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TNF stimulation primarily modulates
transcriptional burst size of NF-κB-regulated genes
Victor L Bass1,† , Victor C Wong1,‡, M Elise Bullock2 , Suzanne Gaudet3,4,# &

Kathryn Miller-Jensen1,2,*

Abstract

Cell-to-cell heterogeneity is a feature of the tumor necrosis factor
(TNF)-stimulated inflammatory response mediated by the tran-
scription factor NF-κB, motivating an exploration of the underlying
sources of this noise. Here, we combined single-transcript
measurements with computational models to study transcriptional
noise at six NF-κB-regulated inflammatory genes. In the basal
state, NF-κB-target genes displayed an inverse correlation
between mean and noise characteristic of transcriptional bursting.
By analyzing transcript distributions with a bursting model, we
found that TNF primarily activated transcription by increasing
burst size while maintaining burst frequency for gene promoters
with relatively high basal histone 3 acetylation (AcH3) that marks
open chromatin environments. For promoters with lower basal
AcH3 or when AcH3 was decreased with a small molecule drug, the
contribution of burst frequency to TNF activation increased.
Finally, we used a mathematical model to show that TNF positive
feedback amplified gene expression noise resulting from burst
size–mediated transcription, leading to a subset of cells with high
TNF protein expression. Our results reveal potential sources of
noise underlying intercellular heterogeneity in the TNF-mediated
inflammatory response.
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Introduction

Tumor necrosis factor (TNF) activates pro-inflammatory and stress

response signaling in many cell types (Aggarwal, 2003). The TNF

inflammatory response is mediated by the transcription factor NF-κB,

which regulates the expression of hundreds of genes. These genes

include inflammatory cytokines that can propagate an immune

response via paracrine signaling, as well as negative regulators of

NF-κB (Pahl, 1999; Hoffmann et al, 2002; Smale, 2011). Dysregu-

lation of the TNF-stimulated NF-κB response contributes to

inflammatory disease states (Lewis & Pollard, 2006; Schottenfeld

& Beebe-Dimmer, 2006), and thus, NF-κB-induced transcription

is tightly regulated in cell populations. However, it has been

widely observed that TNF stimulates significant cell-to-cell

heterogeneity in NF-κB signaling and in the transcription of its

inflammatory gene targets (Tay et al, 2010; Cheong et al, 2011;

Lee et al, 2014; Zhang et al, 2017; Wong et al, 2019). Although

cell-to-cell heterogeneity in NF-κB signaling has been widely

explored, additional sources of noise underlying transcription

are not well understood. Understanding these sources of noise

may enhance our ability to modulate the inflammatory response

in clinically relevant ways.

One major source of single-cell gene expression noise is the

fluctuation of promoters between transcriptionally active and inac-

tive states, a process termed transcriptional bursting (Raj et al,

2006; Singh et al, 2010; Skupsky et al, 2010; Suter et al, 2011; Dar

et al, 2012; Halpern et al, 2015b). Though gene expression noise

can be buffered by various mechanisms (Halpern et al, 2015a;

Padovan-Merhar et al, 2015; Stoeger et al, 2016), in some cases, it

is amplified by regulatory networks to drive diverse cellular behav-

iors (Weinberger et al, 2005; Acar et al, 2008; Chang et al, 2008;

Shalek et al, 2014). Several molecular mechanisms have been asso-

ciated with transcriptional bursting including nucleosome position-

ing (Raser & O’Shea, 2004; Dey et al, 2015), chromatin

modifications (Suter et al, 2011; Chen et al, 2019), transcription

factor activity (Senecal et al, 2014; Li et al, 2018), and RNA poly-

merase (RNAPII) pause regulation (Wong et al, 2018; Bartman

et al, 2019).

Although transcriptional bursting has not been extensively stud-

ied at endogenous NF-κB target genes, it has been well characterized

for the HIV long terminal repeat (LTR) promoter, which is regulated
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by NF-κB. Transcriptional bursting at the HIV LTR has been shown

to be influenced by chromatin environment both in the basal state

(Singh et al, 2010; Dar et al, 2012; Dey et al, 2015), and after TNF

stimulation (Dar et al, 2012; Wong et al, 2018). Specifically, it was

shown that TNF could modulate either burst frequency (i.e., the rate

of transition from an inactive to active state promoter state) or burst

size (i.e., the number of transcripts produced per burst) of silent-

but-inducible HIV LTR promoters, and that the bursting mechanism

was influenced by the basal histone 3 acetylation state at the

promoter (Wong et al, 2018). Endogenous NF-κB target promoters

are found in basal chromatin environments that resemble those of

latent-but-inducible HIV promoters (Ramirez-Carrozzi et al, 2009).

Thus, we sought to determine whether molecular mechanisms regu-

lating transcriptional bursting at inducible HIV LTRs are similar for

endogenous NF-κB targets.

In this study, we analyzed changes in gene expression noise and

transcriptional bursting at six endogenous NF-κB target promoters

before and after TNF stimulation. We found that TNF stimulation

increased mean transcription while maintaining noise for all but the

most repressed NF-κB-target genes. We found that TNF stimulation

primarily increased burst size while maintaining burst frequency,

leading to highly skewed transcript distributions, especially for Tnf

and Il8. Differences in basal histone acetylation at target promoters

and RNA polymerase (RNAPII) pause regulation were associated

with differences in the regulation of transcriptional bursting in

response to TNF; and reducing basal histone acetylation at the Tnf

promoter prior to stimulation caused TNF to shift from increasing

burst size to increasing burst frequency. Finally, we used a mathe-

matical model to explore how TNF positive feedback affects cell-to-

cell heterogeneity in Tnf transcription. We found that transcription

mediated via a burst size increase, as compared to a burst frequency

increase, resulted in more heterogeneous cell populations when

amplified by positive feedback, with a small subset of high TNF

producers. Overall, we conclude that TNF primarily increases tran-

scriptional burst size for endogenous NF-κB target promoters. More-

over, our results suggest that burst size–mediated transcription

combined with positive feedback may contribute to the substantial

cell-to-cell variability observed in the TNF-mediated inflammatory

response.

Results

Single-molecule mRNA quantification reveals a conserved mean-
noise relationship for TNF-NF-κB gene targets in the basal state

To characterize transcriptional noise in NF-κB targets induced by

TNF, we analyzed six genes regulated by NF-κB. These genes have

different roles in the TNF-induced inflammatory response. Nfkbia

and Tnfaip3 encode the intracellular proteins IκB-α and A20, respec-

tively, which negatively regulate NF-κB p65 (Baeurerle & Baltimore,

1988; Heyniinck et al, 1999; Hoffmann et al, 2002). Tnf, Il8, Il6, and

Csf2 encode the secreted inflammatory cytokines TNF, IL-8, IL-6,

and GM-CSF, respectively (Fig 1A). Nfkbia, Tnfaip3, Tnf, and Il8

are classified as primary inflammatory genes because they are tran-

scribed directly in response to stimulation in immune cells, while Il6

and Csf2 are classified as secondary genes because they require

synthesis of additional protein regulators prior to transcription

(Ramirez-Carrozzi et al, 2006; Hargreaves et al, 2009; Ramirez-

Carrozzi et al, 2009).

To quantify transcription of these genes in cell populations, we

treated the leukemic Jurkat T-cell line with TNF (20 ng/ml). Follow-

ing TNF stimulation, Nfkbia and Tnfaip3 exhibited the highest tran-

scription, while Tnf and Il8 were significantly lower, as measured in

the population by RT–qPCR (Fig 1B). Increases in Il6 and Csf2 were

not detectable in the population even 4 h after TNF stimulation.

Notably, the differences in transcription were not due to differences

in NF-κB p65 binding, because following TNF stimulation, NF-κB
p65 promoter binding increased similarly across all promoters as

measured by ChIP, including at the Il6 and Csf2 promoters (Fig 1C).

To quantify transcription in single cells, we performed single-

molecule RNA fluorescence in situ hybridization (smFISH) in Jurkat

T cells (Fig 1D and E and Appendix Fig S1) (Raj et al, 2008). We

found very low levels of basal transcription, ranging from an aver-

age of 10 mRNAs per cell for Nfkbia to less than one mRNA on aver-

age per cell for Il6 and Csf2 (Fig 1F). We also observed significant

cell-to-cell heterogeneity as measured by coefficient of variation

(CV), with higher CV for the lower expression genes (Fig 1G). These

genes are found in a range of basal chromatin environments, as

quantified by the ratio of histone H3 acetylated at lysine 9 and 14

▸Figure 1. Basal mean and transcriptional noise of NF-κB targets varies systematically with chromatin environment at the promoter.

A NF-κB can recruit a variety of binding partners to target promoters, including the chromatin modifying enzyme p300, the elongation complex P-TEFb, and
components of transcriptional machinery. NF-κB target genes with a variety of functions were chosen for this study.

B Induction of NF-κB targets in Jurkat T cells in response to 20 ng/ml TNF treatment for 1, 2, and 4 h as measured by RT–qPCR. Target values were normalized to
GAPDH and are reported as fold change relative to basal expression. Data are presented as mean � standard deviation (SD) of three biological replicates.

C Enrichment of RelA before and 30 and 60 min after treatment with 20 ng/ml TNF as measured by ChIP-qPCR and shown as % input (non-IP control). Data are
presented as mean � SD of three biological replicates.

D Maximum intensity projections of smFISH fluorescence microscopy z-stacks of basal Jurkat T cells stained for the indicated genes. Nfkbia, Tnfaip3, Tnf, and Il6 were
labeled with Quasar 670, and Il8 and Csf2 were labeled with fluorescein. All images were filtered as described in Materials and Methods. Brightness and contrast
were enhanced for visualization. Scale bars: 10 μm.

E Histograms of transcripts per cell for target genes (blue) overlaid with probability density plots (red) generated from smFISH data. Cells were combined from three
replicates (Nfkbia, Tnfaip3, Tnf, and Il6) or one replicate (Il8, Csf2).

F, G Bar graphs of mean (F) and CV (G) of smFISH distributions for the indicated genes. Error bars indicate bootstrapped 95% confidence intervals (CIs) for the samples
in (E). Significant differences indicated by non-overlapping CIs.

H Ratio of enrichment of total histone H3 to acetylated H3 (AcH3) in Jurkat T cells at the indicated target promoters quantified by ChIP-qPCR. Data are presented as
mean of % input (non-IP control) � SD of three biological replicates.

I Graph of log10(mean) vs log10(CV
2) of basal mRNA distributions measured in Jurkat T cells (black), HeLa cells (red), or murine bone marrow–derived macrophages

(green) for endogenous genes and four latent HIV LTR integrations. Gray shading indicates 95% CI of the linear regression for the basal trend line. Poisson trend line
indicated by dashed line. HeLa data from Lee et al (2014) and HIV LTR data from Wong et al (2018).
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(AcH3) to total histone H3 levels (AcH3:H3) at their promoters

measured by chromatin immunoprecipitation (ChIP). Nfkbia and

Tnfaip3 had the highest ratio of AcH3:H3, indicating a more open

chromatin environment, while Il6 and Csf2 had much lower ratios,

indicating a more closed chromatin state (Fig 1H). We note that

average basal mRNA levels increased monotonically with AcH3:H3

ratio, while CV decreased. Thus, the influence of chromatin state is

apparent in the mean and variability of basal mRNA levels prior to

TNF stimulation.

There is evidence for global constraints on transcriptional noise

in mammalian cells (Sanchez & Golding, 2013), and our observation

of systematic changes in mean and noise across NF-κB targets in

different chromatin environments is consistent with this hypothesis.

To explore this further, we plotted the log10(mean) vs the log10(CV
2)

for the basal mRNA measurements of these six NF-κB-regulated
genes in Jurkat cells (Fig 1I). Interestingly, when we plotted

log10(mean) vs log10(CV
2) for smFISH measurements of a subset of

the same targets in HeLa cells (Lee et al, 2014) or in murine bone

marrow-derived macrophages, we found that these measurements

fell along the same line. Furthermore, basal mRNA measurements

for exogenous HIV LTR promoters measured in Jurkat T cells and

exhibiting similar basal chromatin states (Wong et al, 2018) also fell

along the same trend line (R2 = 0.79 for all points). Noise decreased

as mean increased along this trend line, but the slope of this inverse
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relationship was less steep than what would be expected from a

Poisson distribution (Fig 1I), suggesting stochastic basal transcrip-

tion rather than continuous transcription for inducible NF-κB targets

(Singh et al, 2010; Skupsky et al, 2010; Dar et al, 2016). Altogether

we conclude that there is a non-Poissonian relationship between

basal transcriptional mean and noise that is conserved across NF-κB
targets in multiple cell types.

TNF stimulation differentially regulates transcriptional noise at
NF-κB target genes

Genes in such diverse basal chromatin environments likely require

recruitment of different factors by NF-κB to effectively activate tran-

scription, which may lead to systematic differences in single-cell

transcription distributions following stimulation (Neuert et al, 2013;

Senecal et al, 2014). To analyze how transcriptional noise is altered

by TNF-induced activation of NF-κB, we again quantified mRNA

using smFISH (Fig 2A and Appendix Fig S1). For Nfkbia, Tnfaip3,

Tnf, and Il8, we measured mRNA counts at 1- and 2-h post-TNF

treatment to capture the peak and reduction in expression (Fig 2B).

For Il6 and Csf2, we measured mRNA counts at 2- and 4-h post-TNF

treatment when transcription was still rising. Notably, we were able

to measure a significant increase in mRNA levels for Il6 and Csf2 by

smFISH, even though increases in transcription were not detectable

by population-level RT–qPCR (Fig 2B vs Fig 1B).

Although TNF treatment increased mean mRNA counts for all

targets, the change in transcriptional noise varied by gene, as

observed from the single-cell mRNA distributions (Fig 2C). After

TNF treatment, Nfkbia, Tnfaip3, Tnf, and Il8 were expressed in

most cells but at different levels, and all four targets exhibited long-

tailed distributions, with a few cells expressing mRNA counts much

higher than the mean. In contrast, Il6 and Csf2 were expressed at

much lower levels with more non-expressing cells and exhibited less

skewed distributions (Fig 2C). These differences in mRNA distribu-

tions across targets were apparent when observing the dynamic

trends in CV. For Nfkbia, Tnfaip3, Tnf, and Il8, the CV of mRNA

counts remained relatively constant from 0 to 2 h, while the CV of

mRNA counts for Il6 and Csf2 decreased from 0 to 4 h (Fig EV1A).

Recent literature suggests that some transcript heterogeneity may

be due to extrinsic factors including cell size and cell cycle state and

may be buffered by nuclear export (Battich et al, 2015; Halpern

et al, 2015a; Padovan-Merhar et al, 2015; Stoeger et al, 2016). We

compared nuclear and cytoplasmic noise before and after TNF stim-

ulation and observed a minor attenuation of noise that may be

attributed to transcription occurring more quickly than nuclear

export of mRNA immediately after stimulation (Hansen et al, 2018)

(Fig EV1B). In general, CVs of cell area and nuclear area, which we

used as a proxy for cell cycle (Padovan-Merhar et al, 2015; Chu

et al, 2017), were less than transcript CVs; and normalizing Tnfaip3,

Tnf, and Il6 transcript counts by cell or nuclear area did not signifi-

cantly reduce noise (Fig EV1C). We also looked for evidence of

shared sources of noise from upstream signaling regulators in the

TNF-NF-κB pathway by measuring Nfkbia and Tnf in the same cells

using multiplexed smFISH. We found only a moderate correlation

between these two targets (r = 0.34, P < 0.001) that decreased after

2 h of TNF stimulation (r = 0.14, P = 0.09; Fig EV1D). Our

observed lack of correlation with cell size and the relatively low

correlation between Nfkbia and Tnf was different from what was

observed previously for the same targets following LPS stimulation

in macrophages (Bagnall et al, 2018). This is likely attributable to

differences in cell type and stimulus, as well as the more than 10-

fold lower gene expression observed for our targets. Overall, our

results suggest that shared sources of cellular variation—including

nuclear export, cell size, cell cycle, and shared upstream signaling

regulators—do not fully account for the gene-specific noise observed

in our experiments.

To visualize how TNF-NF-κB-mediated transcription changed the

global mean-noise relationship seen in the basal state, we plotted

log10(mean) and log10(CV
2) of mRNA counts before and after TNF

treatment. For the NF-κB targets that increased mean without a

significant reduction in noise (i.e., Nfkbia, Tnfaip3, Tnf, and Il8),

we observed that in some cases the points moved outside the basal

trend line resulting in noise that further deviated from Poissonian

behavior (Fig 2D). In contrast, TNF treatment for 2 and 4 h caused

an increased mean with a concomitant decrease in noise in Il6 and

Csf2 that was consistent with the basal trend line (Fig 2E). Overall,

these trends suggest that NF-κB differentially regulates transcrip-

tional noise at different target genes following TNF stimulation.

TNF stimulation primarily modulates burst size of NF-κB targets

For many mammalian genes, transcription occurs in short bursts.

Transcriptional bursting behavior can be effectively modeled with

two promoter states, in which a promoter briefly switches from an

“OFF” state to a transcript-producing “ON” state, before switching

back to the “OFF” state (Fig 3A) (Raj et al, 2006; Singh et al, 2010;

Skupsky et al, 2010; Suter et al, 2011; Dar et al, 2012; Halpern et al,

2015b). In this model, the transcriptional process is described by

two main features: burst size, defined as the average number of

mRNA produced per burst (i.e., gene activation event), and burst

▸Figure 2. TNF induces gene-specific changes in transcript distributions at NF-κB targets.

A Maximum intensity projections of smFISH fluorescence microscopy z-stacks of Jurkat T cells stained for the indicated genes after 1-h (Nfkbia, Tnfaip3, Tnf, Il8) or 4-
h (Il6, Csf2) treatment with 20 ng/ml TNF. Nfkbia, Tnfaip3, Tnf, and Il6 were labeled with Quasar 670, and Il8 and Csf2 were labeled with fluorescein. All images
were filtered as described in Materials and Methods. Brightness and contrast were enhanced for visualization. Scale bars: 10 μm.

B Bar graphs of mean of smFISH distributions before and after TNF treatment for the indicated genes. Cells were combined from three replicates (Nfkbia 1 h; Tnfaip3
1 h; Tnf 1, 2 h; and Il6 2, 4 h) two replicates (Nfkbia 2 h) or one replicate (Tnfaip3 2 h; Il8 1, 2 h; Csf2 2, 4 h). Basal data are same as in Fig 1E. Error bars indicate
bootstrapped 95% CIs for the samples in (C). Significant differences indicated by non-overlapping CIs.

C Probability density plots of single-cell mRNA distributions from smFISH as described in (B) before and after treatment with 20 ng/ml TNF for the indicated time
points.

D, E Graph of log10(mean) vs log10(CV
2) for endogenous gene targets that maintain CV2 (D) or decrease CV2 (E) after treatment with 20 ng/ml TNF in Jurkat T cells

(black), HeLa cells (red), or murine bone marrow–derived macrophages (green). Gray shading indicates 95% CI of basal trend line. Poisson trend line indicated by
dashed line. HeLa data from Lee et al (2014).
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frequency, defined as the frequency with which the bursts occur

(Nicolas et al, 2018). The observed mean-variance and mean-noise

trends of the basal and TNF-stimulated transcript distributions of

the target genes show deviation from Poisson behavior that is

consistent with transcriptional bursting (Fig EV2A) (Singh et al,

2010; Skupsky et al, 2010; Wong et al, 2018; Bagnall et al, 2020).

Thus, we expected the transcriptional bursting model would provide

insight into the observed differences in transcriptional noise across

NF-κB target genes.

We first estimated burst size and burst frequency using the

sample variance σ2 and the mean μ of the mRNA distributions (Raj

et al, 2006; Suter et al, 2011; Nicolas et al, 2018; Bagnall et al,

2020). These estimates of burst size bm = σ2/μ (i.e., the Fano factor)

and burst frequency fm = μ/(bm − 1) based on the sample moments

are often used to describe deviation from Poisson distributions, for

which bm = 1 and fm = ∞ (So et al, 2011; Nicolas et al, 2018;

Bagnall et al, 2020). Analysis of burst size and burst frequency

based on the moments of the smFISH count distributions revealed

differences in how TNF affected Nfkbia, Tnfaip3, Tnf and Il8 vs Il6

and Csf2, with the former group exhibiting large increases in burst

size (Fig EV2B) and the latter group exhibiting much smaller

increases in burst size but with increasing values of burst frequency

(Fig EV2C).

To further explore these differences, we fit our data to a two-

state model of promoter activity (Raj et al, 2006; Dey et al, 2015)

(Fig 3A). In this model, also known as the random telegraph model,

transcription is described by four parameters: rate of transition to

the active state, ka; rate of transition to the inactive state, ki; rate of
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Figure 3. Inferred fits from two-state promoter model show that TNF treatment increases transcriptional burst size at most targets.

A Schematic of a two-state promoter model for transcriptional bursting. Burst frequency (ka) and burst size (b = kt/ki) were fit to combined transcript distributions
measured by smFISH.

B, C Burst size (B) and burst frequency (C) parameter fits from the two-state model in the basal state and after treatment with 20 ng/ml TNF for 1, 2, or 4 h. Error bars
indicate bootstrapped 95% CIs. Significant differences indicated by non-overlapping CIs. The fit for Nfkbia (1-h TNF) was unstable and thus is not reported (see
Materials and Methods). Sample sizes are displayed in Figs 1E and 2C.
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transcription in the active state, kt; and mRNA degradation rate,

kdeg. The probability density function (pdf) of this distribution can

be solved theoretically and then burst frequency (ka) and burst size

(mean number of transcripts produced per active state burst,

b = kt/ki) can be inferred by finding the optimum fit between the

experimental and theoretical pdfs using maximum likelihood esti-

mation (MLE) (Raj et al, 2006; Dey et al, 2015; Wong et al, 2018).

To perform MLE, we fixed mRNA decay rate (kdeg) to experimen-

tally measured values when possible. Transcription of Il6 and Csf2

was too low to be measured accurately, and so we used the average

decay rate measured for the other four targets, which displayed

similar transcript stability (t1/2 ≈ 40 min) and is in line with previ-

ously reported values (Paschoud et al, 2006) (Appendix Fig S2A).

We then fit burst size (the ratio of kt/ki) and burst frequency (ka;

see Materials and Methods).

When we fit our single-cell transcript distributions before and

after TNF treatment to the two-state model’s pdf, we found that the

model fit all basal distributions and most TNF-stimulated distribu-

tions (Fig EV3). The one exception was the 1-h TNF-stimulated

Nfkbia distribution, for which the theoretical pdf two-state model

solution produced unstable fits (see Materials and Methods). These

samples, which exhibit the largest transient increase in transcription

induced by TNF, may not be well described by the random tele-

graph model. Model fits indicate that in the basal state, most genes

share a low basal burst frequency of ~ 1 transition per hour and a

burst size of only a few transcripts (Fig 3B and C), similar to bm and

fm estimated by the moments (Fig EV2B and C). TNF treatment

drives large increases in burst size with minimal changes in burst

frequency for Tnfaip3, Tnf, and Il8. In contrast, TNF causes a small

increase in both burst size and frequency for Il6, and a large

increase in burst frequency with no change in burst size for Csf2

(Fig 3B). Comparing these observations with AcH3:H3 ratios in the

basal state (Fig 1H), we find that TNF stimulation primarily alters

the burst size of promoters that exhibit high basal AcH3:H3 ratios.

In contrast, for Il6 and Csf2, which exhibit much lower AcH3:H3

ratios in the basal state, TNF stimulation only modestly increases

burst size or, in the case of Csf2, increases burst frequency.

TNF-mediated increases in burst size are associated with higher
promoter levels of AcH3 and RNAPII pausing

Activation of a range of transcription factors (TFs) has been associ-

ated with changes in burst frequency for many genes (Li et al, 2018;

Chen et al, 2019; Friedrich et al, 2019), while TF-mediated changes

in burst size are less widely reported. However, our results are

consistent with our previously reported observations at HIV LTRs

integrated in different chromatin environments (Wong et al, 2018)

and suggest that mechanisms of transcriptional bursting are affected

by the chromatin state at the promoter. To search for potential dif-

ferences in molecular events linked to changes in burst size after

TNF treatment, we measured chromatin features and binding of

transcriptional machinery at our target promoters using ChIP.

Changes in transcriptional burst frequency have been linked to

histone acetylation (Nicolas et al, 2018; Chen et al, 2019), and we

previously showed that TNF-NF-κB-mediated increases in burst size

at the HIV LTR were associated with regulation of RNAPII activity

(Wong et al, 2018). Therefore, we focused on measuring histone H3

acetylation and markers of RNAPII regulation.

We first examined histone H3 acetylation at the target promoters

by measuring total and acetylated H3. After TNF treatment, the

secondary cytokines Il6 and Csf2 exhibited large decreases in total

H3, while Tnf exhibited smaller decreases, so that by 4 h after TNF

treatment, all targets had similar H3 levels (Fig 4A). In contrast,

Nfkbia, Tnfaip3, and Il8 significantly increased AcH3 following TNF

treatment but did not exhibit significant changes in total H3. Chro-

matin remodeling is a molecular step that likely occurs before

RNAPII regulation (Bartman et al, 2019), and so basal differences in

histone acetylation might underlie the differential changes we see in

bursting. Related to this, we note that Il6 and Csf2, which exhibited

the largest decreases in H3, exhibited the smallest increases in tran-

scription overall and this increase was associated with higher burst

frequencies.

We also measured total RNAPII, serine-5 phosphorylated RNAPII

(ser5-p), serine-2 phosphorylated RNAPII (ser2-p), and negative

elongation factor (NELF) before and at 2 and 4 h after TNF treat-

ment (Fig 4A). We found that Il6 and Csf2 accumulated less total

RNAPII than Nfkbia, Tnfaip3, Tnf, and Il8, which is consistent with

the lower expression levels of these genes after TNF treatment. The

disparity in RNAPII enrichment was lessened when looking at ser2-

p RNAPII (associated with elongation) and heightened when looking

at ser5-p RNAPII (associated with initiation). Enrichment of NELF,

which inhibits elongation, coupled with enrichment of ser5-p

RNAPII, is indicative of paused RNAPII at Tnfaip3, Tnf, and Il8, in

contrast to the Il6 and Csf2 promoters. Taken together, the RNAPII

ChIP shows that the Tnfaip3, Tnf, and Il8 promoters, which increase

burst size after TNF treatment, accumulate more paused RNAPII

than the Il6 and Csf2 promoters in response to TNF.

Clustering our ChIP data, we found clear separation between Il6

and Csf2 and the more highly activated targets that show significant

increases in burst size (Fig 4B). Within the non-burst frequency

increasing genes, Nfkbia separates from all other genes due to its

increased accumulation of RNAPII, and the primary cytokines Tnf

and Il8 separate out from Tnfaip3. The clustering supports the idea

that differences in molecular events occur at promoters of genes that

have increased burst frequency (Csf2, Il6) vs burst size (Tnfaip3,

Tnf, Il8, and Nfkbia).

Small molecule inhibitors of histone acetylation and RNAPII
pause release alter TNF-mediated transcriptional bursting

Our ChIP data suggested an association between basal H3 acetyla-

tion (AcH3) at a target promoter and transcriptional bursting in

response to TNF. Specifically, we observed that as basal AcH3 at the

promoter increased, there was a shift toward a TNF-mediated

increase in burst size (Fig 4B). This is consistent with previous work

demonstrating that burst initiation (associated with burst frequency)

precedes polymerase recruitment (associated with burst size; Bart-

man et al, 2019). Thus, we hypothesized that if we reduced basal

AcH3 at target promoters prior to TNF stimulation, targets that

previously exhibited large TNF-mediated increases in burst size

(e.g., Tnfaip3 and Tnf) would instead exhibit TNF-mediated

increases in burst frequency and a reduced burst size increase.

To test this hypothesis, we perturbed basal AcH3 at Tnfaip3 and

Tnf promoters by pretreating Jurkat cells with the histone acetyl-

transferase (HAT) inhibitor A-485, a specific inhibitor of the HATs

p300/CBP that are recruited by NF-κB (Fig 5A) (Gerritsen et al,
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Figure 4. RNAPII pausing is associated with increases in transcriptional bursting upon TNF treatment.

A Enrichment of histone H3, AcH3, total RNPII, ser5-p RNPII, ser2-p RNPII, and NELF-E in the basal state (0 h) and after treatment (2 and 4 h) with 20 ng/ml TNF
quantified using ChIP and shown as % input (non-IP control). Data are presented as mean � standard error of the mean (s.e.m.) of three biological replicates.
Significance calculated by Dunnett’s multiple comparison test (*P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001).

B Hierarchical clustering of ChIP data before and after TNF treatment separates promoters with TNF-mediated increases in burst frequency or burst size. For each
protein target, color bar indicates the % maximum ChIP value measured across all genes and time points.
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Figure 5. Small molecule inhibitors of H3 acetylation and RNAPII pause release alter TNF-mediated changes in transcriptional bursting.

A Schematic of A-485 inhibition of the histone acetyl transferase p300/CBP, which is recruited by NF-κB, and of JQ1 inhibition of BET bromodomains, which recruit
the positive transcription elongation factor b (P-TEFb).

B Change in enrichment of histone H3 and AcH3 after treatment with 300 nM A-485 for 4 h measured by ChIP-qPCR and shown as % input (non-IP control)
normalized to the uninhibited control for each gene. Data are presented as mean � SD for two or four biological replicates.

C Bar graphs of mean mRNA level for basal condition, 1-h TNF, 1-h TNF + 4 h pretreatment with 300 nM A-485, and 1-h TNF + 62.5 nM JQ1 cotreatment measured
by smFISH for Tnfaip3 (left) and Tnf (right). Cells were combined from two replicates (Tnfaip3 A-485, JQ1; Tnf A-485) or one replicate (Tnf JQ1). Error bars indicated
bootstrapped 95% CIs. Samples with non-overlapping CIs are significant.

D Change in enrichment of total and Serine-5-phosphorylated RNAPII after 20 ng/ml TNF treatment for 1 h with 62.5 nM JQ1 measured by ChIP-qPCR and shown as
% input (non-IP control) normalized to the uninhibited control for each gene. Data are presented as mean for two biological replicates.

E, F Burst size (E) and burst frequency (F) parameter fits from the two-state model for the same conditions in (C) measured by smFISH for Tnfaip3 (left) and Tnf (right)
for the data described in (C). Error bars indicated bootstrapped 95% CIs. Samples with non-overlapping CIs are significant.

G, H Probability density of mRNA distributions measured by smFISH for 20 ng/ml TNF for 1-h (blue) vs 1-h TNF + 4 h pretreatment with 300 nM A-485 (green) (G) and
1-h TNF (blue) vs 1-h TNF + 62.5 nM JQ1 cotreatment (yellow) (H) for Tnfaip3 (left) and Tnf (right).
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1997; Lasko et al, 2017). We found that pretreatment with A-485 for

4 h decreased AcH3 levels at the Tnfaip3 and Tnf promoters, consis-

tent with inhibition of HAT activity, but did not affect total H3 levels

as measured by ChIP-qPCR (Fig 5B).

We then compared transcription 1 h after TNF stimulation with

and without A-485 pretreatment. Overall, we found that A-485

pretreatment significantly reduced mean mRNA expression for both

Tnfaip3 and Tnf in response to TNF (Fig 5C, green). Consistent with

our expectations, A-485 pretreatment reduced the moment burst

size bm (as estimated by Fano factor) in response to TNF stimulation

for Tnf and Tnfaip3, although the effect was more pronounced for

Tnf (Fig EV4A). A-485 pretreatment increased the TNF-mediated

change in the moment burst frequency fm for Tnf but not for

Tnfaip3 (Fig EV4B). Fitting mRNA distributions to the theoretical

pdf of the two-state model further confirmed that A-485 pretreat-

ment decreased burst size but did not affect burst frequency follow-

ing TNF stimulation for Tnfaip3, while it decreased burst size and

increased burst frequency for Tnf (Fig 5E and F, green). Overall,

when AcH3 was reduced at the Tnfaip3 promoter, its transcriptional

bursting response resembled that of Tnf and Il8 (no change in burst

frequency combined with a smaller increase in burst size). Simi-

larly, the reduction in AcH3 at the Tnf promoter resulted in tran-

scriptional bursting that resembled Il6 and Csf2 (no change in burst

size combined with an increased burst frequency). Thus, we

conclude that decreasing basal AcH3 at target promoters shifts TNF-

induced transcription from increasing burst size to increasing burst

frequency.

Our ChIP data also suggested an association between RNAPII

pausing at target promoters and TNF-mediated transcriptional burst-

ing. Specifically, we observed that TNF-mediated increases in burst

size were associated with increased RNAPII promoter-proximal

pausing as measured by the accumulation of ser5-p RNAPII (Fig 4

B), perhaps because release of paused promoters produces a larger

burst of transcription. To perturb RNAPII pause regulation, we

treated Jurkat cells with JQ1, an inhibitor of the BET family of

bromodomain proteins, including BRD4, which recruits the positive

transcription elongation factor b (p-TEFb) that stimulates pause

release (Fig 5A) (Huang et al, 2008; Hargreaves et al, 2009; Filip-

pakopoulos et al, 2010). Previous work showed that JQ1 can inhibit

multiple facets of gene regulation, including polymerase pause

release and enhancer activity (Belkina & Denis, 2012; Shi & Vakoc,

2014; Stonestrom et al, 2016). When bursting was previously

analyzed following treatment with JQ1, it was found to decrease

both the rate of burst initiation and polymerase pause release, but it

did not appear to change the rate of RNAPII recruitment (Bartman

et al, 2019). Thus, we expected to observe a reduction in burst

frequency and also burst size upon TNF stimulation in combination

with JQ1.

We found that JQ1 treatment in combination with TNF stimula-

tion decreased ser5-p RNAPII accumulation at the Tnfaip3 and Tnf

promoters as measured by ChIP-qPCR, but did not affect total

RNAPII (Fig 5D). As expected, JQ1 concomitantly decreased TNF-

stimulated mean expression of both Tnfaip3 and Tnf (Fig 5C,

yellow). JQ1 reduced bm for both Tnfaip3 and Tnf (Fig EV4A),

while fm was unchanged for Tnfaip3 and increased for Tnf (Fig

EV4B). Fitting mRNA distributions to the theoretical pdf of the two-

state model confirmed that JQ1 reduced TNF-induced burst size

increases for both Tnfaip3 and Tnf (Fig 5E and F, yellow). However,

model fits further confirmed an increase in burst frequency for both

genes, in contrast to expectations. Our data appear to confirm the

multifactorial activity of JQ1, but are hard to interpret biologically.

Somewhat surprisingly, A-485 pretreatment and JQ1 cotreatment

similarly affected TNF-mediated transcriptional activation for Tnfaip3

and Tnf. However, when directly comparing single-cell mRNA distri-

butions, we noted that the overall decrease in TNF-stimulated expres-

sion caused by A-485 pretreatment was marked by a greater increase

in Tnf non-expressing cells than we observed for JQ1, consistent with

a molecular mechanism in which histone acetylation at the promoter

precedes RNAPII recruitment and pausing (Figs 5G and H and EV4C).

Overall, we conclude that that basal histone AcH3 levels at NF-κB
target promoters affect how TNF treatment alters transcriptional

bursting, but more specific perturbations will be required to deter-

mine how TNF-stimulated accumulation of paused RNAPII at target

promoters is linked to transcriptional burst size.

Mathematical modeling predicts that TNF positive feedback can
amplify distributions produced by transcriptional bursting to
create more heterogeneous cell populations

TNF modulates transcriptional burst size at some promoters and

burst frequency at others, producing more or less skewed mRNA

distributions across a cell population, respectively. We recently

showed that for latent-but-inducible integrations of the human

immunodeficiency virus (HIV) in Jurkat T cells, the skewed HIV

mRNA distributions produced by TNF activation of transcription via

burst size resulted in viral activation when amplified by HIV-

mediated positive feedback, while transcription via burst frequency

did not (Wong et al, 2018). TNF positively regulates its own produc-

tion analogous to HIV, and our results show that TNF does this by

increasing transcriptional burst size. Therefore, we sought to

explore whether modulation of burst size combined with positive

feedback could further amplify cell-to-cell heterogeneity of TNF

production.

To determine whether extracellular signaling amplifies Tnf tran-

scription, we stimulated Jurkat cells with TNF in the presence of

brefeldin A (BFA), which inhibits protein transport from the endo-

plasmic reticulum to the Golgi and thus blocks secretion. We found

that BFA modestly reduced transcription at 2 h following TNF stim-

ulation and also reduced the inferred burst size, while also increas-

ing the inferred burst frequency (Fig EV5A). To determine whether

this small difference in transcription led to measurable differences

at the protein level, we measured intracellular TNF protein by flow

cytometry following TNF stimulation in the presence of BFA for up

to 8 h (to prevent all paracrine signaling) and for only the final 4 h

of an 8-h TNF stimulation (to allow the first 4 h of paracrine signal-

ing to occur). The fraction of responding cells was small, consistent

with the low mRNA measurements, but a significant increase in

intracellular TNF over control was seen after TNF stimulation (Fig

EV5B). Importantly, we saw an increase in % TNF+ cells at 8 h

when BFA was withheld for 4 h to allow paracrine signaling to

occur (Fig EV5B; although increase not statistically significant).

Taken together, these data support a role for positive feedback in

amplifying the response.

We built a mathematical model of a two-state Tnf promoter

responding to an initial TNF stimulus and further amplified by posi-

tive feedback (Fig 6A). We modeled the addition of exogenous TNF
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as a time-dependent change in kt, the mRNA production rate. We fit

this kt function empirically to match the TNF-induced change in

burst size inferred from our smFISH distributions over time, includ-

ing the effect of BFA at 2 h (Fig EV5A and C). We then explored a

range of TNF positive feedback parameters (Fig EV5D) and identi-

fied values that qualitatively reproduced the dynamic changes in

cell-population averages and distributions observed in our

population-level RT–qPCR measurements of Tnf transcription in the

presence of feedback (Figs 6B and EV5E). When we examined the

results of our simulations, we found that positive feedback

increased the level and variability of TNF protein (Fig 6C). By 4 h,

our simulations showed that TNF positive feedback increased the

small subset of high-producing TNF cells (Fig 6D and E, blue), simi-

lar to what we observed experimentally (Fig EV5B).

We then sought to explore how positive feedback would amplify

TNF-stimulated transcriptional increases of similar means but with

different noise. To do this, we performed a parameter scan in the

absence of positive feedback, in which we increased burst frequency

(i.e., the activation rate ka) and simultaneously decreased burst size

(i.e., by increasing the inactivation rate ki). By increasing burst

frequency while simultaneously decreasing burst size, we were able

to identify a region in which mean expression remains relatively

constant but noise varies due to differences in burst behavior (Fig 6

F and G). Positive feedback still increased the small subset of high-

producing TNF cells at 4 h for the “burst-frequency” parameter set;

however, it was a smaller absolute increase as compared to the

mRNA distribution with the “burst size” parameter set (Fig 6D and

E, purple vs blue). In other words, the small population of high

TNF-producing cells was more pronounced when transcription was

increased via burst size vs burst frequency. The effect of positive

feedback on increasing cell-to-cell heterogeneity was evident in the

large increase in Fano factor that was greatest for the “high burst-

size” parameters (Fig EV5F). Overall, our modeling indicates that

positive feedback by TNF coupled with transcriptional increases

driven by burst size modulation can produce highly skewed distri-

butions of protein across cells. We speculate that these mechanisms

could contribute to small subpopulations of cells with high function-

ality, such as high cytokine-producing cells that have been observed

in response to activation of the NF-κB-mediated inflammatory

response in other studies (Shalek et al, 2014; Xue et al, 2015;

Muldoon et al, 2020).

Discussion

Transcriptional bursting is an important process affecting many

biological processes, but it has not been extensively studied for

endogenous NF-κB targets, including cytokines that are vital to the

inflammatory response. Here, we explored changes in transcrip-

tional bursting in response to the inflammatory cytokine TNF in T

cells. We found that TNF can modulate either burst frequency or

burst size depending on basal histone acetylation and regulation of

RNAPII pausing. Using a small molecule inhibitor, we confirmed

that altering basal histone acetylation before TNF stimulation modu-

lated bursting behavior by reducing burst size and, in the case of

Tnf, increasing burst frequency. Finally, we used mathematical

modeling to show that TNF positive feedback can more efficiently

amplify the skewed single-cell distribution that results from TNF-

mediated increases in burst size as compared to a distribution of the

same mean but different noise that results from a burst frequency

increase. This suggests a possible biological consequence of TNF

activating transcription via burst size that motivates further study.

We found that TNF primarily increased transcription by increas-

ing burst size, which resulted in skewed, long-tailed mRNA distribu-

tions that are generally marked by large increases in Fano factor. In

contrast, transcription factor-mediated increases in burst frequency

result in less skewed distributions with lower cell-to-cell heterogene-

ity. Increases in burst frequency in response to transcription factor

stimulation have been more commonly observed than increases in

burst size (Li et al, 2018; Chen et al, 2019; Friedrich et al, 2019).

Notably, most of these examples analyzed cellular processes for

which it is important that most or all cells in a population respond

to a stimulus with similar levels of gene expression such as the DNA

damage response (Friedrich et al, 2019) or the circadian response to

light (Li et al, 2018). In contrast, for processes where highly skewed

single-cell responses might be beneficial, as could be the case for

inflammatory signaling, stimulus-induced burst size increases may

be more common. Long-tailed distributions with a few outliers far

above the population mean have been shown to be important for

regulating inflammatory signaling at the levels of single-cell tran-

scription (Shalek et al, 2014) and cytokine secretion (Xue et al,

2015; Muldoon et al, 2020). Burst size regulation was also observed

in response to Notch signaling, which is active in both embryonic

development and maintenance of the germline stem cell niche

(Falo-Sanjuan et al, 2019; Lee et al, 2019). Creating skewed distribu-

tions in transcription between cells that must follow different trajec-

tories such as proliferation vs differentiation might help ensure that

cells do not easily cross over to the other behavior. Burst size regu-

lation of the growth factor Ctgf by multiple stimuli has been

proposed to provide appropriate responses to different stimuli that

require transient or sustained responses (Molina et al, 2013), which

would support a role for burst size regulation in immune signaling.

We previously studied latent-but-inducible HIV LTR promoters

integrated into Jurkat T cells (which are positively regulated by NF-

◀ Figure 6. Mathematical modeling predicts differences in cell-to-cell heterogeneity resulting from TNF positive feedback on burst size- vs burst frequency-
mediated transcript activation.

A Schematic of the two-state model of transcription coupled to translation of a protein (TNF) that positively feeds back on its own transcription rate.
B, C Model simulation of cell-population averages of Tnf mRNA (B) and TNF protein (C) vs time with and without positive feedback. Data are presented as mean (dark

line) and SD (shaded region) of 1,000 simulated cells.
D, E Violin plots of simulated single-cell mRNA (D) and protein (E) numbers with and without positive feedback for either an increase in burst size (blue) or burst

frequency (purple) in response to exogenous TNF treatment. Data are presented as number of molecules in 1,000 simulated cells. Red line indicates threshold of 20
protein molecules designating activated cells.

F, G Cell-population averages from stochastic simulations with positive feedback of Tnf mRNA at 1 h (F) and TNF protein at 4 h (G) after TNF treatment across a
parameter space with increasing burst frequency (ka) and decreasing burst size (ki) chosen to produce levels of Tnf mRNA similar to experimental observations.
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κB) and found that basal histone acetylation was associated with

differences in TNF activation of transcriptional bursting (Wong

et al, 2018). Using the small molecule histone deacetylase inhibitor

TSA, we demonstrated that by increasing basal histone acetylation

with TSA pretreatment, TNF activation of HIV changed from

increasing burst frequency to increasing burst size. Here, we

showed the opposite trend: By reducing basal histone acetylation

with A-485 pretreatment, TNF activation of Tnf changed from

increasing burst size to increasing burst frequency (Fig 5). Thus, the

link between basal histone acetylation and TNF-stimulated tran-

scriptional bursting appears to be causal for NF-κB target genes.

We also found that accumulation of promoter-proximal paused

RNAPII was associated with TNF-mediated increases in burst size

both at endogenous and HIV promoters (Wong et al, 2018).

However, our studies with the small molecule JQ1, which inhibits

pause release, were inconclusive. RNAPII promoter-proximal paus-

ing occurs throughout the mammalian genome, especially at signal-

responsive promoters (Adelman & Lis, 2012). Paused RNAPII

primes a promoter to rapidly respond to an elongation signal,

bypassing the need to recruit a new RNAPII subunit. Thus, the

observation that accumulation of RNAPII is associated with burst

size increases and more skewed transcript distributions warrants

further study.

To model transcriptional bursting, we used the random telegraph

model with one productive and one unproductive promoter state,

and our results were largely consistent with our calculations of burst

size and burst frequency based on the distribution moments. This

simple promoter model sufficiently captured differences in transcrip-

tional bursting “modes” following TNF treatment in Jurkat T cells

that was a main focus of our study. However, two recent studies

analyzing transcriptional bursting in response to stimulation of NF-

κB by TNF or LPS reported somewhat different results (Bagnall

et al, 2020; Zambrano et al, 2020). Bagnall et al studied activation

of Tnf and Il1b following LPS stimulation in macrophages and found

gene-specific mean-noise trends for Tnf vs Il1b; while a two-state

promoter model was sufficient to reproduce Tnf distributions, a

three-state model with an additional unproductive (or “refractory”)

state was required to fit Il1b distributions. Zambrano et al similarly

demonstrated that a promoter model with a third refractory state,

combined with variability in upstream NF-κB signaling, was neces-

sary to explain their observation of a subset of “first responder”

cells that produced higher levels of Nfkbia, Tnf, and HIV in HeLa

cells (Zambrano et al, 2020). We have previously demonstrated that

variability in upstream NF-κB signaling is correlated with transcript

levels in individual cells for the targets in our study even though

they exhibit variations in noise (Wong et al, 2019), and thus, we do

not think our results are inconsistent. We expect that most of the

differences in our observations are due to the fact that mRNA levels

of our targets are approximately an order of magnitude lower than

in these other studies (mRNA ~ 101 vs ~ 102). We expect that

complex model configurations will be necessary to reproduce cell-

to-cell heterogeneity of endogenous NF-κB targets across cell types,

stimulations, targets, and levels of expression.

HIV encodes its own positive feedback mediator, the protein Tat,

which leads to amplification and viral activation in long-tailed distri-

butions that stem from burst size increases but not from burst

frequency increases (Wong et al, 2018). Because TNF also positively

regulates its own expression via extracellular signaling, we used

mathematical modeling to explore whether the shape of the single-

cell Tnf mRNA distribution might be related to biological function

similar to what we observed for HIV. As with HIV, we found that

positive feedback more efficiently amplified transcript distributions

resulting from burst size increases as compared to those resulting

from burst frequency increases (Fig 6). However, our model has

limitations. We phenomenologically modeled exogenous TNF stimu-

lation with a time-dependent curve, rather than simulating NF-κB
signaling, which would be affected by transcriptional noise from

other targets such as the negative regulators Nfkbia and Tnfaip3.

Moreover, we only accounted for autocrine signaling in our model

and did not consider how the TNF produced by one cell might affect

neighboring cells, which likely plays a major role in regulating

immune signaling. Overall, our study motivates additional work to

explore how transcriptional bursting in inflammatory gene expres-

sion functionally shapes the population immune response.

Materials and Methods

Reagents and Tools table

Reagent or resource Reference or source Identifier or catalog number

Experimental model

Jurkat T cells, clone E6-1 ATCC TIB-152

Antibodies

Anti-histone H3 rabbit polyclonal Abcam ab1791

Anti-acetyl-histone H3 rabbit polyclonal Millipore 06-599

Anti-NF-κB p65 rabbit monoclonal Cell Signaling Technology 8242

Anti-RNPII N-20 rabbit polyclonal Santa Cruz Biotech sc-899

Anti-ser5-p RNPII rabbit polyclonal Abcam ab5131

Anti-ser2-p RNPII rabbit polyclonal Abcam ab5095

Anti-NELF-E H-140 rabbit polyclonal Santa Cruz Biotech sc-32912
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Reagents and Tools table (continued)

Reagent or resource Reference or source Identifier or catalog number

Anti-acetyl-histone H3 rabbit monoclonal Cell Signaling Technology 8173

Anti-RNPII NTD rabbit monoclonal Cell Signaling Technology 14958

Anti-ser5-p RNPII rabbit monoclonal Cell Signaling Technology 13523

Anti-TNF mouse monoclonal eBioscience 14-7348-81

Anti-mouse IgG goat polyclonal, conjugated with Alexa Fluor
647

Thermo Fisher Scientific A-21235

Chemicals, peptides, and other reagents

Roswell Park Memorial Institute 1640 medium (RPMI) Thermo Fisher Scientific 11875119

Fetal bovine serum (FBS) Atlanta Biologicals S11150

Penicillin-Streptomycin Thermo Fisher Scientific 15140122

Human tumor necrosis factor-alpha (TNF) PeproTech 300-01A

A-485 Structural Genomics Consortium 6387

JQ1 Tocris 4499

Brefeldin A BioLegend 420601

Sodium chloride (NaCl) Thermo Fisher Scientific 7647-14-5

Tris-EDTA, pH 8.0 Thermo Fisher Scientific AM9858

Cell-tak Corning 354240

Lab-Tek #1.0 8-well chambered coverglass Thermo Fisher Scientific 155411

μ-Slide 8-well glass bottom coverslip Ibidi 80827

70% Ethanol, RNase-Free Thermo Fisher Scientific 15420665

20× saline-sodium citrate (SSC) Thermo Fisher Scientific AM9763

Formamide Thermo Fisher Scientific AM9342

50% Dextran Sulfate Amresco E516

VectaShield Vector Labs H-1000

37% formaldehyde Sigma-Aldrich 818708

10× Phosphate Buffered Saline (PBS) Thermo Fisher Scientific AM9625

Tween-20 Thermo Fisher Scientific 9005-64-5

Bovine Serum Albumin (BSA) Sigma B4287

Hoechst 33342 Thermo Fisher Scientific H21492

cOmpleteTM protease inhibitor cocktail Roche 11836170001

PureProteome protein G magnetic beads Millipore LSKMAGG10

Salmon sperm DNA solution Thermo Fisher Scientific 15632011

RNAse, DNAse-free Roche 11119915001

Proteinase K New England BioLabs P8107S

EDTA American Bio AB00502-01000

Lithium Chloride (LiCl) Sigma-Aldrich 7447-41-8

IPEGAL CA630 Sigma-Aldrich I8896

Glycine American Bio AB00730-01000

Agarose Lonza 50074

20% SDS solution American Bio AB01922-00500

Deoxycholic acid Millipore 302-95-4

SYBR safe Invitrogen S33102

Actinomycin-D Millipore 114666

Sodium bicarbonate (NaHCO3) Alfa Aesar 144-55-8

Triton X-100 American Bio AB02025-00500

SYBR Green supermix Bio-Rad 1725271
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Reagents and Tools table (continued)

Reagent or resource Reference or source Identifier or catalog number

Oligonucleotides

Primers for RT–qPCR and ChIP-qPCR Yale School of Medicine Keck Oligonucleotide
Synthesis

Sequences available in Dataset
EV2

smFISH probes Biosearch Technologies Sequences available in Dataset
EV2

Commercial Kits

Upstate EZ-Magna ChIP Millipore 17-10086

QIAQuick PCR purification kit Qiagen 28104

RNeasy mini kit Qiagen 74104

BD Cytofix/Cytoperm BD Biosciences 554714

Software and algorithms

MATLAB 2016b, 2019b MathWorks

FISH-quant Mueller et al (2013) and Tsarnov et al (2016)

Mathematica 12 Wolfram

Prism 7 GraphPad

FlowJo FlowJo, LLC

NFsim Sneddon et al (2011)

Methods and Protocols

Cell culture and pharmacological treatments
Jurkat T-cell clone E6-1 was obtained from ATCC. Jurkat cells were

cultured in Roswell Park Memorial Institute 1640 (RPMI) medium

(Thermo Fisher Scientific). All media was supplemented with 10%

fetal bovine serum (Atlanta Biologicals), 100 U/ml penicillin, and

100 μg/ml streptomycin (Thermo Fisher Scientific). Cells were main-

tained in 5%CO2 at 37°C andwere never cultured beyond passage 20.

Cells were grown to at least 500,000 cells/ml before treatment with

20 ng/ml recombinant human tumor necrosis factor α (TNF; Pepro-

Tech), 300 nM A-485 (Structural Genomics Consortium), 62.5 nM

JQ1 (Tocris), or Brefeldin A (diluted as directed; BioLegend).

RT–qPCR
Total RNA was purified with the RNeasy Mini kit (Qiagen), including

an on-column DNase treatment. cDNA was synthesized using Super-

Script III reverse transcriptase (Thermo Fisher Scientific) and dT oligo

primer. cDNAwas diluted in nuclease-free water and quantified using

SsoAdvanced Universal SYBR Green Supermix on a CFX Connect

Real-Time System (Bio-Rad) with the following amplification scheme:

95°C denaturation for 90 s followed by 40 cycles of 95°C for 15 s,

60°C annealing for 10 s, and 72°C elongation for 45 s with a fluores-

cence read at the end of each elongation step. This was followed by a

60–90°Cmelt-curve analysis with 0.5°C increments to confirm product

specificity. All samples were normalized to the house-keeping gene

Gapdh. To calculate decay rates in Jurkat cells, we performed qRT–
PCR after a 1-h TNF treatment followed by 10 μg/ml actinomycin-D

treatment for varying times for Nfkbia, Tnfaip3, Tnf, and Il8

(Appendix Fig S2A). All primer sequences are listed in Dataset EV2.

smFISH probe design, hybridization, and imaging
The probe sets targeting Nfkbia, Tnfaip3, and Il8 (Lee et al, 2014)

and Tnf (Bushkin et al, 2015) were previously described. The probe

sets targeting Il6 and Csf2 were designed using the Stellaris® RNA

FISH Probe Designer (Biosearch Technologies, Inc., Petaluma, CA)

available online (www.biosearchtech.com). All mRNAs were hybri-

dized with Stellaris RNA FISH Probes labeled with Fluorescein

(Nfkbia, Il8, and Csf2) or Quasar 670 (Nfkbia, Tnfaip3, Tnf, and Il6;

Biosearch Technologies, Inc.) following the manufacturer’s instruc-

tions. Briefly, Jurkat cells were treated under indicated conditions

and then plated onto Cell-Tak (Corning) coated Lab-Tek #1.0 8-well

chambered coverglass (Thermo Fisher Scientific) or μ-Slide 8-well

glass-bottom coverslip (Ibidi). Cells were fixed in 3.7% formalde-

hyde (Thermo Fisher Scientific) for 10 min and then permeabilized

overnight in 70% ethanol (Fisher Scientific). Cells were hybridized

for 12 h overnight with the following probe set specific conditions:

250 nM probe for Tnf/Il6/Csf2 in 2× SSC (Thermo Fisher Scientific)

with 10% formamide (Thermo Fisher Scientific) and 100 mg/ml

dextran sulfate (Amresco) at 37°C, 50 nM probe for Tnfaip3 in 2×
SSC with 10% formamide and 80 mg/ml dextran sulfate at 37°C,
250 nM probe for Nfkbia in 2× SSC with 12% formamide and

100 mg/ml dextran sulfate at 37°C, and 250 nM probe for Il8 in 2×
SSC with 10% formamide and 100 mg/ml dextran sulfate at 25°C.
For multiplex smFISH targeting Nfkbia and Tnf, probe concentra-

tions were kept the same as for single gene smFISH and hybridiza-

tion buffer for Tnfaip3 was used. After hybridization, cells were

washed twice with 2× SSC and 10% formamide, counterstained

with 100 ng/ml Hoechst 33342 (Thermo Fisher Scientific) for

15 min, and immersed in VectaShield mounting media (Vector

Labs). Cells hybridized with Nfkbia, Tnfaip3, Tnf, and Il6 probes

were imaged on an Axio Observer Zi inverted microscope (Zeiss)

with an Orca Flash 4.0 V2 digital CMOS camera (Hamamatsu) and a

100× APO oil objective (NA 1.4, Zeiss). Cells hybridized with Il8

and Csf2 probes were imaged on a Nikon Eclipse Ti spinning disk

confocal microscope (Yokogawa CSU-W1 spinning disk) with an

Andor iXon Ultra888 EMCCD camera (Andor Technology) and a

plan apochromatic 100× oil objective (NA 1.45, Nikon) after
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identification of regions of interest within the field of view with high

cell numbers. In all cases, Z-stacks of 30–80 images with 0.3 μm
intervals were acquired. To avoid experimenter bias in selection of

cells to image, only nuclear signal and not smFISH probe signal was

used to select fields of view for imaging. All probe sequences are

listed in Dataset EV2.

smFISH image analysis
We quantified mRNAs in individual cells using FISH-Quant in

MATLAB R2016B (Mathworks Inc.) (Mueller et al, 2013; Tsarnov

et al, 2016). Cells were manually identified and outlined, with over-

lapping cells, cells partly in the field of view, and multinucleated

cells excluded from analysis. Nuclei were initially outlined using

FISH-Quant’s “Detect nucleus” feature and then manually edited if

necessary (in the cases of dim nuclei or nuclei that were very close,

as these were challenging for the software to resolve in our images).

Images of all genes were filtered using the Dual Gaussian filtering

method in FISH-Quant with the default Kernel size settings: first, a

large Gaussian Kernel (5 pixels) was used to blur the image for

background subtraction, and then, a small Gaussian Kernel (0.5

pixels) was used to enhance small features in the background

subtracted image (Appendix Fig S1). After image filtering, intensity

thresholds to distinguish mRNA spots from background by identify-

ing local maxima were determined by comparing the outputs of dif-

ferent thresholds to visually derived counts for both high and low

expressing cells in addition to analysis of unstained control cells

providing a minimum threshold. The remaining images were then

processed in batch. Pre-detection intensity thresholds and detections

settings varied with the type of microscope used for imaging, the

fluorescent label on the probes, the specific probe set being used,

and the experimental condition.

Chromatin immunoprecipitation
Chromatin immunoprecipitation was performed using the Upstate

EZ-Magna ChIP kit (Millipore). Briefly, 5 million cells per condition

were fixed in 1% formaldehyde (Sigma) for 10 min, after which

excess formaldehyde was quenched with 10× glycine at room

temperature. Cells were washed three times with ice cold PBS and

then lysed in 300 μl of 1% SDS lysis buffer with protease inhibitor

cocktail (Roche). Lysates were sonicated with a Diagenode Biorup-

tor Plus with the following settings: 30 min of 30 s ON/30 s OFF at

high power in a 4°C water bath. Sheared DNA was run on a 1%

agarose gel (Lonza) to verify that sheared DNA was between 100

and 1,000 bp. Samples were pre-cleared with PureProteome Protein

G magnetic beads (Millipore) at 4°C and 5% of each sample was

aliquoted as a percent input control. Samples were incubated with

antibody at manufacturers’ recommended concentrations overnight

at 4°C. PureProteome beads were added and incubated for 1 h at

4°C. Beads were washed once each with low salt, high salt, and LiCl

immune complex wash buffers, then washed twice with TE buffer,

and then eluted with elution buffer at room temperature. Crosslinks

were reverse by incubating samples with NaCl overnight at 65°C.
DNA was purified using the QIAQuick PCR Cleanup kit (Qiagen).

DNA was quantified using quantitative PCR using SsoAdvanced

Universal SYBR Green Supermix on a CFX Connect Real-Time

System (Bio-Rad). qPCR was run in triplicate, and melt curves were

run to confirm product specificity. All primer sequences are listed in

Dataset EV2.

Flow cytometry
Cells were prepared for intracellular cytokine staining to detect TNF

production using the BD Cytofix/Cytoperm kit (BD Biosciences).

Briefly, 100,000 cells per condition were treated with TNF and

Brefeldin A (BioLegend), then washed with PBS, and fixed with Fix/

Perm for 20 min at 4°C. Fixed cells were washed twice with 1×
Perm/Wash. Cells were stained with 4 μg/ml (1:125 dilution) anti-

TNF (eBioscience # 14-7348-81) for 1 h at 4°C, washed twice with

1× Perm/Wash, and then stained with 10 μg/ml (1:200 dilution)

anti-mouse-AlexaFluor647 (Thermo Fisher Scientific A-21235) for

1 h at 4°C. All data were acquired on an Attune NxT Flow Cytome-

ter (Thermo Fish Scientific) analyzed with FlowJo (FlowJo, LLC).

Fitting the two-state model
Maximum-likelihood estimation (MLE) was used to select burst

frequency (ka) and burst size (b = kt/ki) parameters that best fit the

measured mRNA distributions to the full analytical solution to the

two-state stochastic gene expression model (Peccoud & Ycart,

1995). Although this is a steady-state solution, we use it here to

approximate how TNF affects transcriptional bursting (Wong et al,

2018). We assumed that the two alleles for each gene were indepen-

dent and that bursting was sufficiently infrequent such that bursting

events were unlikely to overlap, allowing a reasonable estimate of

burst size and an upper bound on the estimate of burst frequency

by modeling transcription from a single allele. MLE was performed

as numerical minimization over the negative log-likelihood function

defined over the probability density function (pdf) given the

observed experimentally determined RNA distributions for each

condition using the method of moments. As previously reported,

mRNA distributions are not sufficient to independently determine

the promoter inactivation rate ki and the transcription rate kt. Using

a previously described method (Raj et al, 2006; Dey et al, 2015), we

held the transcription rate kt constant across all conditions and

reported b. Sensitivity analysis of the kt value for each gene

suggested that our results are largely independent of the kt value

chosen for each gene (Appendix Fig S2B). MLE was implemented

using custom code in Mathematica 8 (Wolfram Inc.) as previously

described (Dey et al, 2015). The model was fit to smFISH distribu-

tions from combined replicates except for the Nfkbia TNF 1-h time

point. The model was unable to produce a fit for the combined

dataset and thus replicates were fit individually. An example fit is

included in Fig EV3, but the burst size and burst frequency were not

reported due to this discrepancy.

Statistical analysis
To compare conditions for cell-population measurements, the f-test

was first applied to determine whether datasets were heteroscedas-

tic, and then the Student’s or Welch’s t-test was applied as appropri-

ate. A Dunnett’s t-test was used for multiple comparisons.

Regression and correlation analyses was performed in Prism

(GraphPad). All tests were performed with an alpha value of 0.05.

All smFISH experiments included a sufficient number of cells to

characterize the transcript distributions (n > 100 cells). A summary

of all experimental conditions, biological replicates, and total cell

numbers collected by smFISH is included in Table 1. The 95% confi-

dence intervals (CIs) on all descriptive statistics of RNA distribu-

tions were estimated from the 2.5% and 97.5% quantiles of

bootstrapped copy number counts per cell as previously described
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(Dey et al, 2015). For those samples for which we had sufficient

replicates, we confirmed that the 95% CIs matched the error esti-

mated by calculating the SD from three biological replicates

(Appendix Fig S3). 95% confidence intervals on fit burst frequency

and size parameters were estimated from the log-likelihood function

assuming asymptotic normality of the estimates and using 1.92 log-

likelihood ratio units as previously described (Dey et al, 2015). The

difference between two quantities was inferred to be significant

(P < 0.05) if the 95% CI’s were not overlapping (Schenker & Gentle-

man, 2001).

Transcription model development
We modified an existing two-state bursting parameter model (Wong

et al, 2018). We modeled transcription as a promoter that transitions

from an “OFF” state to an “ON” state, and vice versa, with rate

constants, ka and ki, respectively. In the “ON” state, mRNA is

produced at the rate km and degraded at a rate of gm. This rate was

modulated by time via a fitted burst size curve (see below). The

mRNA produces TNF protein at the rate kp, is exported out of the

cell at a rate kex, and degraded at a rate of gp. TNF is known to posi-

tively feedback onto its own production, and so a feedback loop

was introduced into the model to increase the rate of mRNA produc-

tion, km, as TNF increased. The reactions governing this model,

along with accompany rate constants, are described in Table 2. We

modeled only one promoter activation event (i.e., a single allele),

consistent with our fitted estimates of burst frequency, and after

confirming via simulations that bursts from two alleles rarely over-

lap (Appendix Fig S4).

This model is represented by the following system of ordinary

differential equations:

d½PromotorOff �
dt

¼�ka∗ PromotorOff½ �þki∗ PromotorOn½ � (1)

d½PromotorOn�
dt

¼ ka∗ PromotorOff½ ��ki∗½PromotorOn� (2)

d½mRNA�
dt

¼ 1þ A∗ TNF outsideð Þ½ �
Kþ TNF outsideð Þ½ �

� �
∗kt∗PromotorOn�gm∗mRNA

(3)

d TNF insideð Þ½ �
dt

¼ ap∗ mRNA½ �� gpþkexð Þ∗ TNF insideð Þ½ � (4)

d TNF outsideð Þ½ �
dt

¼ kex∗ TNF insideð Þ½ ��gp∗ TNF outsideð Þ½ �: (5)

To simulate treatment with exogenous TNF, we altered our burst

size dynamically to reflect that TNF treatment increases experimen-

tal burst size in a time-dependent curve. Our BFA experiment

showed that Tnf mRNA is lower at 2 h when extracellular feedback

Table 1. Summary of smFISH experiments.

Target

Basal 1 h TNF 2 h TNF 4 h TNF

Reps Total cells Reps Total cells Reps Total cells Reps Total cells

Nfkbia 3 611 3 628 2 356 NA NA

Tnfaip3 3 529 3 352 1 542 NA NA

Tnf 3 839 3 858 3 616 1 219

Il8 1 248 1 477 1 426 NA NA

Il6 3 632 NA NA 3 599 3 661

Csf2 1 167 NA NA 1 232 1 269

Target

A-485 4 h →TNF 1 h TNF + JQ1 1 h TNF + BFA 2 h

Reps Total cells Reps Total cells Reps Total cells

Tnfaip3 2 373 2 348 NA NA

Tnf 2 401 1 216 1 148

Table 2. Model parameters

Reaction Parameter (units) Values Source

Promotor On →Promotor Off ki (h
−1) 15 Experimental derivation from smFISH data

Promotor Off→Promotor On ka (h
−1) 1.3 Experimental derivation from smFISH data

Promotor On→mRNA fm*kt (h
−1) ki �b Calculated from fitted burst size equation (b = km/ki)

fm¼ 1þ A� TNF outsideð Þ½ �
Kþ TNF outsideð Þ½ � K, A 500, 25 Parameter scan (Fig EV5D)

mRNA→TNF (inside) kp (h
−1) 0.75 Estimated from (Caldwell et al, 2014)

TNF (inside)→TNF(outside) kex (h
−1) 18 (Paszek, et al, 2010) with assumptions from (Lee, et al, 2014)

TNF →∅ gp (h
−1) 0.36 Estimated from mRNA degradation (1/3 of gm)

mRNA→∅ gm (h−1) 1.09 Experimental derivation

ª 2021 The Authors Molecular Systems Biology 17: e10127 | 2021 17 of 20

Victor L Bass et al Molecular Systems Biology



was blocked (Fig EV5A). We performed a weighted Gaussian curve

to the burst sizes inferred from our experimental smFISH distribu-

tions for basal, TNF alone (1, 4 h), and TNF + BFA (2 h) in

MATLAB (Fig EV5C). This phenomenological equation reflects

TNF’s mechanistic activation of NF-κB in the absence of positive

feedback, and further promotion of transcription. This equation al-

lows burst size to change dynamically with time, and alter kt, while

burst frequency is assumed to remain constant. We note that this is

an approximation that is based on experimental observations that

TNF modulates burst size more than burst frequency (Fig. 3C);

however, it does not fully reflect the data in the presence of BFA

(Fig EV5A). The overall rate influencing transcription can also be

altered by positive feedback (fm). To replicate scenarios without

positive feedback, amplification A was set to 0.

To stochastically simulate TNF protein and mRNA transcript

production over time, we used network-free stochastic simulator

(NFSIM) (Sneddon et al, 2011). All analysis and plots were done in

MATLAB R2019B (MathWorks, Inc.).

Steady-state analysis
To understand how the system behaves under basal conditions, we

assumed equilibrium for the above equations. First, we examined

promotor dynamics, and solved for steady-state. By solving equa-

tion 1 and 2 at steady-state, and setting

PromotorOff½ � ¼ 1� PromotorOn½ � (6)

we derive the following:

PromotorOn½ � ¼ ka
ki
∗ PromotorOff½ �

PromotorOn½ � ¼ ka
kiþka

¼B (7)

We can then examine TNF concentrations inside and outside the

cell (equations 4 and 5), by deriving the following:

kex∗ Protein insideð Þ½ � ¼ gp∗ Protein outsideð Þ½ �

ap∗ mRNA½ � ¼ gpþkexð Þ∗ Protein insideð Þ½ �

Protein outsideð Þ½ � ¼ ap

gpþkex

� �
∗

kex
gp

� �
∗ mRNA½ � ¼C∗ mRNA½ �:

(8)

Finally, we use EQ3, EQ7, and EQ8 to solve for mRNA values

under steady-state conditions, following:

gm∗ mRNA½ � ¼ PromotorOn½ �∗kt∗ 1þ A∗ Protein outsideð Þ½ �
Kþ Protein outsideð Þ½ �

� �

gm∗C
B∗kt

∗ mRNA½ �2þ gm∗K
B∗kt

�C�A∗C
� �

∗ mRNA½ ��K¼ 0: (9)

Using this equation, we explored how the parameter space

affects mRNA concentration before TNF treatment. By varying feed-

back parameters—the amplification rate, and the K half-max—we

recreated regions that matched basal Tnf mRNA conditions. To

understand how the unbounded feedback parameters influenced the

model upon TNF treatment, we ran 2D parameter scans altering

feedback parameters. Two parameters were chosen that qualita-

tively reproduced the time course of TNF-activation experiments

under deterministic simulation of the model (Fig EV5D) and repli-

cated steady-state values of basal mRNA.

To explore how changes in burst size and burst frequency influ-

enced phenotypic outcomes, we stochastically simulated 1,000 cells

using NFSIM, altering the parameters ki and ka. Four representative

parameter combinations were chosen, each with an average of 10

mRNA transcripts per cell at 1 h (Fig 6F and G).

Data availability

Quantitative smFISH measurements presented in the main figures

are provided as figure source data, labeled “Dataset EV1”. All PCR

primer and smFISH probe sequences used for this work are

provided in “Dataset EV2”. Code to reproduce the mathematical

model is available at https://github.com/elisebullock/tnftwostate.

Expanded View for this article is available online.
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