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Abstract: In view of the limitations of existing rotating machine fault diagnosis methods in
single-scale signal analysis, a fault diagnosis method based on multi-scale permutation entropy
(MPE) and multi-channel fusion convolutional neural networks (MCFCNN) is proposed. First,
MPE quantitatively analyzes the vibration signals of rotating machine at different scales, and obtains
permutation entropy (PE) to construct feature vector sets. Then, considering the structure and spatial
information between different sensor measurement points, MCFCNN constructs multiple channels
in the input layer according to the number of sensors, and each channel corresponds to the MPE
feature sets of different monitored points. MCFCNN uses convolutional kernels to learn the features
of each channel in an unsupervised way, and fuses the features of each channel into a new feature
map. At last, multi-layer perceptron is applied to fuse multi-channel features and identify faults.
Through the health monitoring experiment of planetary gearbox and rolling bearing, and compared
with single channel convolutional neural networks (CNN) and existing CNN based fusion methods,
the proposed method based on MPE and MCFCNN model can diagnose faults with high accuracy,
stability, and speed.

Keywords: multiscale permutation entropy; information fusion; multi-channel; convolutional neural
networks; fault diagnosis; rotating machinery

1. Introduction

Rotating machinery is widely used in many fields of heavy industry and plays an important role
in modern industrial production [1]. Gears and rolling bearings are the core components used to
support the rotating body and transmit torque and power. They play a vital role in the transmission
system. Any fault of bearing and gear may lead to unnecessary shutdown, leading to significant
economic loss and even casualties [2,3]. Therefore, real-time health monitoring and fault diagnosis are
very important for the safe operation of machinery.

Vibration signal analysis is the most commonly used diagnostic method in mechanical fault
diagnosis at present [4]. In recent years, many researchers have proposed to use information fusion
method for fault diagnosis of rotating machinery. Meghdad et al. [5], Loutas et al. [6], Lei et al. [7],
and Liu et al. [8] used the signal processing technology to extract features from different signal
sources and fuse them. Then, artificial neural network (ANN), independent component analysis
(ICA), adaptive fuzzy neural inference system, and relevance vector machine (RVM) classification
algorithm were used to classify the fused features, respectively. Meghdad et al. [9], Peng et al. [10],
and Jaramillo et al. [11] adopted D-S evidence theory and Bayesian reasoning method for decision
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fusion, respectively. Although the information fusion methods in the above literatures improve the
accuracy of fault diagnosis, they have certain limitations in feature extraction, mainly in the following
aspects: (1) In information fusion, they only extract multiple types of features from the signals collected
by the single sensor and fuse them, without analyzing the sensor information of other monitoring
points. (2) the information after multi-sensor fusion presents the characteristics of big data such as mass,
multi-source, heterogeneity, complexity, and real-time. Traditional intelligent diagnostic algorithms
have poor nonlinear fitting ability, which is difficult to meet the requirements of big data.

In order to solve the above drawbacks, convolutional neural networks (CNN) may provide effective
solutions for intelligent information fusion and fault diagnosis. CNN is a model of deep learning,
which uses end-to-end processing technology to achieve feature extraction and fault classification [12].
In recent years, some researchers proposed to use CNN for fault diagnosis [13–17]. Jing et al. [13],
Xia et al. [14], and Sun et al. [15] spliced multiple signals into one-dimensional or two-dimensional
matrices, and used CNN to extract features for fault recognition. Han et al. [16] constructed dynamic
ensemble convolutional neural networks (DECNN), Jiang et al. [17] proposed multi-scale convolutional
neural networks (MSCNN), and in [18], we proposed CNNEPDNN model. These models have a
common feature, that is, the model contains several parallel feature learning branches. The inputs of
each branch are constructed according to a certain standard, and the extracted features of each branch
are fused through the network layer to complete the model training. The fusion method based on
CNN can capture fault information of different scales and improve the accuracy of diagnosis, but some
challenges still exist: (1) The fusion mode based on data splicing not only increases the number of
input samples, but also leads to the slow convergence due to the difference of original data [19].
(2) The structure of CNN based on feature fusion mode is cumbersome and characterized by many
training parameters, long training time, and slow convergence.

Multi-channel CNN is widely used in the fields of image processing and speech recognition.
In these fields, the input can be naturally divided into different channels, such as the color channel
of the image and the wavelength of the speech [19]. Liu et al. [20] constructed a multi-channel CNN
target detection framework. First, mid-wave infrared image (MWIR), visible image (VI) and motion
image were fused in an unsupervised way to generate a BGR style three-channel image, which was
used as the input of multi-channel CNNs. The experimental results show that the proposed approach
improves the recognition accuracy, implementation simplicity and low computation complexity.
Kato et al. [21] proposed three different multi-channel CNN frameworks for image super-resolution,
namely, the architecture with four parallel CNNs (4P), the single CNN architecture with four channels
(4CH) and the four channels CNN with rotary averaging technique (4CH-R). Experimental results
show that the processing speed of 4CH was the fastest with few parameters, the peak signal-to-noise
ratio (PSNR) of 4CH-R was the highest, thus verifying the practicability of multi-channel CNN
architecture. Liu et al. [22] constructed a multi-channel CNN architecture for language sentiment
analysis. First, three input channels were constructed in CNN, and each channel consists of one
embedding layer, one convolution layer, and one pooling layer. Then the Chinese text was converted to
pinyin, characters and words, and fed into three channels, respectively. Finally, the features extracted
from each channel were concatenated to feed into a fully connected dense layer, and the analysis
results were output through the output layer. Inspired by multi-channel CNN processing image
and speech, a multi-channel fusion CNN (MCFCNN) model based on CNN and data information
fusion is proposed. MCFCNN uses a multi-channel structure to achieve information complementarity
between multiple sensors, improve the fault diagnosis rate, and meet the real-time requirements of fault
diagnosis. Different from the above multi-channel CNN, the backbone of MCFCNN is a traditional
CNN structure, that is, a single CNN structure contains multiple channels, and the corresponding
input data of each channel is independent of each other.

Nevertheless, the structure of mechanical equipment is very complex, and the interaction and
coupling effect between the components make the vibration signal contain many inherent oscillation
modes on different time scales [23]. Traditional CNN structure could not capture these inherent
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multi-scale features due to their lack of multi-scale feature extraction capabilities [17]. The multi-scale
nonlinear analysis method proposed in recent years is proposed to extract fault features from multiple
time scales to improve the fault diagnosis rate and achieve good results. For example, Zhang et al. [24]
used multi-scale entropy (MSE) to extract fault features from bearing vibration signals and input
them to the adaptive neural fuzzy inference system (ANFIS), good diagnostic results were obtained.
Yan et al. [25] first used the improved multi-scale discrete entropy (MDE) to extract the fault feature
from the vibration signal of rolling bearing, then used the max-relevance min-redundancy (mRMR)
algorithm to select the sensitive feature from the multi-scale feature, and input them into the extreme
learning machine (ELM) for classification. Zhao et al. [26] decomposed the vibration signals of rolling
bearings into a set of sub-band signals through wavelet packet decomposition (WPD), and calculated
the multi-scale permutation entropy (MPE) values of all sub-band signals to form a feature vector,
and then used HMM to identify the fault. Wu et al. [27] combined MPE and support vector machine
(SVM) method for bearing fault diagnosis. Experimental results show that compared with methods
based on single-scale permutation entropy (PE) and MSE, the feature extraction method based on
MPE has higher prediction accuracy. Moreover, MPE is more robust to the change of training sample
size. In addition, some studies [25,28] have found that compared with MSE and MDE, MPE has faster
calculation speed. Therefore, this paper uses MPE method to analyze the complexity of vibration
signals on multiple scales, and feeds the MPE value to MCFCNN.

In MCFCNN, multiple independent channels are established in the input layer, and each channel
corresponds to the MPE feature set of each measuring point sensor. Each convolutional kernel further
learns the deep features of each channel separately, and fuses the learned feature maps of each channel
into a new feature map [29]. MCFCNN uses multi-channel instead of parallel network structure to input
data from different measurement points at the same time to obtain more fault information. Moreover,
multiple channels share a CNN structure, which effectively reduces the number of parameters and
training time, and improves the real-time of fault diagnosis. The main contributions of this study can
be summarized as follows: (1) Applying MPE to gearbox and bearing fault diagnosis; (2) Design a
new intelligent fusion model MCFCNN, which provides an idea for the same type of sensor fusion.
(3) The proposed method is used for bearing and gearbox health status data, and compared with
single-channel CNN and existing CNN-based fusion methods, MCFCNN model has faster convergence
speed and higher classification accuracy.

The remainder of this paper is organized as follows. In Section 2, the basic theory of MPE and
CNN are elaborated. In Section 3, the proposed MCFCNN model based on CNN and multi-sensor
data fusion methods is introduced. In Section 4, the test rig and experimental datasets for planetary
gearboxes and rolling bearing are described, and the proposed method is verified by the comparison
with other diagnostic methods, and the results of the model under different experiments are discussed.
The conclusions are drawn in Section 5.

2. Basic Theory

2.1. Multiscale Permutation Entropy

Aziz et al. [30] proposed multi-scale permutation entropy (MPE) based on the research of PE [31]
method and multiscale analysis [32]. Its basic idea was to coarsen the time series at multiple scales,
and then calculate the PE of the coarsening sequence. The calculation process is as follows:

Step 1: Constructing the coarse-grained time series. Given a time series X= {x 1, x2, . . . , xN} of
length N, the coarse-grained time series is constructed by time scale factor s. The coarsening process of
the time series with scale factors s = 2 and s = 3 are shown in Figure 1. Using a window of length s
to move over the original signal to compute the average to obtain the corresponding coarse-grained

signal
{

y(s)j

}
. The length of the coarse-grained sequence is determined by the scale factor. When s = 1,
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the coarse-grained sequence degenerates to the original sequence; when s > 1, the original sequence
becomes a coarse-grained sequence of length N

S . The calculation formula is as follows:

y(s)( j) = 1
s

js∑
i=( j−1)s+1

x(i)

j = 1, 2, . . . ,
⌊

N
s

⌋ (1)
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Step 2: Calculating PE value for coarse-grained time series
{
y(s)( j)

}
. First, the phase space

reconstruction technique is applied to map the coarse-grained sequence
{
y(s)( j)

}
into m dimensional

data spaces. 
y(s)(1) y(s)(1 + λ) . . . y(s)(1 + (m− 1)λ)
. . . . . . . . . . . .

y(s)(i) y(s)(i + λ) . . . y(s)(i + (m− 1)λ)
. . . . . . . . . . . .

y(s)(k) y(s)(k + λ) . . . y(s)(k + (m− 1)λ)


(2)

where m is the embedded dimension and λ is the delay time, k =
⌊

N
s

⌋
− (m − 1)λ is the number of

reconstruction vectors. Then m reconstruction components of y(s)(i) are arranged in ascending order.

y(s)(i + ( j1 − 1)λ) ≤ y(s)(i + ( j2 − 1)λ) ≤ . . . ≤ y(s)(i + ( jm − 1)λ) (3)

where j1, j2, . . . , jm represent the index of each element, if y(s)(i− ( j1 − 1)λ) = y(s)(i− ( j2 − 1)λ) exists,
it will be sorted according to the value of j1 and j2, when j1 < j2, there is y(s)(i − ( j1 − 1)λ) ≤
y(s)(i − ( j2 − 1)λ). Therefore, any vector y(s)(i) can get a set of symbol sequences ( j1, j2, . . . , jm).
Assume that the probability of occurrence of each symbol sequence is P j, the PE of y(s)( j) is calculated.

H(s)
PE = −

k∑
j=1

P jInP j (4)

HMPE = [H1
PE, H2

PE, . . . , Hs
PE] (5)

where, H(s)
PE represents the PE of coarse-grained time series

{
y(s)( j)

}
, HMPE is an s-dimensional vector

representing the PE of the time series X over multiple time scales.
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2.2. Convolutional Neural Networks

Convolutional neural networks (CNN) is based on multi-layer supervised learning and it requires
a large amount of labeled data to complete model training by repeating forward propagation and
backward propagation. CNN is usually composed of feature extractor and multilayer perceptron
(MLP). The feature extractor consists of multiple alternating pooling and convolutional layers.
The convolutional layer is to extract the features from input data, whereas the pooling layer is
to decrease the feature dimension [33]. The fully connected MLP is classified according to the features
learned by convolution and pooling layers. Figure 2 shows one typical model of convolutional
neural networks, called Lenet, designed by Y. LeCun et al. [34]. The Lenet model has one input layer,
three convolution layers, two pooling layers, one fully connected layer and one output layer, in which
the convolutional layer and the pooling layer are alternately connected.
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Figure 2. Structure of Lenet model.

The convolutional layer is responsible for feature extraction through a convolution kernel, which is
essentially a weight matrix. The convolutional layer contains multiple convolution kernels with
different weights. The convolutional layer slides different convolution kernels on the input data by
sliding the window. The convolutional kernel and the corresponding area of the sliding window are
convoluted to obtain local perception and the matrix obtained by the convolution operation after
sliding is called feature mapping. The convolution operation between input neuron and convolution
kernels is:

xl
k′ = f

 m∑
i=1

n∑
j=1

xl−1
i, j ∗wl

k1,k2,k′ + bl

 (6)

where m and n, respectively, represent the sizes of the pixels in the height direction and the width
direction of the input image; xl−1

i, j represents the input of the l convolutional layer; wl
k1,k2,k′ is the weight

of the k′ convolutional kernel at the l convolutional layer; the wl
k1,k2,k′ supports n× k1 × k2 parameters;

k1 and k2 are the kernel size of a filter; n is the number of filters; ∗ is defined convolution operation; bl is
the bias of the l layer; f is an nonlinear activation function; xl

k′ represents the feature map of the k′

convolutional kernel in the l convolutional layer.
The pooling layer is also called the sub-sampling layer because it involves the division of the input

feature map into many small areas of the same length (greater than 1), the calculation of a value for
each area, the acquisition of the local optimal value, the arrangement of the calculated values, and the
output of a new feature map [35]. The purpose of the pooling layer is to extract features while reducing
data dimensions so that it is robust to minor changes in previously learned features. Pooling operations
are defined as:

xl
k = φ(xl−1

k ) (7)

where xl−1
k represents the k input feature map in the l pooling layer; φ indicates pooling operation; xl

k is
the k output feature map at l pooling layer. In the pooling layer, the numbers of input and output
feature maps are the same, but the size of output feature maps is usually reduced to by 50% compared
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to that of input feature maps. The pooling operations generally includes mean pooling operation and
maximum pooling operation. The mean pooling operation is to calculate the average value of each
subregion, whereas the max pooling operation is to calculate the max value of each subregion as the
output feature.

After the multistage convolutional layer and pooling layer, several fully connected layers are
connected. The fully connected layer is used to integrate features from multiple feature maps and
map them into a fixed length feature vector. At last, the fully connected layer and the output layer are
connected by the classifier, and the learned features are mapped into the sample label space to complete
the classification task. Similar to the training process of traditional neural networks, CNN uses back
propagation (BP) algorithm to fine tune network parameters.

3. Proposed Method Based MPE and MCFCNN

The proposed overall MCFCNN framework is shown in Figure 3, which consists of two parts.
The first is signal preprocessing. MPE is used to extract the structural information of complex time
series from multiple time scales, and the PE value is calculated at each time scale. Then, MCFCNN
is constructed to extract features from PE of multiple scales for fault identification. Compared with
LeNet model, MCFCNN has multiple channels in the input layer and all channels share a CNN model,
thus greatly reducing parameters and training time. Furthermore, unlike image data, the vibration
signals of mechanical equipment are one-dimensional data of a time series. Each channel takes
one-dimensional series as the input. The convolution layer learns the features of multiple channels at
the same time and fuses these learning features. Similar to traditional CNN, MCFCNN model in the
training process is to calculate errors according to classification results and real values and feeds back
to the whole network through back propagation algorithm to update weights. The fault identification
method based on MCFCNN model is described as follows:
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Step 1: Condition monitoring at different locations of mechanical equipment through multiple
sensors. Assuming that there are n sensors, the input layer of MCFCNN model has n channels.
N sensors collect vibration signals for different fault experiments, and get multiple groups of different
fault signals, each group of fault signals is represented by X = {x1, x2, . . . , xm}, m represent the signal
length. The health status label corresponding to each signal is represented by Y ∈ {1, 2, . . . , c} , where c
is the total number of fault categories.

Step 2: For each group of vibration signals, sample division is performed, that is, discrete points
of vibration signals of length k are intercepted at random positions of each group of signals as a sample,
which can be expressed as X =

{
xi, xi+1, . . . , xi+k−1

}
. Then coarsen the original time series sample X

according to the time scale factor s to create coarse-grained time series y(s)( j). Then calculate the PE
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value of the coarse-grained sequence y(s)( j) according to Equations (2)–(5), and finally get MPE value
Hmpe of time sequence X.

Step 3: The training sample MPE feature of the n sensor is used as the input of the n channel of
MCFCNN. The convolutional layer uses the unsupervised learning mode to simultaneously learn
the features of each channel and fuses the features extracted from each channel. The multi-channel
one-dimensional convolutional calculation process is:

xl
k′ = f (

d∑
k=1

m∑
j=1

xl−1
i, j,k ∗wl

k1,k2,k′ + bl) (8)

where i = 1 and j represent the height and the width of the input data, respectively; d represents the
number of input channels; xl−1

i, j,k indicates the input of the k channel of the l layer; wl
k1,k2,k′ is the weight

of the k′ convolution kernel at the l convolutional layer. The convolution kernel is one-dimensional,
so k1 = 1, bl is the bias of the l layer.

In image classification, the experimental effect of max pooling is better than that of average
pooling [36,37]. Max pooling can achieve faster convergence and improve the generalization
performance by choosing superior invariants. In the study, the robustness of feature extraction
of the convolution layer is improved by non-overlapping maximum pooling, which is expressed as:

xl
k = max

(m−1)p< j<mp

{
xl−1

i, j,k

}
m = 1, 2, . . . , q

(9)

where i = 1; p indicates the width of each subregion; q indicates the number of subregions; xl−1
i, j,k indicates

the input of the k channel of the l layer, xl
k indicates the k feature mapping of the l− 1 layer.

Step 4: MCFCNN is trained with the training set until the loss function converges to a certain
degree or the number of iterations is satisfied.

Step 5: The trained MCFCNN is validated with the testing set, and the average testing accuracy
and standard deviation are calculated.

4. Experimental Validation

In order to verify the effectiveness of the proposed method, which was compared with single
channel CNN and existing CNN based fusion methods in two fault diagnosis experiments of planetary
gearbox and bearing data of Case Western Reserve University (CWRU) [38]. Where single-channel
CNN takes single-scale PE value of single sensor as input. Different from other methods, MCFCNN
achieves information fusion through multi-channel structure. Firstly, input channels equal to the
number of sensors are constructed in the input layer of the network, and these channels correspond to
different sensors. Then, the convolutional kernels are used to simultaneously extract features from
the signals of different sources and fuse them to provide richer fault information, the flowchart of the
proposed method is shown in Figure 4. In order to avoid random sampling errors, 10 groups of tests
were carried out in all experiments to ensure the reliability.



Entropy 2020, 22, 851 8 of 23

Entropy 2020, 22, x FOR PEER REVIEW 8 of 23 

 

features from the signals of different sources and fuse them to provide richer fault information, the 

flowchart of the proposed method is shown in Figure 4. In order to avoid random sampling errors, 

10 groups of tests were carried out in all experiments to ensure the reliability. 

 

Figure 4. The flowchart of the proposed method. 

4.1. Case 1: Fault Diagnosis Experiment of Planetary Gearbox  

4.1.1. Experiment and Data Description 

The planetary gearbox test rig is composed of operating console, a variable speed drive motor, 

flexible coupling, helical gearbox, planetary gearbox, a magnetic powder brake, and isolation floor. 

The motor is connected with the helical gearbox through the flexible coupling [39]. The planetary 

gearbox and the helical gearbox are connected with the flexible coupling and finally the planet 

gearbox is connected with the magnetic powder brake. The operating console is used to adjust the 

frequency of the motor (0–60 Hz) and the load of the magnetic powder brake (0–100 N·m). The output 

power of the motor is transmitted to the planetary gearbox through bearings and helical gearboxes 

in turn. The structure of the test rig is shown in Figure 5a. The sun gear in the planetary gearbox is 

surrounded by a fixed gear ring and three rotating planet gears and transmits torque to planetary 

gears and the planetary carrier [40]. The carrier then transmits torque to the output shaft. The details 

of the planetary gearbox are given in Table 1. Two 3-axis accelerometers and three 1-axis 

accelerometers are mounted upon planetary gearbox case to acquire vibration signals, the position of 

the accelerometer is shown in Figure 5b. The symbols of “(1), (2), (3), (4), and (5)” indicate the 

monitoring positions of acceleration sensors on the gearbox. Among them, (1) and (2) were 3-axis 

sensors. 

Most of the previous studies focused on fault diagnosis of fixed-axis transmission or relative 

stationary components such as sun gear, inner gear rings and planetary carriers [41], but condition 

monitoring and fault diagnosis of planet gears were seldom reported. In the experiment, five states 

of planetary gear faults with different wear degrees were designed: normal state, single tooth worn 

(stw), two teeth worn (ttw), three teeth worn (thtw), and all teeth worn (atw). The damaged planetary 

gears are shown in Figure 5c–g. For each state, the loads of motor were 0.3 horsepower (hp), 0.5 hp, 

and 1 hp, respectively. All vibration signals were collected at a sampling frequency of 20.48 kHz and 

sampling time was 30 s. According to the structural parameters and speed of the planetary gearbox, 

Figure 4. The flowchart of the proposed method.

4.1. Case 1: Fault Diagnosis Experiment of Planetary Gearbox

4.1.1. Experiment and Data Description

The planetary gearbox test rig is composed of operating console, a variable speed drive motor,
flexible coupling, helical gearbox, planetary gearbox, a magnetic powder brake, and isolation floor.
The motor is connected with the helical gearbox through the flexible coupling [39]. The planetary
gearbox and the helical gearbox are connected with the flexible coupling and finally the planet gearbox
is connected with the magnetic powder brake. The operating console is used to adjust the frequency
of the motor (0–60 Hz) and the load of the magnetic powder brake (0–100 N·m). The output power
of the motor is transmitted to the planetary gearbox through bearings and helical gearboxes in turn.
The structure of the test rig is shown in Figure 5a. The sun gear in the planetary gearbox is surrounded
by a fixed gear ring and three rotating planet gears and transmits torque to planetary gears and the
planetary carrier [40]. The carrier then transmits torque to the output shaft. The details of the planetary
gearbox are given in Table 1. Two 3-axis accelerometers and three 1-axis accelerometers are mounted
upon planetary gearbox case to acquire vibration signals, the position of the accelerometer is shown in
Figure 5b. The symbols of “(1), (2), (3), (4), and (5)” indicate the monitoring positions of acceleration
sensors on the gearbox. Among them, (1) and (2) were 3-axis sensors.

Table 1. Parameters of the planetary gearbox.

Gears Tooth Number

Sun gear 18
Planetary gear (number) 27(3)

Ring carrier 72

Most of the previous studies focused on fault diagnosis of fixed-axis transmission or relative
stationary components such as sun gear, inner gear rings and planetary carriers [41], but condition
monitoring and fault diagnosis of planet gears were seldom reported. In the experiment, five states of
planetary gear faults with different wear degrees were designed: normal state, single tooth worn (stw),
two teeth worn (ttw), three teeth worn (thtw), and all teeth worn (atw). The damaged planetary
gears are shown in Figure 5c–g. For each state, the loads of motor were 0.3 horsepower (hp), 0.5 hp,
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and 1 hp, respectively. All vibration signals were collected at a sampling frequency of 20.48 kHz and
sampling time was 30 s. According to the structural parameters and speed of the planetary gearbox,
the characteristic frequency of the distributed faults of each gear can be calculated, as shown in Table 2.

Entropy 2020, 22, x FOR PEER REVIEW 9 of 23 

 

the characteristic frequency of the distributed faults of each gear can be calculated, as shown in Table 

2. 

  

(a) (b) 

     

(c) (d) (e) (f) (g) 

Figure 5. (a) Structure of the test rig, (b) locations of the five accelerometer sensors, and five states of 

planetary gear including (c) normal planet gear state, (d) single tooth worn, (e) two teeth worn, (f) 

three teeth worn, and (g) all teeth worn. 

Table 1. Parameters of the planetary gearbox. 

Gears Tooth Number 

Sun gear 18 

Planetary gear 

(number) 
27(3) 

Ring carrier 72 

Table 2. Planetary gearbox characteristic frequency. 

Load/ 

Speed 

Meshing 

Frequency 

Rotating Frequency Fault Characteristics Frequencies 

Sun 

Gear 

Planetary 

Gear 

Ring 

Carrier 

Sun 

Gear 

Planetary 

Gear 

Ring 

Carrier 

0.3 hp/40 

HZ 
257.1 HZ 

14.29 

HZ 
9.524 HZ 2.857 HZ 

14.286 

HZ 
9.523 HZ 3.571 HZ 

0.5 hp/50 

HZ 
321.4 HZ 

17.86 

HZ 
11.9 HZ 17.857 HZ 

17.857 

HZ 
11.905 HZ 4.464 HZ 

1 hp/20 

HZ 
128.6 HZ  

7.143 

HZ 
4.762 HZ 1.429 HZ 

7.143 

HZ 
4.762 HZ 1.786 HZ 

In the experiment, each sample contains 1024 data points, and the faulty planetary gear has no 

mesh within the sample length. Therefore, two 3-axis accelerometers and three 1-axis accelerometers 

were used to monitor vibration signals in nine directions, and the total number of samples for each 

state was 5400. Raw vibration signals of the planet gear with atw monitored in nine directions under 

a load of 0.5 hp are shown in Figure. 6. We can see that the signals monitored at different positions 

contained different information. Combined with multi-sensor data, these signals could provide more 

information for fault diagnosis. Then, setting the coarse-grained scale factor =25s , embedding 

dimension 6m  , and time delay 1   to obtain 5400 25  MPE feature sets of the sample. The 25 

Figure 5. (a) Structure of the test rig, (b) locations of the five accelerometer sensors, and five states
of planetary gear including (c) normal planet gear state, (d) single tooth worn, (e) two teeth worn,
(f) three teeth worn, and (g) all teeth worn.

Table 2. Planetary gearbox characteristic frequency.

Load/Speed
Meshing

Frequency
Rotating Frequency Fault Characteristics Frequencies

Sun Gear Planetary Gear Ring Carrier Sun Gear Planetary Gear Ring Carrier

0.3 hp/40 HZ 257.1 HZ 14.29 HZ 9.524 HZ 2.857 HZ 14.286 HZ 9.523 HZ 3.571 HZ
0.5 hp/50 HZ 321.4 HZ 17.86 HZ 11.9 HZ 17.857 HZ 17.857 HZ 11.905 HZ 4.464 HZ
1 hp/20 HZ 128.6 HZ 7.143 HZ 4.762 HZ 1.429 HZ 7.143 HZ 4.762 HZ 1.786 HZ

In the experiment, each sample contains 1024 data points, and the faulty planetary gear has no
mesh within the sample length. Therefore, two 3-axis accelerometers and three 1-axis accelerometers
were used to monitor vibration signals in nine directions, and the total number of samples for each
state was 5400. Raw vibration signals of the planet gear with atw monitored in nine directions under
a load of 0.5 hp are shown in Figure 6. We can see that the signals monitored at different positions
contained different information. Combined with multi-sensor data, these signals could provide
more information for fault diagnosis. Then, setting the coarse-grained scale factor s= 25, embedding
dimension m = 6, and time delay λ = 1 to obtain 5400 ∗ 25 MPE feature sets of the sample. The 25 scale
MPE corresponding to the vibration signal of Figure 6 is shown in Figure 7. For each load, 480 samples
in each direction were randomly selected as the training set. The remaining 120 samples were the
testing set. Table 3 provides the three datasets under different loads.
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Figure 6. Raw vibration signals of the planet gear with atw monitored in nine directions under a
load of 0.5 hp. (a–c) Signals detected with Sensor 1 in the directions of x, y and z axes; (d–f) Signals
detected with Sensor 2 in the directions of x, y, and z axes; (g–i) Signals detected with Sensor 3, Sensor 4,
and Sensor 5 in the x-axis direction.
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Table 3. Experimental datasets.

Planetary Gear States Normal stw ttw thtw atw

Class Label 0 1 2 3 4

Dataset A
Training 480 480 480 480 480 480 480 480 480
Testing 120 120 120 120 120 120 120 120 120

Dataset B
Training 480 480 480 480 480 480 480 480 480
Testing 120 120 120 120 120 120 120 120 120

Dataset C
Training 480 480 480 480 480 480 480 480 480
Testing 120 120 120 120 120 120 120 480 480
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4.1.2. Model Design

The number of channels in the input layer of MCFCNN model can be set according to the number
of sensors used in the experiment. In the planetary gearbox experiment, five groups of sensors were
used to monitor vibration signals in nine directions, so the number of channels in the input layer is 9.
There were 10 convolutional kernels and 20 convolutional kernels in the two convolutional layers.
The convolutional kernels of two convolution layers were set to be 1 × 3. The moving step was set to be
1 and the ratio of max pooling was set to be 1 × 2. At the fully connected layer, the number of neurons
was set to be 200 and Softmax regression was adopted as a classifier. Details of the parameters of the
MCFCNN model are given in Table 4. The structure and parameter initialization of single-channel
CNN used for comparison are the same as those of MCFCNN.

Table 4. Parameters of the MCFCNN model.

MCFCNN Structure/Training Settings Parameters

Structure of MCFCNN

Number of channels of input layer 9
Number and size of convolutional kernels in two
convolutional layers, and the moving step of the

convolutional kernel
20, 40, 1 × 3, 1

Stride of the 2 max-pooling layers 1 × 2
Neuron numbers of the fully connected layer 100

Input of each channel in input layer

Sample size of Sensor 1 in the x-axis direction 1 × 25
Sample size of Sensor 1 in the y-axis direction 1 × 25
Sample size of Sensor 1 in the z-axis direction 1 × 25
Sample size of Sensor 2 in the x-axis direction 1 × 25
Sample size of Sensor 2 in the y-axis direction 1 × 25
Sample size of Sensor 2 in the z-axis direction 1 × 25

Sample size of Sensor 3 1 × 25
Sample size of Sensor 4 1 × 25
Sample size of Sensor 5 1 × 25

Training settings
Mini-batch size 100
Learning ratio 0.0015
Total epochs 100

4.1.3. Comparison between Multi-Channel Fusion Convolution Neural Networks (MCFCNN) and
Single-Channel Convolutional Neural Networks (CNN)

To verify MCFCNN in gearbox fault diagnosis, the proposed method was compared with
single-channel CNN. The two methods were tested through ten trials with three datasets under
three loads, respectively. The diagnostic accuracy of each experiment is shown in Figure 8.
The diagnostic accuracy of the MCFCNN was higher and not affected by load. Table 5 lists the
average testing accuracy and standard deviation of ten trials and average training time of the
two methods. The average diagnostic accuracy of MCFCNN under different loads was between 99.90%
and 100% and that of single-channel CNN was between 81.10% and 99.58%. The average testing
accuracy of single-channel CNN based on X-axis orientation of Sensor 1 and Sensor 5 was between
96.12% and 99.58%. Although they had achieved the acceptable testing accuracy, the standard deviation
of single-channel CNN was much larger than that of MCFCNN model. In addition, compared with
single-channel CNN, the multi-channel structure of MCFCNN can improve the accuracy of diagnosis
with little impact on training time.
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Figure 8. Diagnostic accuracy of ten experiments with single-channel convolutional neural networks
(CNN) based on single-sensor data and MCFCNN based on multi-sensor data on test sets A (a), B (b),
and C (c), respectively.

Table 5. Average testing accuracy, standard deviation, and model training average time of single-channel
CNN based on single-sensor data and MCFCNN based on multi-sensor data.

Inputs Methods

Average Testing Accuracy ± Standard
Deviation (%) Average Training

Time (s)A B C

Sensor 1-x CNN 96.11 ± 2.78 96.02 ± 1.26 99.57 ± 0.16 0.08
Sensor 1-y CNN 96.74 ± 0.83 93.48 ± 1.91 99.88 ± 0.14 0.11
Sensor 1-z CNN 97.50 ± 0.85 86.75 ± 2.81 99.37 ± 0.35 0.08
Sensor 2-x CNN 91.68 ± 2.53 93.97 ± 0.98 99.78 ± 0.18 0.06
Sensor 2-y CNN 92.02 ± 1.03 86.27 ± 1.69 98.12 ± 0.53 0.04
Sensor 2-z CNN 85.15 ± 2.30 77.78 ± 2.50 96.97 ± 0.63 0.07
Sensor 3 CNN 99.00 ± 0.66 97.62 ± 1.30 99.58 ± 0.21 0.06
Sensor 4 CNN 81.10 ± 1.98 97.02 ± 1.50 88.65 ± 7.23 0.07
Sensor 5 CNN 92.15 ± 1.40 95.72 ± 0.67 99.43 ± 0.20 0.08

Sensor 1-x–Sensor 5 MCFCNN 100 99.90 ± 0.12 99.98 ± 0.05 0.10

To further assess the classification performance of MCFCNN, the diagnostic reliability of two
diagnostic methods for each fault state of planetary gear was obtained with the confusion matrix.
The confusion matrices of five fault states of MCFCNN and single-channel CNN are shown in Figure 9.
The column and row of the confusion matrix represents, respectively, the prediction category and the
real category. Green data at the last raw and the last column, respectively, indicate the precision of each
fault state and the recall of each fault. The diagnosis results of each fault state can be obtained from the
confusion matrix. Figure 9a1–a3 show the confusion matrices of MCFCNN for fault identification of
datasets A, B, and C, and Figure 9b1–b3 show the confusion results of single-channel CNN for the fault
identification of the datasets A, B, and C. As can be seen from Figure 9, the best diagnostic results of
single-channel CNN still contain misdiagnosis. In the testing dataset A, the trained single-channel
CNN misdiagnosed two samples with thtw as stw and had an accuracy rate of 99.7% and a total error
of 0.3%. In the testing dataset B, one sample with thtw was misdiagnosed as the sample with ttw
and three normal samples were misdiagnosed as stw and the trained CNN had an accuracy rate of
99.3% and a total error of 0.7%. MCFCNN can well diagnose different levels of wear faults, and the
diagnostic accuracy reaches 100%.
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To verify the feature learning ability of the method, the features in the fully connected layers of
MCFCNN and single-channel CNN were visualized by t-distributed stochastic neighbor embedding
(t-SNE). When MCFCNN and single-channel CNN were used to diagnose the testing datasets A,
B, and C, the features obtained by the fully connected layer were reduced to 2D by the T-SNE
technique to observe the classification effect. As shown in Figure 10, the fully connected layers of the
two models were visualized by the t-SNE [42]. Each point indicates a sample and the axis indicates the
t-SNE dimension.
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In terms of the feature distribution of the fully connected layer, MCFCNN had the good feature
separation capability and classification performance. Multi-channel data fusion and feature fusion
could be well clustered into categories, and not adversely affected by bad signals. It can be judged
that MCFCNN with multi-sensor data as the input can effectively delete redundant information in the
process of feature learning and improve the classification accuracy. Single-channel CNN showed the
good feature separation capability under testing datasets A and C, but the features of two tooth worn
state and three tooth worn state were mixed together. In the testing dataset B, except that the feature
of all tooth worn state was clustered together, the features of three tooth worn state and two tooth
worn state overlapped and the features of normal state and single teeth worn state overlapped, it was
difficult to differentiate the fault of two tooth worn from the fault of three tooth wear or the normal
state from the fault of single teeth worn. In addition, fault size or other properties such as load may
lead to the feature overlapping.

4.1.4. Comparison between MCFCNN and Other Fusion Methods Based on CNN

In order to further prove the stability and superiority of MCFCNN, it is compared with other
fusion methods [13,14,16,17] based CNN and our former model CNNEPDNN [18]. On the basis of
CNN, Jiang et al. [13] and Xia et al. [14] used data splicing to realize data fusion. Jiang et al. [13]
spliced the vibration signal, acoustic signal, current signal and instantaneous angular speed signal into
a one-dimensional matrix, Xia et al. [14] spliced the vibration signal collected by multiple sensors into
a two-dimensional matrix. Then used the obtained matrix as the input of the CNN. Han et al. [16]
proposed DECNN, which integrates multiple parallel CNN through a dynamic ensemble layer which
assigns weight to each branch to achieve the fusion of multi branch features. Multi-level wavelet
coefficients matrixes (MWCMs) were used as the input of each branch. Jiang et al. [17] proposed a
similar MSCNN to address the problem of multi-scale feature extraction. First, the vibration signal was
coarse-grained with different scale factors, and then different coarse-grained sequences were fed into
the branches of MSCNN. In [18], we constructed a CNNPEDNN model for DNN parallel ensemble
CNN based on feature fusion. The vibration signals and time domain statistical features were used as
the input of the two branches of the model. The diagnostic results of various methods are shown in
Figure 11 and other performance analyses are listed in Table 6.Entropy 2020, 22, x FOR PEER REVIEW 16 of 23 
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Table 6. Performance analysis of various methods.

Methods

Average Testing Accuracy ± Standard
Deviation (%) Average Training

Time (s)
Number of
Parameters

A B C

Jing et al. [13] 92.65 ± 3.49 93.83 ± 1.84 98.71 ± 0.67 24.6(CPU) 133,517
Xia et al. [14] 84.35 ± 3.81 77.92 ± 6.35 87.11 ± 3.91 27(CPU) 142,274
Han et al. [16] 92.11 ± 2.02 87.59 ± 3.21 94.65 ± 2.09 17(GPU) 218,138
Jiang et al. [17] 91.91 ± 2.80 87.34 ± 2.69 95.41 ± 1.67 15(GPU) 135,454

CNNPEDNN [18] 89.08 ± 1.15 85.44 ± 1.28 90.08 ± 1.34 0.13 132,981
MCFCNN 100 99.90 ± 0.12 99.98 ± 0.05 0.1(CPU) 115,942

Under three datasets, MCFCNN had the better classification performance than other methods
(Table 6 and Figure 11). Our former CNNEPDNN model is based on the feature fusion of single
sensor data. Without the help of multi-sensor data and multi-scale analysis, the performance of
the CNNEPDNN model decreased. Jing’s method and Xia’s method took all sensor data as the
input, but MCFCNN adopted the multi-channel structure and could effectively remove redundant
information and improve diagnosis results and stability. Compared with Han’s method and Jiang’s
method, multi-channel structure of MCFCNN method is simple and easy. Multi-channel shares a
CNN model, which greatly reduces the training parameters, and accelerates the convergence of loss
function. In the experiment, the average training time of MCFCNN method is 0.1 s, which meets actual
application requirements.

4.1.5. Load Adaptability Verification

In practical engineering application, the load of rotating machinery always changes, and the fault
diagnosis model needs to adapt to different load conditions. In order to verify the load adaptability
of the proposed method, the training datasets A, B, and C are used to train the model, and the other
two testing datasets different from the training set are used to test the trained model. For example,
the model is trained on training dataset A, and tested on testing dataset B, which is represented
by symbol “A→ B”. Therefore, there are six combinations between the training set and the test set,
each training dataset contains 480 samples and the test dataset contains 120 samples. It can be observed
from Table 5 that under three kinds of loads, the average testing accuracy of single channel CNN
based on X-axis orientation of Sensor 1 and Sensor3 is better than that of other position sensors.
Therefore, in this experiment, PE values of vibration signals of these two sensors are used as sample
dataset to test the load adaptability of single channel CNN model, and the other CNN based fusion
methods [13,14,16–18] is also investigated. The experiment result are shown in Table 7.

Table 7. Different combinations of training dataset and testing dataset of planetary gearbox.

Input Method A→B A→C B→A B→C C→A C→B Average

PE features of sensor 1 CNN 51.81 41.37 58.47 42.83 36.56 31.82 43.81
PE features of sensor 3 CNN 62.82 48.90 68.07 47.93 34.92 32.24 49.15

Vibration signals Jing et al. [13] 67.70 47.95 63.84 46.65 48.82 52.91 54.65
Vibration signals Xia et al. [14] 57.53 43.11 56.80 33.33 46.14 31.74 44.78

MWCMs Han et al. [16] 62.10 54.09 67.16 43.10 45.54 46.82 51.47
Vibration signals Jiang et al. [17] 73.65 62.35 70.58 50.26 59.87 48.34 60.84

Vibration signals and time
domain statistical features CNNEPDNN [18] 60.07 51.50 63.45 35.67 47.67 45.34 50.61

MPE features MCFCNN 88.20 75.28 92.75 77.33 78.20 74.83 81.10

Compared with Tables 5 and 6, the average test accuracy of each method decreased significantly.
We suppose that due to the complexity of the signal transmission path of the planetary gearbox,
the features extracted by the model are not sensitive to load changes. In the case of “A→B” and “B→A”,
all methods achieve high accuracy, which means that the features of datasets A and B are more similar
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than others. Overall, compared with other methods, MCFCNN achieves the highest average accuracy,
which proves that MCFCNN has strong load adaptability.

4.2. Case 2: Fault Diagnosis Experiment of Rolling Bearing

It is difficult to verify the performance of the proposed method with a single dataset, so the
proposed method is also tested on CWRU’s rolling bearing fault dataset. CWRU dataset is the world
recognized standard dataset for bearing fault diagnosis. In the field of fault diagnosis based on deep
learning, the test data of the two most cited papers [43,44] are all from the CWRU bearing dataset.
In order to evaluate the superiority of the proposed method, the most objective way is to use a
third-party standard dataset to compare with current mainstream algorithms. Therefore, this paper
uses CWRU bearing dataset.

4.2.1. Experiment and Data Description

As shown in Figure 12, the rolling bearing fault experiment platform of CWRU is composed of
2 horsepower (1.5 kW) motor, torque sensor, acceleration sensor, power tester, etc. The rolling bearing
models at the drive end and fan end are 6205-2rs JEM SKF and 6203, respectively. The single point
faults with diameters of 7, 14, and 21 mils were manufactured on the inner raceway, outer raceway,
and rolling body of normal bearing by electro-discharge machining (EDM). In the case of inner raceway
fault, two acceleration sensors were installed on the 12 o’clock position above the motor drive end (DE)
and fan end (FE) through a magnetic base. In the case of outer raceway fault and rolling element fault,
in addition to the drive end and fan end, sensor was installed on the motor supporting plate (SBP) to
collect signals. The vibration signals were collected by 16 channel DAT recorder, and the sampling
frequency was 12 kHz.
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Due to the different number of sensors, this paper studies 6 classes of faults with different severity
on the rolling element and outer raceway of the drive end rolling bearing when the motor load is 0, 2,
3 horsepower (hp). Figure 13 shows the time-domain waveform of the 10 s vibration signal collected
by the sensors at the drive end, fan end and motor support base plate when the motor load is 2 hp
and the fault diameter of the rolling element is 7 mils. The vibration signals of each type of fault state
monitored by the sensor are divided into samples of the same length, each sample length is 1024,
and the number of samples of each health state is 118. Therefore, the samples at each load generate
datasets A, B, and C, and each dataset is divided into training set and test set according to 80% and
20% percentages. A detailed description of the experimental data is given in Table 8. According to the
MPE parameter setting in Experiment 1, the MPE value of each sample is calculated, and the MPE
feature set of size 118 × 25 is obtained. The result of MPE corresponding to the vibration signal of
Figure 13 is shown in Figure 14.
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monitored on the drive end, fan end and supporting base plate, respectively.

Table 8. Experimental datasets.

Fault Location Rolling Element Outer Raceway

Fault size (mils) 7 14 21 7 14 21
Class label 0 1 2 3 4 5

Dataset A
Training 94 94 94 94 94 94
Testing 24 24 24 24 24 24

Dataset B
Training 94 94 94 94 94 94
Testing 24 24 24 24 24 24

Dataset C
Training 94 94 94 94 94 94
Testing 24 24 24 24 24 24
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4.2.2. Model Designing

Three groups of sensors were used to monitor the vibration signals in three directions in the rolling
bearing experiment of CWRU. Therefore, the number of channels in the input layer of MCFCNN
model is 3, and other parameters are the same as those in Experiment 1.
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4.2.3. Comparison between MCFCNN and Single-Channel CNN

MCFCNN model and single channel CNN model are used for rolling bearing fault diagnosis.
MCFCNN model simultaneously takes the MPE value of DE, FE, and SBP sensor data as input,
and single channel CNN takes PE value of single sensor as input. The diagnostic accuracy of the
two models in ten experiments on three datasets under three loads are shown in Figure 15. It can be
seen from the figure that the test accuracy of MCFCNN model is always better than that of single
channel CNN model for each load data. Table 9 gives the average test accuracy, standard deviation,
and average training time of the two models. The average test accuracy of single-channel CNN on SBP
sensors reached 99.17%, 99.31%, and 98.06%, while the highest average test accuracy on DE and FE
sensors was 97.64% and 96.39%, respectively. In contrast, the average test accuracy of MCFCNN model
is 100%, which further illustrates that the proposed method can improve the accuracy of diagnosis by
fusing MPE features of multi-sensor vibration signals.
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Figure 15. Diagnostic accuracy of ten experiments with single-channel CNN based on single-sensor
data and MCFCNN based on multi-sensor data on test sets A (a), B (b), and C (c), respectively.

Table 9. Average testing accuracy, standard deviation, and model training average time of single-channel
CNN based on single-sensor data and MCFCNN based on multi-sensor data.

Inputs Methods
Average Testing Accuracy ± Standard Deviation (%) Average Training

Time (s)A B C

DE_Sensor CNN 88.61 ± 2.91 97.64 ± 1.97 90.97 ± 3.16 0.04
FE_Sensor CNN 90.70 ± 5.93 96.39 ± 1.88 88.25 ± 4.51 0.04

SBP_Sensor CNN 99.17 ± 0. 0.97 99.31 ± 1.35 98.06 ± 3.41 0.04
All Sensors MCFCNN 100 100 100 0.02

4.2.4. Comparison between MCFCNN and Other Fusion Methods Based on CNN

The model used for comparison is the same as the planetary gearbox fault diagnosis experiment,
and the experimental results are shown in Table 10. The results show that the average diagnostic
accuracy of MCFCNN model is 100%, the average training time of MCFCNN model is 0.02 s, and the
performance of MCFCNN model is better than other fusion models.
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Table 10. Performance analysis of various methods.

Methods
Average Testing Accuracy ± Standard Deviation (%) Average Training

Time (s)
Number of
ParametersA B C

Jing et al. [13] 99.28 ± 0.23 99.65 ± 0.30 98.65 ± 0.43 5(CPU) 133,517
Xia et al. [14] 99.87 ± 0.35 99.41 ± 0.33 99.75 ± 0.21 7(CPU) 142,274
Han et al. [16] 98.78 ± 0.71 99.11 ± 0.63 98.61 ± 0.57 10(GPU) 218,138
Jiang et al. [17] 99.05 ± 0.39 98.84 ± 0.68 99.59 ± 0.46 10(GPU) 135,454

CNNEPDNN [18] 95.76 ± 0.70 97.62 ± 0.42 98.10 ± 0.46 0.14(CPU) 132,981
MCFCNN 100 100 100 0.02 (CPU) 115,942

4.2.5. Load Adaptability Verification

The load adaptability of the proposed method is verified on the rolling bearing data. During the
experiment, the models trained on different training datasets A, B, and C are tested on different testing
datasets. Each training dataset and testing dataset contains 94 and 24 samples, Table 11 shows the test
accuracy results of the comparison methods. Note: as can be seen from Table 9, the diagnosis results of
single channel CNN on SBP sensor data are better, so in this experiment, the sample dataset of single
channel CNN comes from the PE features of the vibration signals of SBP sensor.

Table 11. Different combinations of training dataset and testing dataset of rolling bearing.

Input Data Method A→B A→C B→A B→C C→A C→B Average

PE features CNN 56.02 60.42 53.17 84.52 59.32 90.90 67.39
Vibration signals Jing et al. [13] 65.51 64.63 60.00 82.18 67.22 88.33 71.31
Vibration signals Xia et al. [14] 70.47 62.33 64.07 81.31 68.60 85.69 72.08

MWCMs Han et al. [16] 74.53 65.60 62.86 80.45 68.27 83.45 72.53
Vibration signals Jiang et al. [17] 83.73 89.51 75.34 93.25 85.42 95.14 87.07

Vibration signals and time
domain statistical features CNNEPDNN [18] 58.29 76.54 59.82 83.10 63.71 88.59 71.68

MPE features MCFCNN 96.30 93.61 76.11 97.06 94.05 98.75 92.65

It can be seen from the results that under different loads, the proposed method achieves higher
accuracy than other methods, but compared with Tables 9 and 10, the average test accuracy of each
method is significantly reduced. However, in the case of “B→A”, the average test accuracy of the
proposed method is 76.11%, which is higher than other method, but the load adaptive performance
is not good. In addition, we also found that there is a 20.19% difference in the test accuracy of the
MCFCNN model between “A→B” and “B→ A” cases. This is because the MPE features of the fusion
DE sensor and the FE sensor is helpful for the “A→B” case, but not for the “B→A” case. In the case of
“B→C” and “C→B”, all methods have achieved higher accuracy, which means that the characteristics
of datasets B and C are relatively similar.

5. Conclusions

In this paper, a fault diagnosis method based on MCFCNN and MPE is proposed for the fault
diagnosis of rotating machinery. Firstly, the permutation entropy across 25 scales is extracted from the
vibration signal to represent the fault information of the signals on multiple timescales. The extracted
MPE features are then input to MCFCNN for information fusion and fault identification. The novelty
of MCFCNN is that several channels are built for the input layer, which correspond to different sensors.
Sharing a CNN structure between channels. MCFCNN realizes end-to-end multi-source information
fusion and classification without human intervention. The proposed method was verified by the
experimental data of the planetary gearbox and rolling bearing. Experimental results show that the
proposed method can effectively identify faults with different severity of gearbox and rolling bearing.
Through comparative research with single-channel CNN and other CNN-based fusion methods,
the proposed method has obvious superiority in learning ability, loss function convergence speed,
training time, fault recognition, and load adaptability.
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In the next work, we will test the proposed method under more conditions. Furthermore, in terms
of load adaptation, there is still the possibility of improving the fault identification rate, so we will
consider using different types of sensors to fuse and optimize the network structure, so as to achieve
better fault diagnosis performance.
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