correspond to one standard deviation. Note the ratio of best fit rms to the  rmso of the fit with 
BM1 (values in parentheses under the rms column) is significantly larger without aggregated B and C 
included in the model to compensate for heterogeneity (see “Discussion”). These large rms/rmso deviations 
are consistent with weak correlation between  BM1 and the other parameters in the full fits (K2 vs  BM1, 
R = 0.12; s vs  BM1, R = 0.18; ks vs  BM1, R = 0.14). Since BM1 seems to be orthogonal to the other param-
eters, s, ks or K2 cannot compensate for the absence of  BM1 in the fit

Concentrations 
(mg/ml)

s ks ml/g BM1 ml/g K2  M−1 rms

1–120 6.6007 (0.014%) 9.9995 (0.02%) 9.9805 (.17%) 4989.3 (0.22%) 14.13
6.7089 (0.023%) 10.26 (0.05%) – 3723 (0.45%) 26.884 (1.902)

1–40 6.6008 (0.015%) 10.001 (0.045%) 9.9419(.529%) 4989.3 (0.272%) 14.128
6.6333 (0.015%) 9.9618 (0.099%) – 4407.3 (0.334%) 16.781 (1.188)

1–20 6.6005 (0.015%) 10.011 (0.14%) 9.9126(1.36%) 44998.8 (0.368%) 14.131
6.6210 (0.016%) 9.6143 (0.159%) – 4444.2  (0.395%) 14.905 (1.055)



699European Biophysics Journal (2020) 49:687–700 

1 3

for liquid–liquid phase separation (Fiore et al. 2018). Clus-
tering is clearly a distinct phenomena to the self-association 
we describe here.
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