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Disruption of seasonal influenza circulation
and evolution during the 2009 H1N1 and
COVID-19 pandemics in Southeastern Asia

Zhiyuan Chen1, Joseph L.-H. Tsui 2,3, Jun Cai 1, Shuo Su1,4, Cécile Viboud 5,
Louis du Plessis 6,7,10, Philippe Lemey 8,10 , Moritz U. G. Kraemer 2,3,10 &
Hongjie Yu 1,4,9,10

East, South, and Southeast Asia (together referred to as Southeastern Asia
hereafter) have been recognized as critical areas fuelling the global circulation
of seasonal influenza. However, the seasonal influenza migration network
within Southeastern Asia remains unclear, including how pandemic-related
disruptions altered this network. We leveraged genetic, epidemiological, and
airline travel data between 2007-2023 to characterise the dispersal patterns of
influenza A/H3N2 and B/Victoria viruses both out of and within Southeastern
Asia, including during perturbations by the 2009 A/H1N1 and COVID-19 pan-
demics. During the COVID-19 pandemic, consistent autumn-winter movement
waves from Southeastern Asia to temperate regions were interrupted for both
subtype/lineages, however the A/H1N1 pandemic only disrupted A/H3N2
spread. We find a higher persistence of A/H3N2 than B/Victoria circulation in
Southeastern Asia and identify distinct pandemic-related disruptions in A/
H3N2 antigenic evolution between two pandemics, compared to interpan-
demic levels; similar patterns areobserved inB/Victoria using genetic distance.
The internal movement structure within Southeastern Asia markedly diverged
during the COVID-19 pandemic season, and to a lesser extent, during the 2009
A/H1N1 pandemic season. Our findings provide insights into the hetero-
geneous impact of two distinct pandemic-related disruptions on influenza
circulation, which can help anticipate the effects of future pandemics and
potential mitigation strategies on influenza dynamics.

Seasonal influenza infections occur annually and cause a significant
disease burden across the world1. Human mobility and inter-
connectedness is thought to be the main driver of worldwide human
influenza virus spread2, while a combination of antigenic evolution to
escape immunity and waning immunity results in an oscillating supply

of susceptible hosts leading to frequent reinfections3. Seasonal influ-
enza viruses cause predictable annual epidemics in temperate regions
as well as relatively divergent waves in tropical regions4,5. Newly-
emerged influenza viruses can disrupt this pattern through cross-
subtype population immunity6,7. In parallel, other co-circulating
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seasonal or novel respiratory pathogens can shape the spread of sea-
sonal influenza viruses, especially when they are associated with
human behavioural changes in response to non-pharmaceutical
interventions (NPIs) and declarations of public health emergencies8,9.
Two emerging pathogens, the swine-origin influenza A/H1N1 virus and
SARS-CoV-2, triggered global pandemics in 2009 and 2020 respec-
tively. However, whether and how changes in human behaviour and
cross-subtype population immunity during the course of these pan-
demics affected seasonal influenza circulation, especially in South-
eastern Asia (here defined as East, South, and Southeast Asia), remains
unclear.

Our previous work evaluated the global dispersal patterns of four
seasonal influenza subtypes/lineages (A/H3N2, A/H1N1pdm09, B/Vic-
toria and B/Yamagata) among 12 broad geographical regions prior,
during, and after the COVID-19 pandemic, and found that the pan-
demic’s onset led to a shift in the intensity and structure of the inter-
national movement of influenza lineages10. Beyond the global
perspective focusing only on the COVID-19 or A/H1N1 pandemics
alone7,8,10, comparisons of the impacts of the 2009 A/H1N1 and COVID-
19 pandemics on influenza circulation at a finer spatial scale are still
lacking. Apart from the heterogeneity in the intensity of NPIs during
the two pandemics, different degrees of viral interference (namely,
virus‒virus interactions via cross-immunity) can also be expected
between seasonal influenza viruses and the two pandemic viruses6,11,12.
Additionally, the structure of the influenza virus migration network
within Asia, especially Southeastern Asia, has rarely been explored.
Understanding the internal migration network within Southeastern
Asia is critical as it has been suggested to play an essential role in
generating antigenically distinct seasonal viruses and seeding global
seasonal influenza epidemics4,13,14. Changes in human behaviour and
cross-immunity during the 2009 A/H1N1 and COVID-19 pandemics
provide natural experiments to evaluate temporal shifts on the circu-
lation patterns of seasonal influenza in Southeastern Asia relative to
the baseline interpandemic period, and elucidate the mechanisms at
play. A comprehensive genomic and epidemiological assessment of
the interplay between pandemic-related disruptions and seasonal
influenza circulation in Southeastern Asia can further inform potential
strategies for mitigating global disease burdens in the future.

In this study, we leveraged genetic, epidemiological, and airline
travel data to assess the circulation dynamics of seasonal influenza
emanating fromandwithinSoutheasternAsia between 2007 and 2023,
covering the apexes of two global pandemics and multiple interpan-
demic seasons. Specifically, we first inferred the seasonality of viral
movement out of Southeastern Asia, and identified those viral lineages
that potentially persisted within Southeastern Asia (defined as persis-
tent lineages) to trace their internal circulation dynamics. We subse-
quently performed long-term comparisons of the internal spread of
seasonal influenza within Southeastern Asia and evaluated how influ-
enza circulation was impacted by the two pandemics.

Results
Disruptions of influenza A/H3N2 and B/Victoria activity during
pandemic seasons
To synchronise with the northern hemisphere influenza seasons (from
July 1st of one year to June 30th of the next year15,16), the 2009 A/H1N1
and COVID-19 pandemic periods were respectively defined as span-
ning from July 2009 to June 2010 and from July 2020 to June 2021, with
the periods between them labelled as the interpandemic periods/
seasons. Similar to our previous work relating specifically to the
COVID-19 pandemic period10, the sampling intensity of virological
surveillance for seasonal influenza during the two pandemic seasons
was no lower than during previous seasons (Fig. 1a). The amplitude of
surveillance intensity fluctuated across region and time, with a large
increasedirectly after the start of the A/H1N1 pandemic and a generally
increasing trend thereafter (Fig. 1a). Yearly fluctuations in viral

sampling were observed in temperate regions, peaking in their
respective winter months (Fig. 1a, b). On the other hand, surveillance
intensity within any given year remained relatively stable in South-
eastern Asia (Fig. 1a, b), due to persistent influenza circulation
throughout the year in large parts of the region17,18.

Given the emergence of A/H1N1pdm09 in 200919 and the sub-
sequent replacement of the previously circulating seasonal A/H1N1
virus, as well as the potential elimination of B/Yamagata in 202020, we
focused on the remaining two human influenza subtypes/lineages, A/
H3N2 and B/Victoria, for which we could study disruptions associated
with two pandemic seasons. Initially, we established the average curve
of positivity rate (as a proxy of influenza activity21) for seasons in the
interpandemic period following epidemic alignment by peak week
(details in “Methods”, Supplementary Figs. 1, 2) as a baseline, against
which the positivity rates during the two pandemic seasons were
contextualised (Fig. 1c–e, g–i).

In temperate regions we observe a single annual winter wave of A/
H3N2 circulation during the interpandemic period, while biannual
peaks are observed in Southeastern Asia. Compared to interpandemic
averages, extremely low A/H3N2 positivity rates were observed in all
three regions throughout the two pandemics, except for a single peak
occurring in Southeastern Asia in late August 2009 during the A/H1N1
pandemic, without a subsequent secondpeak (Fig. 1c–e). This singleA/
H3N2 wave was hypothesised to be associated with limited imple-
mentation of NPIs during the A/H1N1 pandemic22, while the absence of
a second peak could be attributable to viral interference due to large-
scale transmission of the novel A/H1N1 pandemic virus23, presumably
via heterosubtypic cross-immunity6. The low positivity rate of A/H3N2
during the COVID-19 pandemic in all regions further highlights the
impact of human behavioural changes on influenza circulation.

Despite variations in B/Victoria activity from season to season, we
observe a single peak in all three regions during the interpandemic
period, with a lower and usually delayed peak compared to A/H3N2
(Fig. 1g–i). A larger than usual wave of B/Victoria occurred in South-
eastern Asia in January–March 2010 during the A/H1N1 pandemic,
whereas little circulation was observed during the COVID-19 pandemic
(Fig. 1i). In Southeastern Asia, the decline of B/Victoria positivity in
2020 was strongly associated with the reduction of among-country
airline traffic flow (Pearson correlation coefficient: 0.89), after con-
trolling for seasonality (calculating the changes relative to the baseline
month before the pandemic).

The two pandemics occurred under heterogeneous conditions
(Supplementary Table 1, Supplementary Figs. 3–5). Since there are few
records of the stringency of travel measures and NPIs during the H1N1
pandemic, we calculated an air travel-related stringency index (other
behavioural changes are not included), basedon the strong correlation
between airline traffic and the COVID-19 stringency index during the
COVID-19 pandemic (Supplementary Table 2). In comparison to the
2009 H1N1 pandemic, the COVID-19 pandemic was associated with a
far higher air travel-related stringency index (SupplementaryFig. 3). To
further determine correlates with seasonal influenza activity during
the pandemic seasons, we built a random forest model to assess the
importanceof predictors.We identified theCOVID-19 stringency index
as the most important predictor associated with the decline of sea-
sonal influenza activity during the COVID-19 pandemic, while the
socio-demographic index (a composite indicator constructed from
income per capita, average years of schooling, and total fertility rate24)
played the most important role during the 2009 A/H1N1 pandemic
(Supplementary Fig. 6).

InfluenzaA/H3N2 andB/Victoriamovements fromSoutheastern
Asia to temperate regions
Given the heterogeneous spatiotemporal distribution of genetic
sequences (Fig. 1f, j), we adopted three sub-sampling schemes to select
sequences and assess the potential impact of sampling biases
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(Supplementary Fig. 7). We first extended a previous study10 by per-
forming a two-state discrete trait analysis to estimate Markov jump
events (referred to as viral movement events) between Southeastern
Asia and temperate regions from 2007 to 2023 (Supplementary Fig. 8
and Fig. 2). All three sub-sampling schemes resulted in similar numbers
of viral movements between locations over time, for both subtypes/
lineages (Supplementary Fig. 8), indicating that the signal is robust to
the sub-sampling scheme. In our main analysis we employed an even
sub-sampling scheme by time and location (details in “Methods”), as it
has been shown tobemore robust to sampling bias25. Despite selecting
a similar number of genetic sequences from both regions, a higher
frequency of A/H3N2 movements from Southeastern Asia to tempe-
rate regions was detected, compared to the reverse direction (Fig. 2a).
Regarding B/Victoria lineages, the pattern of bidirectional movements
between the two regions varied widely from season to season (Sup-
plementary Fig. 8d–f), but with a more balanced flux than A/H3N2
(Fig. 2a, b).

After aligning the peaks of each season to their median epidemic
week,we subsequently averaged the number of viralmovement events

from Southeastern Asia to temperate regions during the interpan-
demic period. As a baseline, A/H3N2 movement from Southeastern
Asia gradually peaked in early December in interpandemic seasons
(Fig. 2c), while B/Victoriamovements peaked in January, althoughwith
a heavy tail toward earlier weeks, indicating sustained movements
starting much earlier (Fig. 2d). During the two pandemics, the typical
A/H3N2 winter peak in exports from Southeastern Asia disappeared.
During the A/H1N1 pandemic, B/Victoria movement peaked at the
same time as during the interpandemic period, and at a level con-
sistent with interpandemic activity. This coincides with the large B/
Victoria wave in Southeastern Asia during the same time period, indi-
cating sustained exports from Southeastern Asia, but not establish-
ment in temperate regions (Fig. 1g–i). However, no corresponding B/
Victoria winter peak was detected during the COVID-19 pandemic.

Persistent influenza lineages within Southeastern Asia
To enable further reconstruction of the internal network within
Southeastern Asia, we categorised the viruses circulating in South-
eastern Asia based on whether they had been inferred to have either
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Fig. 1 | Variation in testing intensity, positivity rate, and numbers of HA gene
sequences of seasonal influenza viruses in Southeastern Asia and temperate
regions of the northern hemisphere (NH) and southern hemisphere (SH). a A
five-week running average of the number of specimens tested for influenza in three
geographic regions. Light and dark red shading denote the A/H1N1 and COVID-19
pandemic seasons, respectively, betweenwhich are interpandemic seasons. Global-
scale data after 2017, presented in Fig. 1a of our previous study10, have been re-
aggregated into three regions and are retained here for the comparisons between
the two pandemic seasons. b Geographic divisions used in this study. The entirety
of South Americawas groupedwith the SouthernHemispheregiven recommended
use of the Southern Hemisphere vaccine formulation throughout the region5,54.
c–e Average positivity rates for A/H3N2 for seasons in the interpandemic period
(cyan-blue lines) versus that during the 2009 A/H1N1 pandemic season (orange
lines) and the COVID-19 pandemic season (red lines). Cyan-blue lines represent
mean positivity rates for A/H3N2 after aligning the median week of peak (shown as

the dashed line) for the seasons in the interpandemic periods, where grey lines
show the five-week rolling positivity rate for each season separately after epidemic
alignment. The processing details have been presented in Supplementary Figs. 1, 2.
ISO week 53 was removed for some years to maintain temporal consistency. Two
epidemic alignments of A/H3N2 were performed in Southeastern Asia by splitting
each influenza season into a summer (corresponding to the summer peak) and
winter season (corresponding to the winter peak). In (d, h) the first half of the
positivity lines (Jan–Jun 2010; Jan–Jun 2021) during the pandemic periods occurred
after the second half of the line (Jul–Dec 2009; Jul–Dec 2020), for temporal com-
parison. In (e) the first half of the positivity lines (Apr–Jun 2010; Apr–Jun 2021)
during the pandemic periods occurred after the second half of the lines (Jul
2009–Mar 2010; Jul 2020–Mar 2021). f HA gene sequences of A/H3N2 stratified by
geographic regions over time. g–i Same as (c–e) but for B/Victoria. j Same as (f) but
for B/Victoria.
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been newly introduced or persisted in the region from a previous
season. Briefly, for lineages in Southeastern Asia, “persistent lineages”
are defined as those lineages descended from the most recent
Southeastern Asia trunk node. Although we do not interpret this in
terms of epidemiological persistence of transmission chains between
seasons, these lineages can be seen as more likely to have persisted
from previous seasons rather than being recently introduced into
Southeastern Asia (Fig. 3a, details in “Methods”).

Themaximum clade credibility (MCC) tree of A/H3N2 exhibited a
trunk that was consistently associated with Southeastern Asia,
whereas the trunk location of B/Victoria displayed variations across
influenza seasons (Fig. 3b, c, Supplementary Fig. 9), consistent with
more balanced B/Victoria fluxes between Southeastern Asia and
temperate regions (Fig. 2a, b). This aligns with past observations that
global A/H3N2 circulation patterns exhibit a stronger and more pre-
dictable source-sink dynamic than B/Victoria4,26,27. We found that a

higher percentage of A/H3N2 viruses sequenced in Southeastern Asia
belonged topersistent lineages (86.1%) thanB/Victoria viruses (36.3%)
(P < 0.001, chi-square test) (Fig. 3d, e). Interestingly, the percentage of
A/H3N2 viruses in Southeastern Asia belonging to persistent lineages
appears to have increased during the COVID-19 pandemic season
(Fig. 3d). These findings remain robust to the sub-sampling schemes
(Supplementary Fig. 10).

Shifts in antigenically leading and trailing patterns
To provide more insights into the evolutionary heterochrony across
regions and seasons, we calculated sequence-based antigenic dis-
tances for A/H3N2, a subtype whose antigenic sites have been clearly
resolved28,29. Based on the HA genetic sequence of A/H3N2, we calcu-
lated the Hamming distances of each virus strain to the vaccine strain
(A/Wisconsin/67/2005) across the five major antigenic sites following
the approach from30. We found that A/H3N2 viruses evolved linearly
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from2007 to 2023 (Fig. 4a), with no clear outliers during the pandemic
seasons. This suggests that A/H3N2 viruses circulating in both South-
easternAsia and temperate regions underwent antigenic evolution in a
globally homogeneous way, consistent with the ladder-like tree
topology of A/H3N2 (Fig. 3a) and previous findings4,31.

Next, we explored which regions typically lead or lag A/H3N2
antigenic evolution, andwhether pandemicsmayhave disrupted these
patterns. We computed the distance of each strain to the fitted line
between antigenic distance and time of collection, for which points to
the right of the line indicated antigenically advanced strains, while
those to the left indicated antigenically lagging strains4 (Fig. 4a). Dur-
ing the interpandemic period, newly emerged A/H3N2 strains
appeared in Southeastern Asia on average, 3.1 months earlier than in
temperate regions, while the greatest lag in arrival of antigenic novelty
was found in South Americawith a delay of 5.1months (Fig. 4b).Within
Southeastern Asia, persistent A/H3N2 strains appeared on average
3.3 months earlier than non-persistent lineages. Additionally, this
leading and trailing pattern differed from period to period (Fig. 4b).
During theA/H1N1 pandemic, newly emergedA/H3N2 strains appeared
on average 10.0 months earlier in Southeastern Asia and 9.0 months
earlier in temperate regions compared to the interpandemic period
(both P < 0.001, Supplementary Table 3). However, during the COVID-
19 pandemic, A/H3N2 antigenic evolution lagged in both Southeastern
Asia (by 5.3 months, P <0.001) and temperate regions (by 1.8 months,
P =0.632) compared to the interpandemic period (Supplementary
Table 3).

We also used genetic distance to perform the same analysis for B/
Victoria, motivated by congruent patterns between antigenic distance
and genetic distance for A/H3N2 (Fig. 4, Supplementary Fig. 11a, b).
Compared toA/H3N2, inSoutheasternAsia, the time-advancedpattern
of B/Victoria during the interpandemic period is absent, while the
advanced pattern (by 8.5 months) during the 2009 H1N1 pandemic is

still observed, and the lagged pattern (by 4.5 months) during the
COVID-19 pandemic is only observed for persistent lineages (Supple-
mentary Fig. 11c, d). More population-based andmodelling studies are
required to deepen our understanding of the exact mechanisms
underpinning our observations.

Characterising the A/H3N2 movement network within
Southeastern Asia
Next, we used the persistent lineages of A/H3N2 within Southeastern
Asia, identified earlier, to reconstruct the transmission network in this
region. Although the inferred internal network fluctuated from season
to season, we constructed an average network using the intensity of
viral movement between pairs of sub-locations per season during the
interpandemic period as a baseline, and contrasted baseline patterns
with thoseof pandemic seasons (Fig. 5a). During theA/H1N1 pandemic,
the overall number of inferred virus movement events declined by
52.2% compared to the baseline, whereas movement intensity
increased for routes from Indonesia-East Timor and Laos (Fig. 5b,
Supplementary Fig. 12). During the COVID-19 pandemic, the overall
number of viral movements declined by 85.3% compared to the
interpandemic period (Fig. 5c). The reductions were consistent for the
epoch-specific dispersal rates accounting for the tree length
(decreased by 53.5% and 69.7% during the 2009 A/H1N1 and COVID-19
pandemic seasons, respectively) (Fig. 5d). We further subdivided
Southeastern Asia into East Asia, South Asia, and Southeast Asia to
performamultidimensional scaling analysis for vectorized asymmetric
movement matrices among these three sub-regions. There was a
marked divergence in internal movement network structure during
the COVID-19 pandemic, and to a lesser extent during the A/H1N1
pandemic season, in comparison to the well-mixed pattern that was
observed during the interpandemic seasons (Fig. 5e). Further analysis
of the trunk location revealed a temporally varying pattern
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(Supplementary Fig. 13), indicating that the internal network within
Southeastern Asia is a dynamic process that is maintained not only by
one sub-location as the source population, consistentwith prior work4.

We further estimate the A/H3N2 phylogenetic similarity using the
tree topology andbranch length32 (PhyloSor, details in “Methods”), as a
proxy for lineagemixing among the three sub-regions (East Asia, South
Asia, and Southeast Asia). During the A/H1N1 pandemic season, there
was a considerable amount of lineage mixing between pairs of sub-
regions within Southeastern Asia, aligned with that of prior seasons,
but a notable increase was seen in 2010–2011 between Southeast Asia
and South Asia (similarity: 0.44, 95% highest posterior density (HPD):
0.39–0.49, Fig. 5f). The extent of lineage mixing only slightly declined
during the COVID-19 pandemic season in 2020–2021 for all pairs of
sub-regions, but declined precipitously in 2021–2022 between East
Asia and South Asia, and East Asia and Southeast Asia. We hypothesise
that virus lineages are still able to circulate on the samebranchof a tree
phylogeny despite low activity, explaining the “delayed” effect of the
pandemic on A/H3N2 similarity. To test this, we further investigated
viralmovements inEastAsia,whereweselectedChina as an example to
assess the impact during and after the adoption of stringent border
closures. We found that overall airline traffic into and out of China
correlated well with viral movement fluxes into and out of China
(Pearson correlation coefficient: 0.91 and0.93, respectively). However,
the internal viralmovement intensity in China recovered earlier and to
a larger extent than cross-border movement from/to China, after

border control measures were gradually relaxed in the
2021–2022 season (Supplementary Fig. 14).

Finally, we show that the time-variable air traffic network among
pairs of sub-locations strongly contributed to the internal A/
H3N2 spread within the whole Southeastern Asia region for the entire
period (coefficient: 0.95, 95% HPD: 0.81–1.12, Supplementary Table 4).
Our results also indicate a positive association between overall dis-
persal rate and the total airline traffic (log regression coefficient: 0.44,
95% HPD: 0.32–0.57).

Discussion
We expanded and refined our previous work10 by focusing on South-
eastern Asia and comparing two distinct pandemics (strong decline in
human movements during the COVID-19 pandemic, pronounced
pathogen interference during the A/H1N1 pandemic) at a finer spatio-
temporal resolution. We demonstrated that typical autumn-winter
waves of A/H3N2 andB/Victoriamovements fromSoutheastern Asia to
temperate regions disappeared almost completely during the COVID-
19 pandemic-related disruption. However, B/Victoria lineage move-
ment into temperate regions still occurred during the A/H1N1 pan-
demic. While we observed a wave of B/Victoria exports from
Southeastern Asia to temperate regions during the A/H1N1 pandemic,
coinciding with a large B/Victoria epidemic wave in Southeastern Asia,
these exports did not spark B/Victoria epidemic waves in temperate
regions, suggesting little to no establishment of exported lineages.
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Fig. 5 | The migration network and phylogenetic similarity of persistent A/
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We found opposite patterns of pandemic-related disruptions on
A/H3N2 antigenic evolution. The time-advanced pattern of A/H3N2
antigenic evolution seen globally during the A/H1N1 pandemic may be
linked to modest NPIs and enhanced natural selection from competi-
tion with intense circulation of A/H1N1pdm09 worldwide. Conversely,
the lagged pattern of A/H3N2 evolution seen in Southeastern Asia
during theCOVID-19 pandemic could be attributed to limited influenza
circulation and evolution due to human behavioural changes driven by
stringent and long-lasting NPIs. Additionally, a higher proportion of A/
H3N2 lineages circulating within Southeastern Asia have been esti-
mated to persist across seasons as compared to B/Victoria lineages. By
analysing those persistent lineages, we highlight how the A/H3N2
internal migration network within Southeastern Asia is characterised
by a dynamic change in trunk locations over time. During theCOVID-19
pandemic season, it was shaped by reductions in the intensity of
inferred viral movements, the diverse structure of the internal move-
ment network, and decreased lineage mixing. Changes in the circula-
tion network within Southeastern Asia were less pronounced during
the A/H1N1 pandemic season likely due to fewer pandemic-related
disruptions at that time.

We extended previous work4,26,27 to consider a broader geo-
graphic scope of Southeastern Asia and characterise the main trunk
location for the global influenza circulation. Our data suggest that
Southeastern Asia plays a more conspicuous role in the global circu-
lation of A/H3N2 compared to B/Victoria. The importance of South-
eastern Asia in the evolution of A/H3N2 has been further attributed to
the seasonal nature of influenza in temperate regions, in which strong
genetic and transmission bottlenecks lower the likelihood of local
persistence and global fixation of circulating strains14,33. However, the
internal networkmaintaining the leading role of Southeastern Asia has
rarely been explored in a quantitative manner4. Our quantitative ana-
lyses reveal that the movement network within Southeastern Asia is
characterised by highly connected dispersal routes among the major
airline transportation hubs (Supplementary Fig. 12a) and a temporally
varying trunk location (Supplementary Fig. 13). This network of asyn-
chronous but temporally overlapping epidemics, connected by
proximity and human mobility, promotes antigenic evolution and
global dispersal of A/H3N2 strains. In contrast, global B/Victoria cir-
culation exhibits less dependence on Southeastern Asia, with a pattern
of geographically separate evolution and circulation rather thanglobal
dispersion, consistentwith aprevious study26. Although theunderlying
mechanisms driving the heterogeneity across viruses remain unclear,
we speculate that themore rapid antigenic drift for A/H3N2 compared
to B/Victoria34 could potentially result in a greater intrinsic fitness
advantage. Additionally, it has been suggested that younger ages of
infection for B/Victoria compared to A/H3N2 could lead to less spatial
dissemination as children are less mobile than adults26,35.

Influenza circulation patterns are also subject to alteration via
changes in human behaviour, especially mobility, during pandemics.
The occurrence of two global pandemics (2009 A/H1N1 and COVID-19)
in the 21st century has provided a natural experiment for evaluating
changes in human mobility and immunity and their impact on influ-
enza transmission at the population level (we did not consider other
large epidemics/outbreaks, such as Zika virus, as theywere localised to
specific parts of the world). Differences in the circulation and evolu-
tionary patterns of influenza viruses during the two pandemics can be
interpreted by a complex interaction between local NPIs, regional and
global mobility, and viral interference. In addition to the higher
intensity and duration of NPIs during the COVID-19 pandemic, human
behavioural changes including contact reduction and mask wearing
will have also contributed to the decline of respiratory infections
during the COVID-19 pandemic36. Accordingly, perturbation of influ-
enza virus circulationwasmoredrasticduring theCOVID-19pandemic,
coinciding with our findings where most internal transmission within
Southeastern Asia was halted. Although we could not study the B/

Yamagata lineage in this work, the global potential elimination of this
lineage from surveillance data in late 2020 attests to the marked per-
turbation of the COVID-19 pandemic period on global influenza
dynamics37.

The novelty of our approach is to contrast the pronounced per-
turbation of the COVID-19 pandemic with a pandemic of a more
moderate kind, the 2009 A/H1N1 pandemic, which we hypothesised
would have also affected circulation patterns of resident influenza
strains. The novel virus responsible for the 2009 A/H1N1 pandemic is
thought to display viral interference with seasonal influenza A viruses,
presumably via more specific heterosubtypic cross-immunity6,38. Since
A/H3N2 viruses aremore closely related to A/H1N1pdm09 viruses than
B/Victoria viruses, massive circulation of A/H1N1pdm09 in the first
pandemic wave may have limited the circulation and diffusion of A/
H3N2 viruses via competition for susceptibles, in line with a consistent
globally negative correlation between influenza A/H3N2 and A/
H1N1pdm09 activity23. This competition was further illustrated in our
analysis by the disappearance of the second A/H3N2 peak wave and A/
H3N2 movement wave from Southeastern Asia to temperate regions
during theA/H1N1 pandemic season. In contrast, we see few changes in
influenza B/Victoria circulation, consistent with less or no cross-
immunity. NPIs could have also played a role during the A/H1N1 pan-
demic disruptions from the perspective of air travel controls in our
study (Supplementary Figs. 3, 15), although NPIs (e.g., school closures)
were limited to a few countries and the early weeks of the pandemic39.
Lastly, variations in pre-existing population immunity prior to the
onset of a pandemic might also contribute to differences in influenza
circulation observed during two pandemic periods40. Disentangling
the roles of NPIs, viral interference, immunity, and other potential
factors in shaping the circulation patterns of seasonal influenzamerits
more investigation.

These findings have several public health implications. First, sea-
sonal influenza epidemics occur each year while pandemics only occur
sporadically, thus interactions between seasonal respiratory patho-
gens and pandemics are also likely to occur in the future. Under-
standing the circulation patterns during these two pandemics may
enhance preparedness against influenza outbreaks in interpandemic
seasons and when facing future public health emergencies. Future
work should model the impact of different types of interventions on
the dynamics of seasonal influenza both in Southeastern Asia and
globally to guide mitigation strategies. Second, temporally varying
trunk locations within Southeastern Asia support the need for geo-
graphically extensive virological and genomic surveillance in this
region, allowing for earlier identification of antigenically novel strains
and thereby providing a longer lead time for developing and rolling
out effective vaccines. A strong collaboration between WHO South-
East Asia and WHOWestern Pacific regions remains vital to maintain a
high surveillance intensity across Southeastern Asia that in turn
enhances pandemic preparedness. Third, the complex internal dis-
persal network in Southeastern Asia highlights the importance of
country-specific vaccination strategies against seasonal influenza (e.g.,
vaccine strain and vaccination timing)17, in particular in the context of
altered seasonality and interrupted vaccination rollout during and
after the pandemic. Establishing a global influenza migration network
at a finer geographic scale (e.g., country level; over 120 WHOMember
States have contributed to influenza surveillance as ofMay 202441) also
holds promise for optimising vaccine recommendations tailored to
each country’s future influenza outbreaks. Fourth, a new pandemic
may reshape the landscape of influenza invasion and co-circulation
based on ecological coexistence theory42. Further, changes in human-
animal contact, the human-environment interface, and climate con-
ditions could influence the viral evolution and emergence of novel
influenza strains. Integrating ecological and social processes into
activities of surveillance networks helps us better understand the dri-
vers of influenza circulation and evolution.
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Our results should be interpreted in the context of several lim-
itations. First, inherent biases exist due to the nature of genetic data
from heterogeneous genomic surveillance efforts and data-sharing
initiatives worldwide. To address these issues, we carefully down-
sampled genetic data geographically and temporally; our main con-
clusions are robust across various sets of genetic data from different
sub-sampling schemes (Supplementary Figs. 8–10 and 16). Never-
theless, we acknowledge that our dataset completely omits data from
large and populous parts of the world (e.g., West, Central and East
Africa, Central America, Russia etc.) that could potentially play
important roles in the global influenza network. However, our aim is
not to reconstruct the global spread of seasonal influenza viruses, but
rather to focus on the networkwithin Southeastern Asia and the role of
Southeastern Asia in seeding epidemics in temperate regions. Sec-
ondly, we recognize that the implementation and lifting of NPIs varied
across locations and time, and thereby the impact of these changes on
influenza circulation patterns may be heterogeneous—here we con-
centrate on regional averages. For simplicity, our study considered the
same pandemic period definition for all countries although NPIs were
put in place in a heterochronous way. In addition, the influenza season
defined in this study did not uniformly align well with that in the
Southern Hemisphere due to the asynchronous influenza circulation
worldwide. Third, epidemic alignment of influenza activity and
movement across seasons could be affected by some atypical seasons,
but we believe that the average multi-year curves enable us to capture
baseline seasonality patterns. Lastly, our study only retrospectively
tracked the patterns of influenza circulation over a long-term period,
without dissecting the contribution of behavioural and immunological
factors. For example, the impact of domestic and international public
health measures on viral evolution and diversity should merit more
mechanistic investigation. However, we believe that the present find-
ings could guide more causal analyses in the future.

In summary, our study provides a comprehensive reconstruction
of the circulation patterns of seasonal influenza viruses both out of and
within Southeastern Asia during the 2009 A/H1N1 and COVID-19 pan-
demics with comparison to the interpandemic period. We highlighted
the heterogeneous impact of two distinct pandemic-related disrup-
tions on evolution and mixing of seasonal influenza, focusing on the
transmission dynamics within Southeastern Asia. Our empirical find-
ings can help anticipate the effects of adopting control measures as
routine practices to mitigate the disease burden of seasonal influenza,
as well as preparedness against outbreaks of influenza or other sea-
sonal respiratory pathogens in future pandemic scenarios.

Methods
To develop our methods for epidemiological and genomic assess-
ment, we combined epidemiological, genetic and airline data, together
with a phylodynamic framework to infer viral movements and the
emergence of antigenic novelty at various spatial levels.

Epidemiological data
Global virological surveillance data for seasonal influenza was
retrieved from FluNet, based on the WHO-led Global Influenza Sur-
veillance and Response System (GISRS)41 and collated according to the
methodology followed in ref. 10. We extracted the weekly number of
specimens processed for influenza testing and positive detections by
subtypes or lineages to calculate weekly positivity rates. We defined
the influenza season in the southern hemisphere as running from ISO
week 1 to week 52 of one year, whereas the influenza season in other
regions was defined as running from ISO week 27 of one year to ISO
week 26 of the next year. In each region, we defined an average sea-
sonal pattern for interpandemic seasons based on the total positivity
rates pij of each seasonal influenza virus subtype/lineage in week i
during influenza season j. We averaged the positivity rates pij across
interpandemic seasons after aligning curvesbasedon themedianweek

of peak occurrence with outlier seasons removed (for details see
Supplementary Figs. 1, 2)21,43. Since Southeastern Asia experienced two
yearly A/H3N2waves during interpandemic seasonsweperformed two
epidemic alignments per season by splitting each influenza season into
a summer (ISO week 14–39) and winter season (ISO week 40 to ISO
week 13 of the next year).

Air traffic data and compound airline traffic indicator
Airline passenger booking data from January 2011 to December 2023
were accessed from Official Airline Guide (OAG) Ltd. through a data
sharing agreement. Since no airline passenger data were available
before 2011, we used the airline capacity data (the number of seats)
from OAG instead, and assumed a proportional relationship with the
number of passengers travelling2 (Supplementary Fig. 15). We refer to
both measures as airline traffic hereafter.

Toobtain aproxy stringency index for theH1N1 pandemic,wefirst
examined the relationship between theCOVID-19 stringency index and
airline traffic during the COVID-19 pandemic for each sublocation in
Southeastern Asia (Supplementary Table 2). Given the COVID-19
stringency index is a composite measure of nine response metrics,
including internal movements, international travel controls, and other
human behavioural changes44, we could only construct an air travel-
related stringency index (compound airline traffic indicator) by con-
sidering both the within-sublocation airline traffic and international
airline traffic from/to each sublocation. This indicator did not cover
other types of behaviours and policies beyond air travel, which should
reflect part of the extent of NPIs. Note that since there is no internal
airline traffic in Hong Kong (China), Macao (China) and Singapore, we
constructed an indicator with only air travel from/to the sublocation
for these three sublocations. In each sublocation, for each airline traffic
indicator (domestic or international),we compared the change relative
to the same month in 2019 (referred to as the baseline month). The
baseline month represents a normal value for that month before the
COVID-19 pandemic.Monthly baselines were used because of seasonal
fluctuations in airline traffic. The composite indicator using airline
traffic is then given by

100� ðRelative valuedomestic + Relative valueinternationalÞ× 50

and serves as a proxy air travel-related stringency index. The indexes
that are below zero are set to zero. Because of the strong correlation
between the compound airline traffic indicator and the COVID-19
stringency index (Supplementary Table 2, Supplementary Fig. 3), we
use the compound airline traffic indicator to also define an air travel-
related stringency index for the H1N1 pandemic, using airline traffic in
2008 as a baseline.

Statistical analysis
We used the Variable Selection Using Random Forests (VSURF) algo-
rithm to determine the predictors associated with the influenza
activity decline during the two pandemics, respectively45,46. We calcu-
late the positivity rate of influenza A/H3N2 and B/Victoria among
specimens by quarter (three-month intervals) in each sublocation (0.5
positive cases are added to avoid division by zero issues). In each
sublocation, quarters with fewer than 20 tested specimens are
removed. To control for seasonality, we computed the ratio of influ-
enza positivity rate relative to the baseline quarter level during the pre-
pandemic period, and then log-transformed the ratios. Baseline quar-
ter represents an average value for that quarter in the years
2004–2008 or 2015–2019, respectively. The variables included in the
model contained sub-location-specific factors (population density,
age, latitude, absolute humidity, temperature, socio-demographic
index), and pandemic-related factors (COVID-19 or air traffic-related
stringency index, pandemic case incidence). Demographic data were
downloaded from 2024 Revision ofWorld Population Prospects47, and
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the details of other data sources are presented in Supplementary
Table 1. We rank the variables according to a variable importance
measure, where importance is defined as the increase in prediction
error when the variable of interest is randomly reshuffled across
observations45,46.

Collation and sub-sampling of viral sequence data
We focused on A/H3N2 and B/Victoria in this study, because A/
H1N1pdm09 only emerged in 2009 and therefore cannot be regarded
as a seasonal influenza virus during the 2009 pandemic season19, and
B/Yamagata was potentially eliminated after March 202020. A global
genetic dataset of seasonal influenza sequences (hemagglutinin (HA)
segment) sampled between 2007 and 2023was retrieved fromGISAID
and GenBank on 17 Jan 2024, with details of data processing in10. In
brief, we performed data quality assessment, deduplication, aggrega-
tion, and cleaning steps. To retain more sequences than our previous
study10, we also included sequences with incomplete collection dates
and only discarded poor quality sequences, as defined by the quality
control criteria in Nextclade48,49.

Geographic locations of sequences were classified into South-
eastern Asia and temperate regions, according to previous under-
standing of the global influenza circulation network4. Based on
previous work on transmission characteristics of influenza and avail-
ability of genetic data in Asia16,26, here we defined the geographic scale
of “Southeastern Asia” as comprising the entirety of Southeast Asia,
parts of East Asia (China, Japan, South Korea), and parts of South Asia
(Bangladesh, Bhutan, India, Sri Lanka, Nepal), which is in line with one
of the seven influenza transmission zones defined in a previous clus-
tering analysis16.

To trace the internal transmission network of influenza within
Southeastern Asia, we used finer-grained internal spatial demes (Sup-
plementary Fig. 7), where the majority of demes are set at country
levels. Further, we divided mainland China into three zones, based on
previous work showing heterogeneous seasonality patterns driven by
climatic conditions (winter peak in north China, semi-annual peaks in
centralChina, and springpeak in southChina)50,51. In addition, in China,
we separated Hong Kong, Macao, and Taiwan due to their distinct
positions in the global air transport network52 and heterogeneous non-
pharmaceutical interventions (NPIs) adopted during both pandemic
interruptions compared to mainland China53. Finally, we combined
Indonesia and East Timor, as well as Malaysia and Brunei, due to the
low availability of publicly available genetic data in these neighbouring
countries. This resulted in a total of 22 “country/sub-location level”
(referred to as sub-location level hereafter) demes within
Southeastern Asia.

Temperate regions comprised five sub-regions: North America
(Canada and USA only) and Europe (Russia excluded) in the northern
hemisphere (NH); Oceania (Australia and New Zealand only), South
America, and the Southern part of Africa in the southern hemisphere
(SH) (Supplementary Fig. 7). The entirety of South America was clas-
sified as a Southern Hemisphere temperate zone, given the recom-
mended use of the Southern Hemisphere vaccine formulation
throughout the region54 and a similar seasonality pattern across the
whole region5. We recognize that tropical land masses exist in the
northern part of South America.

To reduce the impact of sampling biases while maintaining
computational feasibility, we carefully sub-sampled the global
sequence dataset. For each subtype/lineage, we designed three
subsampling strategies to select ~6000 HA sequences collected
from January 2007 to December 2023, of which half (~3000) were
allocated to Southeastern Asia. In the first sub-sampling scheme
(even sub-sampling, main analysis), we sub-sampled equal numbers
of sequences per sub-location per year (where available) in South-
eastern Asia. In temperate regions, we first allocated ~600 sequen-
ces for each sub-region where available, and then sub-sampled

equal numbers of sequences per sub-location per year. The second
sub-sampling scheme selected sequences proportional to human
population. Specifically, we set the number of sequences for each
sub-location proportional to the sub-location-specific population
size (with a minimum number of 100 sequences per sub-location) in
Southeastern Asia; in temperate regions, we first set that number
proportional to population size for each sub-region (with a mini-
mum number of 300 sequences per sub-region), and then sub-
sample equal numbers of sequences per sub-location per year
within each sub-region. We sub-sampled equal numbers per year,
because more recent years are overrepresented in sequence num-
bers compared to previous years (Fig. 1f, j). Sequences selected in
the third subsampling scheme were proportional to the product of
population size and influenza positivity rate binned by ISO year.
Throughout, among the smallest sub-sampling units (per sub-
location per year), more sub-sampling weights were given to
sequences with more complete collection dates and higher quality
sequences.

Phylogenetic analyses
We aligned sequences in the sub-sampled datasets in Nextclade and
only kept the coding regions48. We then constructed maximum like-
lihood (ML) phylogenies using IQ-TREE255. The resulting phylogenetic
trees were inspected in TempEst to identify and remove temporal
outliers56. To better manage the number of sequences, we further
reduced clades of sequences where all sequences originated from a
single sub-location to a single representative sequence, since such
clades contain no information about transitions across sub-locations.
This subsampling process resulted in reducing the datasets to ~4000
genetic sequences.

The ML tree was re-estimated for the reduced genetic datasets
using the same specifications described above. We then inferred the
time-calibrated tree using TreeTime57, which served as the starting tree
for Bayesian phylogenetic inference. Phylogenetic trees were inferred
in a Bayesian framework using BEAST v1.10.558 and the high-
performance BEAGLE library59, in which we incorporated a starting
ML tree, a HKY nucleotide substitutionmodel with gamma-distributed
rate variation among sites, and a constant coalescent prior using a
Hamiltonian Monte Carlo (HMC) kernel on the population size and
node heights. The simple constant coalescent prior was chosen to
manage the computational burden. A strictmolecular clockmodel was
adopted due to the strong correlations between root-to-tip genetic
distance and collection date (minimumPearson correlation coefficient
among all datasets: 0.95) (Supplementary Fig. 17). Samples with
incomplete dates haddates of sampling estimated assuming a uniform
prior within the known temporal bounds. These analyses were run for
400–600 million MCMC steps for three chains and sampled every
100,000 steps, with the first 10%-15% considered as burn-in.

Phylogeographic analyses
Two-state phylogeographic analysis. Using the posterior set of trees
from the above phylogenetic analyses as a set of empirical trees, we
performed a two-state time-inhomogeneous asymmetric discrete trait
analysis (DTA) in BEAST 1.10.5, where sequences collected from
Southeastern Asia and temperate regions were labelled based on their
respective geographic deme. We used the epoch extension to specify
five epochs where each epoch spans a single or multiple influenza
seasons: i) before the A/H1N1 pandemic season (before 30 June 2009),
ii) A/H1N1 pandemic season (from 1 July 2009 to 30 June 2010), iii)
interpandemic period (from 1 July 2010 to 30 June 2020), iv) COVID-19
pandemic season (from 1 July 2020 to 30 June 2021), and v) after the
COVID-19 pandemic season (after 1 July 2021), enabling us to account
for variations in migration rates. Individual counts of transitions
between demes were estimated in the form of Markov jumps and
rewards60.
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Identifying persistent lineages. We identified those Southeastern
Asia virus strains that directly descended from the Southeastern-Asia
trunk node of the trees, where the trunk was defined as all branches
ancestral to viruses sampled within 1 year of the most recent sample26.
We referred to those lineages as “persistent lineages”, which can be
considered as roughly equivalent to the opposite of the “transmission
lineages”defined in61. To achieve this, in brief, wefirst initiated a depth-
first search from each Southeastern-Asia tip for each tree in posterior
samples. We defined the Southeastern-Asia tip as belonging to a per-
sistent lineage in this tree if the trunk node fromwhich it descendswas
associated with “Southeastern-Asia” and also all ancestor nodes in the
path from tip to this trunk node were associated with “Southeastern-
Asia” as well (Fig. 3a). We then summarised the distribution of “per-
sistent lineages” for the posterior set of trees, for which those tips that
are classified as belonging to persistent lineages in more than 50% of
theposterior tree sampleswould be ultimately labelled asbelonging to
“persistent lineages”.

Internal GLM-diffusion phylogeographic analysis. The internal
movement network within Southeastern Asia was inferred using only
sequences classified as belonging to persistent lineages in the prior
analysis under the even sub-sampling scheme. As this involved a more
manageable number of sequences, we inferred the phylogenetic trees
of persistent lineages in BEAST v1.10.5 with a parameter-rich setting
where we specified an SRD06 nucleotide substitution model62, a
Bayesian Skygrid coalescent prior (with grid points equidistantly
spaced in six-month intervals)63, and a strict molecular clock model.
Using the posterior trees from this analysis as empirical trees, we
performed a time-inhomogeneous phylogeographic model with a
generalised linear model (GLM) to parameterise the migration rates
among the 22 Southeastern Asia sub-locations defined above, with
Markov jumps and rewards logged to estimate the transition events60.
Both overall and relativemigration rates were set to be epoch-specific,
using the same epochs as above. We collated, aggregated, and stan-
dardised time-inhomogeneous airline traffic volumes in the five
epochs10. The airline data of the five epochs refers to i) airline capacity
from January 2007 to June 2009; ii) airline capacity from July 2009 to
June 2010; iii) airline passenger volumes from January 2011 to June
2020; iv) airline passenger volumes from July 2020 to June 2021, and v)
airline passenger volumes from July 2021 to December 2023, respec-
tively. Covariatewas incorporated in the phylogeographic GLMmodel,
assuming time-homogeneous effect sizes and inclusion probabilities64.
Furthermore, we also extend the model by adding a time-
inhomogeneous overall rate scaler to accommodate temporal varia-
tion in overall airline traffic (air capacity data were used as they are
available from 2007 to 2023) as a predictor of the overall migration
rates64.

Summary of posterior trees. We used the TreeMarkovJumpHistor-
yAnalyzer tool to obtain posterior summaries of all Markov jump
counts (referred to as viralmovement events) fromposterior trees64. In
terms of viral movements from Southeastern Asia to temperate
regions, we averaged the weekly movement intensity per season after
aligning the movement time series based on the median peak weeks
for the seasons during the interpandemic period, with the outlier
seasons (e.g., no peak in that season) removed21,43. The procedure
followed is similar to the methodology illustrated in Supplementary
Figs. 1 and 2.

For A/H3N2 persistent lineages circulating within Southeastern
Asia, we estimated the PhyloSor similarity between each pair of three
sub-regions (East Asia, South Asia, and Southeast Asia) in Southeastern
Asia, which quantifies the similarity of viral populations between those
locations as the proportion of branch lengths in phylogenetic trees
that are shared relative to the total branch lengths of both
populations32. Additionally, we computed Euclidean distances among

seasons for those vectorized asymmetric jump matrices among three
sub-regions (East Asia, South Asia, and Southeast Asia), and then per-
formed a classical multidimensional scaling in a 2-dimensional space65.
Finally, we summarised the trunk location within Southeastern Asia
over time based on the phylogeographic estimates using PACT v.0.9.5
(https://github.com/trvrb/PACT)26.

Sequence-based antigenic and genetic distance
As the antigenic sites have been clearly resolved for A/H3N228,29, we
calculated sequence-based antigenic distances for A/H3N2 HA
sequences30. In brief, in each antigenic site (A, B, C, D, and E) of A/
H3N229, we quantify the number of differences in amino acids (Ham-
ming distance) for aligned amino acid sequences compared to the
sequence of the vaccine strain “A/Wisconsin/67/2005” (also the
reference sequence in this study). Antigenic site-specific Hamming
distances are divided by the total number of amino acids in the anti-
genic site, and then multiplied by 20, representing a 20-dimensional
immunological shape space66. The final antigenic distance between
each virus strain and “A/Wisconsin/67/2005” was calculated by aver-
aging the above values at five antigenic sites. To identify the leading
and trailing geographic regions undergoing antigenic evolution of A/
H3N2, we fitted a linear best-fit line between antigenic distance against
date of collection. Points to the right of the line are thought to be
antigenically advanced, whereas strains to the left of the line are
antigenically lagging4. We then summarised the leading and trailing
pattern by regions and time periods. Bootstrap resampling of distance
values yielded a p-value for the difference between interpandemic
seasons and each pandemic season.

Considering the less resolved antigenic mapping for B/Victoria,
we instead used genetic distance to capture its leading and trailing
pattern. Genetic distance was estimated using the Kimura two-
parameter model (K80) to account for hidden substitutions67. We
adopted the nucleotide sites in the HA1 region of the HA segment to
estimate genetic distance, in line with the antigenic distance. The
consistency between antigenic distance and genetic distance for the
estimates of leading and trailing patterns for A/H3N2 subtype was
compared to examine the validity of this approach.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
Influenza virological surveillance data were available from FluNet
(https://www.who.int/tools/flunet). Genetic sequences used were
downloaded from NCBI and GISAID. The origin-destination air flight
data were provided by Official Airline Guide (OAG) Ltd. (https://www.
oag.com/) through a data sharing agreement. Data generated in this
study have been deposited in GitHub (https://github.com/zycfd/sea_
flu, https://doi.org/10.5281/zenodo.14279589).

Code availability
The codes and accession IDs of sequences used to run the analyses are
available here: https://github.com/zycfd/sea_flu.
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