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The study of brain science is vital to human health. The application of hyperspectral
imaging in biomedical fields has grown dramatically in recent years due to their unique
optical imaging method and multidimensional information acquisition. Hyperspectral
imaging technology can acquire two-dimensional spatial information and one-
dimensional spectral information of biological samples simultaneously, covering the
ultraviolet, visible and infrared spectral ranges with high spectral resolution, which can
provide diagnostic information about the physiological, morphological and biochemical
components of tissues and organs. This technology also presents finer spectral features
for brain imaging studies, and further provides more auxiliary information for cerebral
disease research. This paper reviews the recent advance of hyperspectral imaging in
cerebral diagnosis. Firstly, the experimental setup, image acquisition and pre-processing,
and analysis methods of hyperspectral technology were introduced. Secondly, the latest
research progress and applications of hyperspectral imaging in brain tissue metabolism,
hemodynamics, and brain cancer diagnosis in recent years were summarized briefly.
Finally, the limitations of the application of hyperspectral imaging in cerebral disease
diagnosis field were analyzed, and the future development direction was proposed.
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1 INTRODUCTION

Brain, the most important and complex organ in human body, is the vehicle for our cognition,
emotion, mobility, language, memory, consciousness and self-awareness (Salles et al., 2019). Thanks
to the invention of non-invasive imaging of the human brain, our understanding of the relationship
between the brain and behaviors has undergone a major shift. Nowadays, a variety of imaging
modalities are employed as guidance tools during the neurosurgeries e.g., computed tomography
(CT) (Paty et al., 1988; Hövels et al., 2008), magnetic resonance imaging (MRI) (Dewenter et al.,
2021; Xu et al., 2021) and fluorescent tumor markers (FTM) (Ferraro et al., 2016). Nevertheless, these
methods have some limitations. For instance, CT is harmful to the patient’s brain tissue because of
the higher radiation (Pelizzari et al., 1989; Gong et al., 2007). MRI has poor spatial resolution,
significantly prolongs the operation duration, and only a certain quantity of images are available
(Ganser et al., 1997). FTM is able to identify tumor boundaries, but it can only be used for high-grade
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tumors due to the patient-related chain reaction. These
technologies have higher probabilities to cause terrible clinical
results due to incomplete excision of diseased tissue or resection
of adjacent normal tissue (Torbey et al., 2015). Therefore, a label-
free and contactless imaging approach is urgently demanded to
assist physicians during neurosurgery (Li et al., 2013; Lu, 2014;
Halicek et al., 2019a).

Hyperspectral imaging (HSI), as an optical detection
technique, is aimed to record the spectrum of each pixel in an
image. In this sense, HSI is a natural extension of color (RGB)
imaging. HSI has the advantage of acquiring two-dimensional
images over a wide range of the electromagnetic spectrum and has
numerous practical applications, including Oceanic exploration
(Freitas et al., 2021; Wang, 2021), food quality and safety
organizations (Lohumi, 2018; Kim et al., 2022), disaster
monitoring (Farhadi et al., 2022), remote sensing (Abdulridha
et al., 2019), and agriculture (Lu, 2020).

Recently, as a promising optical technology, HSI is extensively
utilized in the field of biomedical engineering, for life science
research, non-invasive diagnostics and image-guided surgery (Lu
and Fei, 2014; Ortega et al., 2019; Fei and Amigo, 2020). In the
past decades, there were two primary factors that aroused the
interests of medical researchers for HSI technology. First, the
interaction between electromagnetic radiation and tissues
contains quantitative diagnostic information on
histopathology. Second, for its non-invasive nature, HSI can
provide real-time information of several biological processes in
healthy and diseased tissues. Specifically, HSI measures the
intensity changes at multiple wavelengths, demonstrating the
reflection, emission or fluorescence interactions with the target
tissues, which indicate the changes in the biological structure of
its components and changes in the concentration of intrinsic
light-absorbing or luminescent chromophores. Researchers have
demonstrated the ability of HSI to detect a wide range of diseases,
such as oximetry of the retinal (Gao et al., 2012; Hadoux et al.,
2019; Lim et al., 2021), intestinal ischemia identification (Barberio
et al., 2020; Mehdorn et al., 2020), histopathological tissue
analysis (Khouj et al., 2018), detecting cancer metastases in
lung and lymph node tissue (Zhang et al., 2021), blood vessel
visualization enhancement (Bjorgan et al., 2015; Fouad Aref et al.,
2021), identifying skin tumors (Leon et al., 2020; Courtenay et al.,
2021), evaluating the cholesterol levels (Milanic et al., 2015),
diabetic foot, etc. In the field of oncology, HSI technology has
been successfully applied to detect head and neck cancer (Halicek
et al., 2017; Eggert et al., 2022), thyroid and salivary glands
(Halicek et al., 2020), gastric cancer (Li et al., 2019; Liu et al.,
2020a), oral cancer (Jeyaraj et al., 2020), colon cancer (Baltussen
et al., 2019; Manni, 2020; Maktabi, 2021) as well as breast cancer
(Kho et al., 2019; Aboughaleb et al., 2020). Previously, other
authors have published comprehensive overviews concerning the
application of HSI in gastroenterology (Ortega et al., 2019),
wound care (Saiko et al., 2020) or breast cancer therapy and
diagnosis (Aref et al., 2020). However, to our knowledge, the
application of HSI in cerebral disease has not been systematically
reviewed.

The purpose of this review is to provide an overview of the
main advanced studies concerning the use of hyperspectral

imaging technology in cerebral disease diagnosis. The
fundamental principles of HSI techniques are presented in
detail, and their latest research applications in brain tissue
metabolism, hemodynamics and brain cancer diagnosis are
summarized and highlighted. In addition, issues encountered
in HSI techniques are included and future trends in cerebral
disease diagnosis applications are also discussed in the current
review. It is noteworthy that this review focus on the application
of HSI Technology of the exposed cortex in cerebral surgery. The
diffuse HSI Technology in cerebral disease, such as neonatal,
aging, neurodegenerative, and cardiac arrest/surgery brain
monitoring applications are not included.

2 BASIC KNOWLEDGE OF
HYPERSPECTRAL IMAGE SYSTEM

HSI uses hundreds of spectral bands, providing more information
about the imaging target. The fundamental theory of HSI
technology is that all target materials reflect, scatter or absorb
energy in different ways due to differences in chemical
composition and physical structure when subjected to
electromagnetic radiation sources in different wavelength
ranges. Light scattering is related to the particle diameter, cell
structure, tissue composition and other physical properties of the
target materials, HSI while light absorption is concerned with the
chemical composition of the target materials. For biomedical
applications, HSI can provide an easier way to identify any
abnormality in any tissue or organ in the body, allowing for
better identification and treatment of disease (Carrasco et al.,
2003).

2.1 Experimental Devices
The commonly used experimental devices of HSI include light
sources, wavelength dispersion modules, and photoelectric
detectors. Typically, HSI systems use different detectors to
cover different wavelength ranges (Lu, 2014). Charge-coupled
devices (CCDs) or complementary metal oxide semiconductors
(CMOS) typically encompass the spectral range from 400 to
1000 nm (visible and near-infrared, VNIR), while indium gallium
arsenide (InGaAs) and mercury cadmium telluride (HgCdTe)
sensors are employed to cover the range of 900–1700 nm (Near
Infrared, NIR), 900–2500 nm (Near Short Wave Infrared, SWIR)
and 2500–25,000 nm (Middle Infrared, MIR), respectively.
Furthermore, HSI systems have a variety of different methods
that are differentiated by how the hypercube is generated. They
are differentiated according to the type of dispersive element and
how the dispersive element projects the acquired information
into the detector array. The three typical categories of HSI modes
are: Spectral Scan, Spatial Scan and Snapshot HSI systems (Lucas
et al., 2004; Gao and Smith, 2015).

Spectral scanning HSI systems (also be called as staring HSI
systems), just as its name implies, generate hypercubes in one
single spectral wavelength (Figure 1A). Basically, each of the
obtained images occupies a single spatial slice (x, y) of the
hypercube. The hypercube can be reconstructed at each image
acquisition by stacking all slices along the spectral dimension (λ).
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Spatial scanning HSI systems can obtain all spectral information
from one spatial scanning of the imaging area in each acquisition
process and typically use a spectrometer as a spectrally dispersive
element that splits light into its constituent spectral bands prior to
the detection by the sensor array. Two primary scanning patterns
of spatial scan HSI systems are: point scan (whiskbroom)
(Figure 1B) and line scan (pushbroom) (Figure 1C) HSI
systems. Compared with the formers, the snapshot HSI
systems can simultaneously obtain spectral and spatial
information in one image, eliminating the processes of
successive scans and relative displacement between the object
and the system (Figure 1D) (Halicek et al., 2019a).

HSI systems integrate the advantages of imaging systems and
spectroscopic instruments to provide spectral data with spatial
resolution. HSI instruments can acquire hundreds or thousands
of spectra in an x × y × λ data cube (Figure 2A), where x and y
represent the spatial dimensions and λ represents the spectral
dimension (Sawyer et al., 2017). Figure 2B shows the HSI
acquisition system used in cerebral diagnosis. HSI measures
the optical properties of brain tissue in broadband
electromagnetic wavelengths range. The light interactions
(scattering of photons) of brain tissues are captured to
generate spectral images of narrow spectral bands (usually 100
or more images). Each image records the relative light absorption
or reflectance of one wavelength band, and reveals the biological
properties in brain, e.g., chromophores or tissue oxygenation. All
these images are assembled into a discrete 3D volume element
with two spatial dimensions and one spectral dimension to form a

hyperspectral cube (also known as hyperspectral image or
hypercube). Figure 2C presents the images at different
wavelengths obtained from the brain HSI data cubes. The
three-dimensional data cube (hypercubes) are acquired from
hyperspectral images that consist of hundreds of images of the
same object in different spectral bands. The spectrum of each
pixel and image of each slice can present the composition of a
specific position, and the spatial and surface feature information
(Fabelo et al., 2019a; Manni et al., 2020). Spectral feature
information of several brain tumor tissues in the VNIR range
at the pixel of regions of interest (ROI) are shown in Figure 2D.
The red, green, and blue line represent the spectral characteristics
of tumor tissue, normal tissues, and blood vessels.

2.2 Hyperspectral Image Processing
Methods
The obtained hyperspectral images commonly include many
unexpected noise (e.g., brightness non-uniformity, pixel
abnormality, redundant regions, data redundancy, etc.) due to
the operating conditions of the equipment, research
environment, specimen preparation, and other reasons. All
these unwanted noises may introduce incorrect and irrelevant
signals, affecting the subsequent processing of data. To reduce
these variations and extract useful information from
hyperspectral images, preprocessing methods are usually used.
The workflow of hyperspectral images includes image acquisition,
calibration, spectral or spatial pre-processing, downscaling and

FIGURE 1 | Schematic diagram of the acquisition approach of the hyperspectral data cube. (A) Spectral scanning: one wavelength band image at a time. (B) Point
scanning (wiskbroom imaging): one spectrum of only one point in a single measurement. (C) Line scanning (pushbroom imaging): spectra of points on the same line in a
single measurement. (D) Snapshot: covering the full spectrum in a single measurement.
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target-specific detection. Data pre-processing is located at the top
of the hyperspectral image processing process and has a direct
and important impact on the quality of further analysis. The main
purpose of hyperspectral image preprocessing is to compensate
for non-uniform illumination and suppress the effects of noisy
image elements, extraneous regions and redundant information
as much as possible, which can obtain pure images, non-mixed
spectral signals and improve the efficiency of subsequent data
processing. In the image preprocessing stage, techniques such as
image segmentation (ROI selection by masking image regions),
noise reduction, image smoothing, flattening, baseline correction,
normalization, and image data compression are used. Since
hyperspectral images involve both spectral and spatial
information, other approaches in the field of spectroscopy
analysis and image processing are also suitable for processing
hyperspectral data.

More detailed information of the captured scene is obtained in
the large amount of data. However, a large increase of the
computing power is required to decouple the data with

redundant information (Ghamisi et al., 2017). Therefore, it is
necessary to employ processing algorithms that can reduce the
dimensionality of HS data without losing relevant information.
This dimensionality reduction process involves transforming
data with high-dimensional features into a significant
representation of the data in dimensionality reduction
(Audebert et al., 2019). There are two primary dimensionality
reduction methods: feature extraction and feature selection (Lu,
2014). Feature extraction algorithms can scale, rotate and reduce
the original feature space of HS data utilizing transformation
matrices. Common feature extraction methods include principal
component analysis (PCA), partial least squares regression
analysis, Kernel PCA, linear discriminant analysis,
independent component analysis and local linear embedding,
all of which retain the information required in practical
application (Lv and Wang, 2020). Moreover, it is necessary to
choose the most discriminative bands in order to reduce the
dimensionality of the data. Optimization algorithms is the most
common feature selection algorithms, including genetic

FIGURE 2 | (A) The schematic of the HSI data cube. The data measured in the HSI is presented by means of data cubes. Each slice of the data cube includes an
image of the scene at a specific wavelength. Each pixel is associated with a spectral response vector, also known as a spectral feature. (B)HSI acquisition system used in
cerebral diagnosis applications. (C) Images at different wavelengths obtained from the brain HSI data cubes. (D) Spectral feature information of several brain tumor
tissues in the VNIR range at the pixel of ROI (Fabelo et al., 2019a).
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algorithm (Mirjalili, 2019), particle swarm optimization (Liu
et al., 2021) and ant colony optimization (Sharma and
Buddhiraju, 2018).

2.3 Hyperspectral Image Analysis Methods
The hyperspectral data cube comprises of a wealth of
diagnostic information obtained at the tissue, cellular and
molecular levels. All spectral and spatial information in the
hyperspectral data cube have important implications for
disease screening, clinical diagnosis, and subsequent
therapies. The hyperspectral datasets employ advanced
image classification technologies to extract, decompose and
classify entire spectral information from the acquired data.
The purpose of the approach is to associate these molecular
features with established disease states by resolving a mixture
of spectral and spatial information into intrinsic molecular
components expressions. The main classification methods
used for hyperspectral imaging are supervised learning and
unsupervised learning (Nathan et al., 2018). The classification
methods (supervised learning) can be divided into traditional
and deep learning methods. Typical methods include Support
vector machines (SVMs) (Yi et al., 2014; Manni et al., 2019),
Random Forest (Laffers et al., 2016), and K-nearest-neighbor
(KNN) (Lu et al., 2016). SVMs is a powerful deep learning
technique, the most prominently applied in hyperspectral
image data classification and relying on statistical learning
theory that separates the linearly separable feature space with
maximum margin into classes. In cerebral HSI, SVMs have
been already used to identify and classify different types of
brain cancers (Fabelo et al., 2018a). SVMs provide good
performance for classification of such data when the
available number of training samples is limited.

More recently, most tumor recognition models based on
HSI technology employ traditional machine learning
algorithms. The performance of these tumor detection
approaches depends on manually extracting features that
are time-consuming, strenuous, and easily influenced by
subjective factors. With the rise of deep learning
technologies driven by factors such as data mining
algorithm and high-performance computing, research on
HS images analysis and classification based on deep
learning is underway. Using deep learning models can
realize autonomous learning of deep, abstract and semantic
information from various data. Deep learning utilizes
computational models to learn multi-level representations
of data through simple combinations rather than non-linear
modules, each of which translates the same level of
information into a better, more abstract transformation.
More deep learning concepts that are relevant and
applicable to medical HS images analysis are reviewed in
Ref. (Khan et al., 2021). The emergence of deep learning
has given rise to more advanced feature extraction
techniques by combining spatial and spectral information.
Especially in recent years, HSI has begun to achieve
promising results in brain disease diagnosis by utilizing
cutting-edge deep learning algorithms, such as artificial
neural networks (ANNs) (Jolivot et al., 2011), Spectral

information dispersion (Guan et al., 2012), and Spectral
angle mapping (SAM) (Martin et al., 2012).

Numerous traditional ANN-based algorithms have been
used to solve classification and regression problems in the
field of biomedical applications. Nevertheless, they perform
poorly on independent test data because of overfitting for the
plenty of parameters available in HS images. Convolutional
Neural Networks (CNN), a very prevalent deep learning
algorithm for classifying input images to distinguish objects
by identifying patterns and features, has emerged as an
effective technique of deep learning for image analysis
assignments. They are currently the preferred method for
image classification because they exploit spatial features
efficiently by executing local patterns in HSI images.
Additionally, CNNs are able to capture the correlations
between the spectra of a given pixel, exploiting its
robustness to training sample variance and to extract
features from a large amount of training data, showing
great performance in image classification (Halicek et al.,
2019b; Halicek et al., 2019c).

In hyperspectral imaging of cerebral experiments, Leave-One-
Patient-Out Cross-Validation (LOPOCV) was employed to avoid
the double usage of the same patient and three metrics are
analyzed, such as the overall accuracy, sensitivity and
specificity. Mathematically, sensitivity and specificity are
defined as follows:

Accuracy � TP + TN

TP + TN + FP + FN
(1)

Sensitivity � TP

TP + FN
(2)

Specif icity � TN

TN + FP
(3)

Where TP is the number of true positives, FN is the number of
false negatives, TN is the number of true negatives and FP is the
number of false positives. In addition, the receiver operating
characteristic (ROC) curve was calculated and the area under the
curve (AUC) metric was provided for each class in the results.

These algorithms inevitably face two main challenges when
applied to brain HSI data: limited number of samples and high
dimensionality. It is not necessary in other areas of application,
but is more prevalent in cerebral HSI due to the variations of
spectral features between patients.

FIGURE 3 | Taxonomy of the current cerebrology HSI applications.
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3 HYPERSPECTRAL IMAGING IN
CEREBRAL DIAGNOSIS

HSI is an emerging technology, of which the application in the
biomedical field is still in its early stages. Therefore, there are
limited publications on the application of HSI technique in
cerebrology. This section summarizes several advanced
researches works in this field, which are categorized according
to the taxonomy shown in Figure 3. This taxonomy classifies
cerebral HSI applications according to the target of application.

3.1 Brain Tissue Metabolic and
Hemodynamic
Recent biomedical applications of HSI have demonstrated the
enormous potential to retrieve in vivo hemodynamic and
metabolic signals from animal or human brains. HSI provides
real-time quantitative information on the biological processes in
healthy or diseased brain tissues. This is achieved by measuring
the intensity change at multiple wavelengths after reflection,
emission, or fluorescence interacts with tissue (Jacques, 2013),
which reflecting the changes in optical properties (mainly
scattering and absorption) of the target tissue in the brain, and
indicating the changes in the biological structure of its
constituents and changes in the concentration of
chromophores that inherently absorb or emit light (Wang,
2012). In this section, we mainly focus on the research
advances of HSI in brain tissue metabolic and hemodynamic.

3.1.1 Monitoring Brain Oxygenation and
Hemodynamic
Functional metabolic activity of the human brain is inextricably
linked to all biochemical processes associated with normal brain
function (Cunnane et al., 2011). Studies have shown a strong
relationship between the oxygenation of human brain tissue and
its metabolic activation (Malonek and Grinvald, 1996; Devor
et al., 2003). Near-infrared HSI is one of the major methods that
have been used to achieve brain oxygenation and hemodynamics
monitoring (Nguyen et al., 2019). Nosrati, et al. employed near-
infrared HSI to measure the concentration changes of
oxyhemoglobin (HBO2) and deoxyhaemoglobin (HHb), along
with the oxidation state of mitochondrial cytochrome c-oxidase
(CCO) in the prefrontal cortex on the left and right sides of the
human brain simultaneously, which aimed to study the brain
metabolic activity of 16 healthy right-handed participants during
the simulated driving (aged between 22 and 32) (Nosrati et al.,
2016). The results present the absorption spectra of four different
tissue chromophores. This data presents the spectral
characteristics of HBO2, HHb, CCO, and H2O in the spectral
range 715–900 nm. It is observed that the absorption maxima of
HHb and HBO2 are located around 760 and 870 nm, respectively.
Calculation of concentration changes based on measured spectral
features can be applied to the assessment of cerebral oxygen
metabolism related events. Giannoni, et al. using Monte Carlo
(MC) simulations to demonstrate the applicability of HSI for
mapping and quantifying changes in HBO2, HHb, and oxCCO
concentrations in exposed cerebral cortex under hypoxia

(Giannoni et al., 2020). Soon after, the same research group
firstly present a novel HSI system for imaging and monitoring of
HbO2, HHb and CCO in exposed mouse cerebral cortex under
different oxygenation state environments (hyperoxia, hypoxia
and anoxia) (Giannoni et al., 2021). In this work, the same 8
bands of NIR spectral and 3 bands of visible wavelengths are
combined to enhance the image contrast of hemoglobin and
oxCCO. Modification and optimization of the HSI system to
increase the temporal resolution to the sub-second level enables a
more in-depth study of brain function, including brain function
activation and neurovascular coupling, etc.

Detecting and measuring brain metabolic signals by imaging
allows the identification and localization of changes in brain
activity or function under several circumstances, for example, the
resting state, through functional activation or stimuli, abnormal
physiological environments (e.g., tissue deficiencies oxygen,
hyperoxia, and even acute ischemia). These conditions
interrupt regular metabolism in a noxious way (e.g., hypoxia
and ischemia), and cause damages to brain tissues. Targeting the
exposed small animal cortex using HSI is also a preferred option
in several studies that evaluating hemodynamic responses and
brain tissue oxygenation during induction of hypoxia and
hyperoxia (Shonat et al., 1997; Yin et al., 2013; Nishidate
et al., 2017; Fu et al., 2020). Shonat, et al. were the first to use
HSI to study hemodynamic changes in exposed mouse cortex
(Shonat et al., 1997). Mori, et al. reported a study on assessing
cortical hemodynamics in rats and humans using HSI system
(Mori et al., 2014). In this study, the authors capture continuous
spectral data (HS data) of the brain cortical surface in the visible
wavelength band and convert these data into optical intrinsic
signals to show the measure results of brain surface oxygen
saturation. Then, based on previous research, Iwaki et al.
successfully demonstrated a new method for predicting
cerebral hyperperfusion syndrome (CHS) after bypass surgery
for moyamoya (MMD) disease using a hyperspectral imaging
system (Iwaki et al., 2021). The authors performed hyperspectral
imaging of the cerebral cortex before and after anastomosis in 29
patients with MMD who underwent superficial temporal artery
(STA)-middle cerebral artery (MCA) after surgery, and analyzed
the changes in oxygen saturation after anastomosis to evaluate its
correlation with CHS. Compared with non-CHS patients, CHS
patients had significantly higher cerebral cortical oxygen
saturation (SO2) after anastomosis (33 ± 28 vs. 8 ± 14%, p <
0.0001). Therefore, HSI may help pre-identify patients at high
risk for postoperative CHS before the onset. This early prediction
facilitates early intervention to prevent or reduce irreversible
brain disease caused by CHS.

3.1.2 Surgical Assistance
The brain tissue hemodynamics imaging via HSI during neural
activation is not limited to small animals. Sorts of attempts
applied hyperspectral methods to the imaging of exposed
human cortex (Klaessens et al., 2011). Currently, many
research groups have been devoted to the development of HSI
based tools to visualize the hemodynamics during surgeries.
Pichette et al. proposed an optical imaging system using
snapshot hyperspectral to visualize the hemodynamic

Frontiers in Bioengineering and Biotechnology | www.frontiersin.org May 2022 | Volume 10 | Article 9067286

Wu et al. HSI in Cerebral Disease

https://www.frontiersin.org/journals/bioengineering-and-biotechnology
www.frontiersin.org
https://www.frontiersin.org/journals/bioengineering-and-biotechnology#articles


behaviours of the brain (Pichette et al., 2016). Firstly, the method
has been validated in simulated tissue models to quantify the
relative concentrations of up to three absorbing dyes in a mixture
with guaranteed accuracy of <10%. Subsequently, the authors
applied the tissue model to practical disease treatment with a
volunteer of 35-year-old female patient who underwent
epileptogenic tissue resection. The HS images were obtained in
vivo using a hyperspectral HSI Snapshot imaging system covering
the spectral range from 481 to 632 nm. This work shows the intra-
operative concentration changes of oxyhemoglobin (HbO),
deoxyhemoglobin (HbR), and total hemoglobin (HbT)for a
single time frame. A reconstructed RGB image for the surface
of the brain, realizing visualization of the blood vessels. It also
presents the intraoperative concentration changes of HbO, HbR
and HbT in a single time period. The relative concentrations in
the red region increase while the relative concentrations in the
blue region decrease. The results demonstrated that the relative
changes in HbO, HbR, and HbT may be aroused through the
combined effect of vasomotion, Meyer waves, and response to
epileptic spikes.

Several studies monitored brain activities by quantifying
changes in oxygen-hemoglobin (ΔCHbO2), deoxygenated
hemoglobin (ΔCHb) and oxidative state of cytochrome-c-
oxidase (ΔCoxCCO) concentrations in the cerebral cortex (Bale
et al., 2016; Caredda et al., 2020a; Caredda et al., 2020b). Caredda,
et al. proposed a method to identify the optimal spectral bands
using commercial cameras and assessed brain functional areas
and cellular metabolic energy by quantitatively modelling and
measuring changes in ΔCHbO2, ΔCHb, and ΔCoxCCO through video
acquisition during neurosurgery (Caredda et al., 2020a; Caredda
et al., 2020b).

This section aims to provide a review of the literatures on
HSI based cerebral tissue hemodynamics and metabolism
research, which has an important implication for a deeper
and broader understanding of the physiologies of brain tissues,
to precisely record and map brain activities following neuronal
activations.

3.2 Brain Cancer Diagnosis
HSI has been proved to be useful in brain disease detection and
diagnosis, especially brain cancer. Brain tumors can be
classified in terms of their histological and molecular
specificity parameters (Louis et al., 2016). Malignant
gliomas have become the predominant form of brain
tumors in adults, responsible for 2–3% of cancer deaths all
over the world (Villa et al., 2018). In addition to methods such
as radiotherapy and chemotherapy, surgery has become the
best option for treating brain tumors (Kim et al., 2019).
However, as brain tumors permeate and spread to the
surrounding normal brain tissue, it is difficult for the
surgeon’s naked eye to accurately identify tumor tissue from
normal brain tissue. Meanwhile, many studies have illustrated
the residual tumor tissue to be the main reason for morbidity
and mortality during surgeries. Therefore, as a label-free and
contactless imaging modality, HSI is a potential tool for tissue
boundary identification and classification in brain cancer
surgery.

3.2.1 Identification of Tumour Tissue
It is extremely important to identify tumor borders and tumor
infiltration into normal brain tissue in order to prevent the
removal of excessive normal brain tissue and incomplete
resection of residual tumor tissue during neurosurgery. The
European project HELICoiD was launched to use HSI
technology to identify normal and abnormal brain tissue
during neurosurgery (Szolna et al., 2016; Salvador et al., 2017).
Fabelo, et al. presented the first image database of in vivo HS
human brain generated in the HELICoiD (Hyperspectral Imaging
Cancer Detection) project (; Fabelo et al., 2019a; Fabelo et al.,
2019b; Fabelo et al., 2019c). Ortega, et al. used HSI data to
automatically detect and identify pathological sections of
human brain tumor tissue taken from 10 different patients
with confirmed high-grade glioma (Ortega et al., 2018). The
authors employed a custom-built microscopic HS acquisition
system that enables clear acquisition of HS images of pathological
sections in the VNIR range (400–1000 nm). Thirty-six HS cubes
were obtained from these collected pathological section samples,
and over 665,000 spectral characteristics of tumor tissue and
normal brain tissue from human were labeled. Nevertheless, the
large amount of HSI data often contains redundant or irrelevant
information. In order to improve the prediction accuracy and
reduce the execution time of the classification algorithm, it is
central to confirm the most relevant wavelengths for a specific
application. Martinez, et al. proposed an optimization algorithm
based method to identify the relevant wavelengths through
obtaining the correlation spectra of the visible and near-
infrared regions to establish the SVM model (Martinez et al.,
2019). In this study, the in vivo human brain cancer database was
derived from 26 HS images of 6 adult patients. To determine the
minimum number of sampling wavelengths in HS images, the
authors evaluated different band selection algorithms using a
supervised classifier. Using the 48 selected bands gives better
quantitative and qualitative results than using the full band in
some cases.

Processing hyperspectral images in vivo is difficult for the
high-dimensional nature of the HS data, of which the real-time
processing is a challenge. Ravì, et al. introduced a new
dimensionality reduction scheme (named Fixed Reference
T-distributed Stochastic Neighbours, FR-t-SNE) and a novel
processing pipeline to acquire detailed tumor classification
maps for margin determination in brain surgery (Ravi et al.,
2017). In this work, an extension of the FR-t-SNE method was
used to decrease the data dimensionality of the HS database and
the embedded results were semantically segmented using the
Semantic Text Forest (STF) method to achieve brain tumor tissue
classification.

Deep learning-based HSI data analysis showed a broad
prospect in the field of intelligent assisted diagnosis. Fabelo,
et al. proposed a deep learning-based framework to identify
human brain tumors, and achieved an overall accuracy of 80%
using multi-class classification on a dataset of 26 in vivo HSI
samples (Fabelo et al., 2019a). Manni, et al. employed a 3D-2D
hybrid convolutional neural network for the extraction of
spectral-spatial features to classify brain tissues. Based on this
network, tumor, normal tissue and blood vessels in the human

Frontiers in Bioengineering and Biotechnology | www.frontiersin.org May 2022 | Volume 10 | Article 9067287

Wu et al. HSI in Cerebral Disease

https://www.frontiersin.org/journals/bioengineering-and-biotechnology
www.frontiersin.org
https://www.frontiersin.org/journals/bioengineering-and-biotechnology#articles


brain were effectively distinguished. Compared to traditional
feature extraction methods, the deep learning-based methods
transform informative features from raw images utilizing
hierarchical structures. The 3D–2D hybrid CNN achieves the
best results with a mean accuracy of 80%, sensitivity of 76, 68, 74,
96%, specificity of 87, 98, 92, 87%, and AUC of 78, 70, 84, 91%, for
normal, tumor, blood vessels and background, respectively
(Manni et al., 2020). Furthermore, Hao, et al. reported a
multiple deep model fusion (include three neural networks)
based extraction method to achieve an overall accuracy of
96.34% for the identification of GBM tumors (Hao et al.,
2021). This method employed 1-D deep neural network (1D-
DNN) and 2-D convolution neural network (2D-CNN) to extract
spectral characteristics and spectral spatial characteristic for the
HSI classification of human brain. The authors also utilized edge-
preserving filters to fuse and optimize spectral and spectral-
spatial classification results and used fully convolutional
network (FCN) to segment the background from images. The
experimental data showed that the method has good classification
performance.

3.2.2 Classification of Critical Tissue
It is also important to classify the critical parts of the brain tissue
in real time during neurosurgery or experiments. Fu, et al.
provided a method using HSI to demonstrate the possibility of
differentiate between infarcted and normal brain tissue (Fu et al.,
2020). The authors adopted the specific value of spectral
reflectance at 545 and 560 nm (R545/R560) to recognize the
spectral features of normal rat tissues and tissues with
different levels of ischemia, which evaluated the utility value of
the rat ischemic stroke model. The results illustrated that
hyperspectral images processed with the ratio of R545 and
R560 could not only recognize early cerebral ischemia within
1 h, but also accurately display ischemic regions. Fabelo, et al.
used a semi-automatic approach based on a SAM algorithm to
define 4 distinct classes, which included normal tissue, tumor
tissue, blood vessels, and background (Fabelo et al., 2019b). Then,
Urbanos, et al. used three different algorithms to classify brain
tissue in vivo from 13 patients with high-grade gliomas, including
support vector machines (SVM), random forests (RF), and
convolutional neural networks (Urbanos et al., 2021). In this
work, the authors evaluated three classification algorithms with
an HSI snapshot camera with limited wavelength bands and
distinguished five different brain tissue types (tumor, arterial
blood vessel, venous blood vessel, dura mater and healthy tissue).
According to the different training conditions, the overall
accuracy results obtained from the experiments ranged from
60 to 95%.

In order to facilitate the operation of the surgeon during tumor
resection, it is essential to develop a real-time classification system
that can delineate the boundaries of the cancer with high
accuracy. Fabelo, et al. proposed a novel algorithm of brain
cancer detection to help neurosurgeons to classify brain tumor
tissues, which consisted of a hybrid framework that combined
both supervised and unsupervised machine learning methods
(Fabelo et al., 2018b). The authors interfaced the calculator with a
hardware gas pedal, allowing the system to provide

neurosurgeons with a categorized map of scenes obtained in
approximately 1 min during surgery. These preliminary results
extracted from the supervised classification of pre-labeled tissues
by experts showed that normal tissue, tumor tissue, blood vessels
and background could be accurately distinguished with an overall
accuracy higher than 99%. Due to the high-dimensional nature of
the data acquired with the HS camera and the need to perform
intraoperative surgical guidance tools in real time, a highly
parallel high-performance processing platform must be used to
process the HS data. Among the various available parallel
technologies, the Graphics Processing Unit (GPU) is the most
attractive solution, which can execute complex, intrinsically
parallel algorithms on large amounts of data. Florimbi, et al.
employed GPU technology to classify the largest (worst-case)
image in the database in less than 3 s, which satisfied the surgery
limitation of real-time setting within 1 min, and became a
potential method for hyperspectral video processing in the
immediate future (Florimbi et al., 2020).

Although machine learning methods and deep learning
method are used extensively in brain cancer diagnosis, the
integrity of data information and the timeliness of data
processing are still the shortcomings of these methods
(Barberio et al., 2021). More recently, several research groups
are focusing on hybrid deep learning method for clinical
diagnosis of brain cancer (Rinesh et al., 2022).

3.3 Hyperspectral Imaging Application
Summary
To sum up, we summarized the most relevant works in the field of
cerebral diagnosis using HSI in Table 1. This table is organized as
follows: 1) the type of application; 2) the type of subjects involved
in each study; 3) the type of sample involved in each study; 4) the
spectral range of HSI technology; 5) the data processing and
analysis methods or algorithms employed.

4 DISCUSSION AND OUTLOOK

Based upon the above studies, it has been demonstrated that
hyperspectral imaging has great potential for applications in
cerebral diagnosis, for the excellent sensitive of the spectral
signal to the biophysical and biochemical characteristics of cell
and tissue samples.

Compared with traditional imaging methods, the outstanding
advantage of HSI lies in the simultaneous generation of tissue
structure information and hemodynamic parameters, which
cannot be achieved by conventional technologies (e.g., CT or
MRI). Furthermore, HSI is a real-time online, non-invasive, non-
ionizing imaging technique that solves the sampling and time-
consuming issues associated with hematoxylin and eosin (H&E)
and 2,3,4-triphenyltetrazolium chloride (TTC) staining.
Moreover, compared to common RGB images, HS images
have more spectral channels and higher spectral resolution,
which may contain more useful information about the
surgeon’s tissue physiology and pathophysiolog. In brain tissue
oxygenation and hemodynamics, HSI techniques have superior
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spectral resolution in imaging light-absorbing chromophores, for
example, HbO2, HHb and oxCCO. Although small animals
remain a prime target for metabolic activity monitoring, the
study of humans in neurosurgery is becoming more common
and can provide important insights into the effects of different
stimuli on the human brain.

In summary, these related literatures present promising
results for many kinds of cerebral diagnosis applications
according to biomedical HSI and for surgical guidance.
However, there are still some limitations in technology
insufficiency and small datasets. Pilot studies encouraged
further research of all organ systems to determine the role of
HSI in clinical. For the advantages of contactless, non-invasive,
label-free, and non-ionizing, HSI is a promising imaging

method with great potential. However, the reliability,
reproducibility, and generalizability should be further
validated before the extensive usage in biomedical applications.

Although many studies have demonstrated its potential in
cerebral diseases, these areas still suffer from variability in
hardware and software, short of comparison or unified
standard evaluation system, and lack of sufficiently large
sample sizes. We can improve from the following aspects: 1)
The limitation of imaging depth. Combining other techniques
such as photoacoustic imaging systems to improve imaging depth
remains to be studied (Liu et al., 2020b). 2) Performance
improvement of HSI systems. In fact, the available
hyperspectral imaging systems are still relatively bulky, and are
not suitable for minimally invasive surgery. The continuous

TABLE.1 | Summary of HSI applications in cerebral diagnosis.

Application Year Study Subjects Type of
the

Sample

Spectral
range
(nm)

Data processing
and analysis

methods/algorithms

References

Monitoring brain oxygenation and
hemodynamic

2015 Animal/Rats in-vivo 484–652 MBLL Konecky et al. (Konecky et al., 2015)
2016 Human/Brain in-vivo 700–900 ICA Nosrati et al. (Nosrati et al., 2016)
2018 Animal/Mice in-vivo 450–998 MBLL Giannoni et al. (Giannoni et al., 2018)
2019 Human/Brain in-vivo 650–1100 LSM Nguyen et al. (Nguyen et al., 2019)
2019 Animal/Rats in-vivo/ex-

vivo
400–720 - Fu et al. (Fu et al., 2020)

2020 Animal/Mouse in-vivo 780–900 MC Giannoni et al. (Giannoni et al., 2020)
2021 Animal/Mice in-vivo 780–900 MC Giannoni et al. (Giannoni et al., 2021)
2021 Human/Brain in-vivo 400–800 - Iwaki et al. (Iwaki et al., 2021)

Surgical assistance 2014 Animal/Rats
Human/Brain

in-vivo 400–800 LSM Mori et al. (Mori et al., 2014)

2016 Human/Brain in-vivo 481–632 LSM Pichette et al. (Pichette et al., 2016)
2020 Human/Brain in-vivo 675–1000 MBLL Caredda et al. (Caredda et al., 2020a)
2020 Human/Brain in-vivo - Caredda et al. (Caredda et al., 2020b)

Identification of tumor tissue 2017 Human/Brain in-vivo 600–720 Bravo et al. (Bravo et al., 2017)
2017 Human/Brain in-vivo 400–1700 DNN, FR-t-SNE, STF Ravi et al. (Ravi et al., 2017)
2018 Human/Brain ex-vivo 400–1000 SVM, ANN, RF Ortega et al. (Ortega et al., 2018)
2018 Human/Brain in-vivo - PCA, SVM, k-means, KNN Torti et al. (Torti et al., 2018)
2019 Human/Brain in-vivo 400–1000 SVM, k-means, GA,

ACO, PSO
Martinez et al. (Martinez et al., 2019)

2019 Human/Brain in-vivo 400–1000 PCA, KNN, SVM,
SAM, CNN

Fabelo et al. (Fabelo et al., 2019a)

2020 Human/Brain ex-vivo 400–1000 CNN Ortega et al. (Ortega et al., 2020)
2020 Human/Brain in-vivo 400–1000 SVM, CNN Manni et al. (Manni et al., 2020)
2021 Human/Brain in-vivo 400–1000 PCA, CNN, DNN, FCN Hao et al. (Hao et al., 2021)

Classification of critical tissue 2018 Human/Brain in-vivo 400–1000 KNN,SVM, PCA Florimb et al. (Florimbi et al., 2018)
2018 Human/Brain in-vivo 400–1000 SVM, KNN, SAM, FR-t-SNE Fabelo et al. (Fabelo et al., 2018a)
2018 Human/Brain in-vivo 400–1700 SVM, PCA, KNN Fabelo et al. (Fabelo et al., 2018b)
2019 Human/Brain in-vivo 400–1000 PCA, KNN, SVM, SAM,

CNN, DNN
Fabelo et al. (Fabelo et al., 2019d)

2020 Human/Brain in-vivo 400–1000 PCA, KNN, k-means,
SVM, SAM

Florimb et al. (Florimbi et al., 2020)

2021 Human/Brain in-vivo 400–1000 SVM,EMD Baig et al. (Baig et al., 2021)
2021 Human/Brain in-vivo - BLU, SVM, SAM,

CNN, DNN
Cruz-Guerrero et al. (Cruz-Guerrero
et al., 2020)

2021 Human/Brain in-vivo 655–975 SVM, RF, CNN Urbanos et al. (Urbanos et al., 2021)
2022 Human/Brain - 400–1300 MFNN, SVM, K-Means Rinesh et al. (Rinesh et al., 2022)

Data analysis methods/algorithms: MBLL, modified Beer-Lambert law; ICA, independent component analysis; LSM, least square method; SAM, spectral angle mapper; MC, monte carlo
framework; SVM, support vector machines; PCA, principal component analysis; RF, random forest; ANNs, Artificial Neural Networks; FR-t-SNE, fixed reference t-distributed Stochastic
Neighbours; STF, semantic texton forest; MFNN, multilayer feed forward Neural Network; CNN, convolutional neural network; FCN, fully convolutional network; BLU, blind linear unmixing;
KNN, k-nearest neighbors; EMD, empirical mode decomposition; DNN, deep neural network; MFNN, multilayer feed forward Neural Network.
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improvement of HSI systems in imaging, spatial resolution,
spectral range, and resolution will enable portable and smaller
HSI devices, and facilitate widespread medical applications in
cerebral diagnosis. In addition, scholars have also begun to use
multiple HS cameras to acquire more images in the broad spectral
band, with the aim of analyzing different characteristics of
different types of normal brain and tumor tissue in vivo (Leon
et al., 2021a, Leon et al., 2021b). 3) Real-time processing of HSI
video. HSI techniques are combined with deep learning processes
to establish models for clinical diagnosis and surgical treatment of
brain disorders. However, processing the huge amount of data
captured by HSI sensors and improving the efficiency of data
processing are the main issues for realizing real-time HSI video
processing in the future (Sancho et al., 2021). 4) Formation of a
multimodal imaging system. Fluorescence spectral imaging and
Raman spectral imaging methods also have been introduced by
researchers for different kinds of biological imaging (Sun et al.,
2021; Wang et al., 2021). Furthermore, hyperspectral imaging
combined with other biomedical imaging modalities to form a
multimodal imaging system which can completely explain and
predict the behavior of brain tissue or brain cells. 5)
Establishment unified diagnostic standard. By establishing a
database of characteristic spectra of various parts of the brain
tissue and different brain diseases, online sharing is realized, and
a unified diagnostic standard is continuously formed. Finally, this
review systematically revealed the application of HSI method on
the exposed cortex in cerebral surgery. However, the HSI
Technology covers also the diffuse imaging of the brain with
wide applications, including neonatal, aging, neurodegenerative,
and cardiac arrest/surgery brain monitoring, which would not be

discussed here. In conclusion, biomedical HSI remains an
explosively expanding field, and new-type technological
advances may lead to new discoveries and enhanced
understanding of the mechanisms underlying brain function.
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