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Abstract: Data with censoring is common in many areas of science and the associated statistical
models are generally estimated with the method of maximum likelihood combined with a model
selection criterion such as Akaike’s information criterion. This manuscript demonstrates how the
information theoretic minimum message length principle can be used to estimate statistical models
in the presence of type I random and fixed censoring data. The exponential distribution with fixed
and random censoring is used as an example to demonstrate the process where we observe that the
minimum message length estimate of mean survival time has some advantages over the standard
maximum likelihood estimate.

Keywords: minimum message length; exponential distribution; maximum likelihood; survival
analysis; censoring

1. Introduction

In Type I random censoring we observe for each item i either the true survival time
Ti = ti (ti > 0) or the censoring time Ci = ci (ci > 0), where capital letters are used to
denote random variables. The data consists of joint realisations of the random variables
(Yi = yi, ∆i = δi) (i = 1, . . . , n) where

Yi = min(Ti, Ci), (1)

∆i = I(Ti ≤ Ci) =

{
1, if Ti ≤ Ci (observed survival)
0, if Ti > Ci (observed censoring).

(2)

The censoring time Ci may be fixed (i.e., Ci = c for all i = 1, . . . , n) or a random variable
that may depend on other factors (e.g., loss to follow-up). The likelihood function of n
observed data points D = {(y1, δ1), . . . , (yn, δn)} is

p(D) =
n

∏
i=1

(pT(yi)(1− FC(yi)))
δi (pC(yi)(1− FT(yi)))

1−δi

where pT(t|θ) and FT(t|θ) denote the probability density and the cumulative density func-
tion of the random variable T, respectively. Inference about the survival times (t1, . . . , tn)
is of key interest in many areas of science and is commonly done by maximizing the
likelihood and dropping terms relevant to C only.

This manuscript examines inference of models in the presence of censored data un-
der the minimum message length (MML) framework. MML (see Section 3) is Bayesian
technique for model selection and parameter estimation that is based on data compression
and key principles of information theory. MML is known to possess strong theoretical
properties [1–3] and has previously been successfully applied to a wide range of statistical
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models [1]. Here, we demonstrate how MML can be used to infer models under fixed
censoring as well as type I random censoring. We use the exponential distribution (see
Section 2) as a simple example to demonstrate the key steps and compare the MML esti-
mator to the well-known maximum likelihood estimator in this setting (see Section 2.1).
Although MML analysis of the exponential distribution is not new (see, for example, [1,4]),
the MML principle has not been applied to any kind of survival data with censoring to date.

The main contributions of this manuscript are to: (i) introduce the MML principle
of inductive inference and demonstrate how the Wallace–Freeman MML approximation
can used to infer exponential models with type I censored data; (ii) show that the MML
estimate of the mean lifetime has some advantages over the usual maximum likelihood
estimate for small samples and that it converges to the maximum likelihood estimate for
large sample sizes, (iii) incorporate the proposed codelengths for censored exponential
distributions into MML finite mixture models allowing for inference of all parameters as
well as the number of mixture classes; and (iv) compare the MML principle to the closely
related minimum description length principle.

2. Exponential Distribution

Consider the case of a randomly censored exponential parameter studied in [5] where
the lifetime data and the censoring data are assumed to be exponentially distributed

Ti ∼ Exp(β), Ci ∼ Exp(α), i = 1, . . . , n, (3)

and α, β > 0 denote the mean censoring time and survival time, respectively. Under this
model, the joint probability distribution of (Yi = yi, ∆i = δi) is

p(Yi = yi, ∆i = 1) = pT(yi)(1− FC(yi)) (4)

p(Yi = yi, ∆i = 0) = pC(yi)(1− FT(yi)) (5)

where (Yi, ∆i) are defined in (1) and (2) respectively. In contrast to random censoring, in
fixed censoring an item is observed for a period of time, say c > 0, and its actual survival
time ti is known if the item fails before time ti ≤ c; otherwise, we only know that the item
survived past ti > c. In the case of exponentially distributed survival times, the observed
data (Y = yi, ∆i = δi) follows

Ti ∼ Exp(θ), Ci = c, i = 1, . . . , n, (6)

where c > 0 is a fixed constant (the follow up period) known a priori. Given n data points
D = {(y1, δ1), . . . , (yn, δn)}, the aim is to estimate the unknown mean lifetime survival
β > 0 (random censoring) or θ > 0 (fixed censoring).

2.1. Maximum Likelihood Estimation

The method of maximum likelihood is the most common approach used to obtain pa-
rameter estimates in parametric models. Under the censored exponential model, maximum
likelihood proceeds by setting the parameter estimate β̂(D) to the value that maximises
the probability of the data. From (4) and (5), the joint probability of the data D is

p(D|α, β) =

(
1
β

)k( 1
α

)n−k
exp

(
−
(

1
β
+

1
α

) n

∑
i=1

yi

)
, (7)

where k = (∑i δi) is the number of observed uncensored survival times. Maximizing the
likelihood function is equivalent to minimizing the negative log-likelihood function

− log p(D|α, β) = k log β + (n− k) log α +

(
1
β
+

1
α

) n

∑
i=1

yi. (8)
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Maximum likelihood estimates of the mean survival and censoring times are

β̂(D)ML =
1
k

n

∑
i=1

yi, α̂(D)ML =
1

n− k

n

∑
i=1

yi, (9)

respectively. Provided the count of observed survival times k ∈ (0, n), the maximum
likelihood estimates α̂(D) and β̂(D) are finite; otherwise, if k = 0 or k = n, one of the
maximum likelihood estimates α̂(D) or β̂(D) is infinite. Kim [5] showed that maximum
likelihood estimates have infinite mean and variance in this setting. However, the expected
value of the maximum likelihood estimate β̂(D) is finite if we condition on k > 0. Kim [5]
further showed that, provided k ∈ (0, n), the maximum likelihood estimates α̂(D) and
β̂(D) are unbiased, strongly consistent (without any condition on k) and asymptotically
normally distributed.

In the case of Type I censored data with a fixed censoring time c > 0, the negative
log-likelihood function of the data is

− log p(D|θ; c) = k log(θ) +
1
θ

(
n

∑
i=1

yiδi

)
+

c(n− k)
θ

(10)

where k = ∑i δi as before. Under fixed censoring, the maximum likelihood estimate of the
mean survival time θ̂(D) is (see, for example, [6])

θ̂(D) =
c(n− k) + ∑n

i=1 δiyi

k
. (11)

In case of no censoring (i.e., k = n implying complete data), (11) reduces to (∑i yi)/n,
which is the usual maximum likelihood estimate for the exponential distribution with
complete data. The sampling distribution of (11) is asymptotically normal with mean θ
and variance

θ2

n(1− exp(−c/θ))
=

θ2

nFT(c|θ)
. (12)

Conditional upon k > 0, Mendenhall and Lehman [7] obtained the exact mean and variance
of the maximum likelihood estimate (11)

E{θ̂} = θ − c
(

q
p
− nE{k−1}+ 1

)
, V{θ̂} = (nc)2V{k−1}+ (θ2 − c2q/p2)E{k−1},

where

p = 1− exp(−c/θ), q = 1− p, E{k−a} = 1
1− qn

n

∑
k=1

1
ka

(
n
k

)
pkqn−k,

for a = 1, 2, . . . and V{k−1} = E{k−2} − (E{k−1})2. However, the large sample normal
approximation of the distribution of the maximum likelihood estimates is inaccurate and
not representative of the behaviour of the estimate in the small to moderate sample size
regime [7]. Balakrishnan and Davies [8] further show that the maximum likelihood estimate
computed based on a censoring time c′ will always produce an estimate which is Pitman
closer to the data generating model θ than the maximum likelihood estimate computed
with a shorter censoring time c < c′. In the next section, we introduce the MML principle
of inductive inference (see Section 3) and demonstrate how MML can be used to infer
exponential models with censoring (see Section 4).

3. Minimum Message Length

Introduced in the late 1960s by Wallace and Boulton [9], the minimum message
length (MML) principle [1,9–11] is a framework for inductive inference based on ideas
in information theory and data compression. Under the MML framework, the aim is to
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transmit a set of data (a message) from a hypothetical sender to a receiver over a noiseless
transmission channel. The MML message is designed to consist of two parts:

1. the assertion: an encoding of the model structure and the associated model parameters
θ ∈ Θ ∈ Rp.

2. the detail: a description of the data D using the model p(D|θ) that was specified in
the assertion.

The length of the assertion measures the complexity of the model, with complex models
requiring longer codelengths compared to simpler models, while the detail captures how
well a model fits the data. The length of the two-part message, I(D, θ), is the sum of the
length of the assertion, I(θ), and the length of detail, I(D|θ); namely,

I(D, θ) = I(θ)︸︷︷︸
assertion

+ I(D|θ)︸ ︷︷ ︸
detail

. (13)

Within the MML framework we seek the model

θ̂(D) = arg min
θ∈Θ

{I(D, θ)} (14)

that minimises the length of this message. Due to the two-part nature of the message, MML
automatically balances the trade-off between model complexity and the goodness of fit of
the model to the data. By measuring the quality of a model in (say) bits, MML is a yardstick
that can be universally used to compare models with different parameters and structures.

There exist several approches to computing message lengths (13), with the strict MML
procedure (SMML) [1,12] and the MML87 approximation [1,10] being the most widely
known. In contrast to the SMML procedure whose construction is known to be NP hard [13],
the MML87 approximation is computationally tractable and most widely used in practice.
The MML87 codelength approximation to (13) is

I87(D, θ) = − log π(θ) +
1
2

log|Jθ(θ)|+
p
2

log κp︸ ︷︷ ︸
assertion

+
p
2
− log p(D|θ)︸ ︷︷ ︸

detail

(15)

where πθ(θ) is the prior distribution for the parameters θ, |Jθ(θ)| is the determinant of the
expected Fisher information matrix, p(D|θ) is the likelihood function of the model and κp
is a quantization constant [14,15] that depends on the number of parameters p. Specifically,
for small p we have

κ1 =
1

12
, κ2 =

5
36
√

3
, κ3 =

19
192× 21/3 , (16)

while κp is well-approximated for large p by [1]:

p
2
(log κp + 1) ≈ − p

2
log 2π +

1
2

log pπ − γ, (17)

where γ ≈ 0.5772 is the Euler–Mascheroni constant. The MML87 codelength, evaluated
at the minimum, is the shortest codelength of a two-part message that encodes both the
model parameters θ ∈ Θ and the data D. The MML87 approximation is known to be
invariant under smooth one-to-one reparameterizations of the likelihood function and is
asymptotically equivalent to the well-known Bayesian information criterion (BIC) [16] as
n→ ∞ with p > 0 fixed; that is,

I87(D, θ) = − log p(D|θ) + p
2

log n + O(1) (18)

where the O(1) term depends on the prior distribution, the Fisher information and the
number of parameters p. Unlike model selection criteria such as Akaike’s information



Entropy 2021, 23, 1439 5 of 16

criterion (AIC) and BIC, MML allows for both parameter estimation and model selection
within the same unified framework. Furthermore, in models where the number of parame-
ters grows with n or the sample size is relatively small, the difference between the MML87
codelength and BIC can be substantial. Examples include analysis of multiple short time
series, where several measurements are collected over a period of time for a large number
of study participants [17], learning finite mixture models [18] and discriminating between
Poisson and geometric distributions based on observed data [19]. In the latter example,
both the Poisson and geometric distribution have the same number of free parameters
so that model selection with BIC is equivalent to choosing the model with the higher
likelihood. In contrast, MML87 takes into account the complexity of each distribution [20]
and not just the number of parameters, resulting in improved model selection performance
for small sample sizes [19].

MML has been successful applied to a wide range of problems (e.g., decision trees [21],
factor analysis [22], linear causal models [23], mixture modelling [18,24]) demonstrating
excellent parameter estimation properties and model selection performance that is on par
or better than commonly used techniques such as Akaike’s information criterion (AIC) [25]
and the Bayesian information criterion (BIC). A brief tutorial overview of minimum mes-
sage length can be found in [19].

4. Minimum Message Length Inference of Type I Censored Exponential Data

To encode and transmit censored data D = {(y1, δ1), . . . , (yn, δn)} between the hypo-
thetical sender and receiver within the MML framework, we have two options:

• Transmit the censoring indicators (δ1, . . . , δn) first and then transmit the lifetime
survival data (y1, . . . , yn) given the receiver now knows which of the n data points
are censored (see Section 4.1);

• Transmit the censoring indicators and the lifetime data simultaneously (see Section 4.2).

We shall now estimate the MML87 codelength (15) for both the joint and the conditional
encoding schemes for the censored exponential distribution setting introduced in Section 2.

4.1. Conditional Encoding of the Data

Under the conditional encoding framework, the sender transmits the censoring in-
dicators δi first, and then transmits the lifetime data yi using the conditional distribution
of the data given the observed censoring indicators. The total message length of the data
D = {(y1, δ1), . . . , (yn, δn)} and the parameters θ with the conditional encoding is

I87(D, θ) = I87(φ, δ) + I87(ψ, y|δ), (19)

where θ = {φ, ψ} are the model parameters defined below, I(φ, δ) denotes the message
length of the censoring indicators δ = (δ1, . . . , δn), and I(ψ, y|δ) denotes the codelength
of the survival data y = (y1, . . . , yn), given that the censoring indicators are known to the
receiver. From (3), the probability of observing an uncensored datum, say φ > 0, is

φ = P(Ti ≤ Ci) =
α

α + β
, (i = 1, . . . , n), (20)

implying that the censoring indicators follow a Bernoulli distribution with probability
φ; that is, δi ∼ Bernoulli(φ), or equivalently, k follows the binomial distribution k ∼
binomial(φ, n).

The MML87 codelength of the binomial distribution was previously derived in [1,18]
and is included here for completeness. Briefly, to compute the MML87 codelength (15) we
require the Fisher information Jφ(φ) and the prior distribution πφ(φ) for the probability of
observing an uncensored datum. The Fisher information is well-known

Jφ(φ) =
n

φ(1− φ)
. (21)
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We assume the prior distribution for the censoring probability φ to be the beta distribution
(φ ∼ beta(a, b)) with probability density function

πφ(φ|a, b) =
φa−1(1− φ)b−1

B(a, b)
(22)

where a, b > 0 are the shape and scale parameters respectively and B(a, b) is the usual
beta function. Substituting (21) and (22) into the MML87 codelength (15) and noting that
κ1 = 1/12, yields

I87(φ, δ) = −
(

k + a− 1
2

)
log φ−

(
n + b− 1

2 − k
)

log(1− φ)+

log B(a, b) + 1
2 (1 + log n− log 12)

(23)

where, as before, k = (∑i δi). The codelength (23) is minimised at the MML87 estimate

φ̂87(δ) =
k + a− 1/2

n + a + b− 1
. (24)

Note that, in the special case of uniform prior distribution (a = b = 1), the MML87 estimate
simplifies to

φ̂87(δ) =
k + 1/2

n + 1
. (25)

The shortest MML87 codelength for the censoring indicators is therefore given by I87(φ̂87, δ).
It remains to work out the conditional codelength of the surivival times given the censoring
indicators, I87(ψ, y|δ).

We note that the conditional likelihood of the lifetime datum yi is

p(yi|α, β, δ = 0) = p(yi|α, β, δ = 1) =
(

1
β
+

1
α

)
exp

(
−yi

(
1
β
+

1
α

))
, (26)

which is the exponential distribution with mean ψ = (1/β + 1/α)−1; that is,

yi|δi ∼ Exp(ψ), i = 1, . . . , n. (27)

The Fisher information of the exponential distribution is

Jψ(ψ) =
n

ψ2 . (28)

In terms of the prior distribution for ψ, Schmidt and Makalic [4] consider the conjugate
exponential distribution with a hyperparameter ψ0 that controls the prior mean. Here, we
would like an objective prior distribution on the mean ψ that is free of hyperparameters
and has heavy tails so that large values of ψ are not penalized too severely. Additionally,
our choice of the prior distribution should ideally lead to an easy to compute analytic
estimate of ψ. A reasonable option is the half-Cauchy distribution which has heavy tails
however it leads to MML estimates that are roots of polynomial functions of s = ∑i(yi).
Instead, we will use the Fréchet (inverse Weibull) distribution with probability density
function

πψ(ψ) = ψ−2 exp(−ψ−1), ψ > 0, (29)

which is a type of generalized extreme value distribution and has Cauchy-like heavy tails.
Substituting (29), (28) into (3), we obtain the MML87 codelength

I87(ψ, y|δ) = (n + 1) log ψ +
1
ψ

(
1 +

n

∑
i=1

yi

)
+

1
2
(1 + log n− log 12). (30)
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The MML87 estimate of the mean ψ is

ψ̂87(y) =
s + 1
n + 1

(31)

where, as before, s = ∑i yi. The MML87 estimate corresponds to the usual maximum likeli-
hood estimate ψ̂ML(y) = s/n with one additional data point that has a unit contribution to
the mean. The expected mean squared error of the MML87 estimate is

E{(ψ̂87(y)− ψ)2} = ψ(ψ(n + 1)− 2) + 1
(n + 1)2 (32)

which dominates the maximum likelihood estimate for

ψ >
n

n +
√

n(2n + 1)
, n > 0. (33)

As the sample size n increases, we note that

lim
n→∞

{
n

n +
√

n(2n + 1)

}
=
√

2− 1 ≈ 0.414 (34)

implying the MML87 estimate dominates maximum likelihood for all ψ > 0.414 in terms
of expected mean squared error for large n. However, we note that, unlike the MML87
estimate with this choice of prior distribution, the maximum likelihood estimate is invariant
to scaling of the data.

Substituting I87(φ̂, δ) and I87(ψ̂, y|δ) into (19) yields the total (conditional) codelength
of the data. The MML87 estimates of the mean lifetime β̂87(D) and censoring time α̂87(D)
can be recovered from

α→ ψ

1− φ
, β→ ψ

φ
, (35)

for φ ∈ (0, 1). Next, we examine how the same message can be encoded using joint
encoding of lifetime data and censoring indicators.

4.2. Joint Encoding of the Data

Unlike in the conditional encoding, the sender now transmits the survival times and
the indicator variables simultaneously. The negative log-likelihood function of the data
D = {(y1, δ1), . . . , (yn, δn)} is given in (8). The Fisher information in this parameteriza-
tion is

J(α, β) =
n2

βα(α + β)2 . (36)

We would like to use prior distributions for α and β that are comparable to those in the
conditional coding described in Section 4.1. Noting that φ ∼ beta(a, b), ψ has the standard
Frechet distribution and

φ =
α

α + β
, ψ =

(
1
α
+

1
β

)−1
, (37)

the Jacobian of the transformation from (φ, ψ)→ (α, β) is

αβ

(α + β)3 (38)

implying that a commensurate joint prior distribution for α, β is

πα,β(α, β) =
αa−2e−

α+β
αβ βb−2(α + β)−a−b+1

B(a, b)
(39)
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where B(·, ·) is the beta function. In the special case where φ is given a uniform prior (i.e.,
a = b = 1), we have

πα,β(α, β) =
e−

α+β
αβ

αβ(α + β)
(40)

Substituting (36) and (39) into (15), the MML87 codelength is

I87(D, θ) = k log β + (n− k) log α +

(
1
α
+

1
β

)( n

∑
i=1

yi

)
− log πα,β(α, β)

+ log n− 1
2

log
(

αβ(α + β)2
)
+ log κ2 + 1 (41)

where θ = {α, β} and the quantization constant κ2 = 5/(36
√

3). The MML87 estimates
that minimize the codelength (41) are

α̂87(D) =
2(s + 1)(a + b + n− 1)

(n + 1)(2b− 2k + 2n− 1)
, β̂87(D) =

2(s + 1)(a + b + n− 1)
(n + 1)(2a + 2k− 1)

. (42)

If required, the corresponding estimates of φ and ψ can be obtained from (37).

4.3. Properties

First we show the the conditional (19) and joint (41) MML codelengths are equivalent
up to a constant to be specified below. From Sections 4.1 and 4.2, we note the joint density
of (Y, ∆) can be expressed as a product of the binomial p∆(δ|φ) and exponential densities
pY(y|ψ)

pY,∆(y, δ|α, β) = p∆(δ|φ)pY(y|ψ) =
(

φδ(1− φ)1−δ
)
(exp(−y/ψ)/ψ)

where Y and ∆ are independent random variables (see Kim [5] (p. 104)). Consequently, as
MML87 is invariant under smooth one-to-one reparameterizations of the sampling model,
the MML87 joint codelength (41) and the corresponding conditional codelength (19) are
identical (except for the minor efficiency gain in the joint codelength discussed below).
Specifically, the relationship between the joint codelength, I87(α, β, D) and conditional
codelength, I87(ψ, φ, D), can be expressed as

I87(ψ, φ, D) = I87(α, β, D) + log

(
3
√

3
5

)
(43)

where the term log(3
√

3/5) ≈ 0.0385 arises due to the quantization constant being smaller
in higher dimensions since its more efficient to encode multiple parameters simultaneously
compared to encoding each parameter independently.

Furthermore, as the MML87 estimate of φ is φ̂ ∈ (0, 1) (see (24)), MML87 estimates of
the mean survival times (α, β) are finite for all k ∈ [0, n] in contrast to the corresponding
maximum likelihood estimates (9) which are finite for k ∈ (0, n). As n → ∞, it is well-
known that the MML87 estimates are equivalent to the maximum likelihood estimates
(see (18)) which implies that the MML87 estimates are similarly asymptotically normally
distributed and strongly consistent.

The expected mean square error E{(β̂− β∗)2} of the ML and MML87 estimates of β∗,
conditional on k > 0, is expressible in terms of the generalized hypergeometric function for
any n > 0. Figure 1 (top) depicts the expected mean squared error between the MML87
and ML estimate of β∗, expressed as a ratio of MML87 to ML with smaller values indicating
preference for the MML87 estimate. The expected mean squared error of the MML87
estimate of β∗ was generally lower than the corresponding maximum likelihood estimate
(except when the true censoring proportion φ∗ was small) with the biggest difference
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observed for small sample sizes, while the two estimates were practically indistinguishable
for larger sample sizes n ≥ 100.

We also compared the MML87 and the ML estimates in terms of the relative entropy
or the Kullback–Leibler (KL) divergence, conditional on k ∈ (0, n). The KL divergence
between the true data generating model (α1, β1) and the approximating model (α2, β2) is

DKL(α1, β1||α2, β2) =
α1β1(α2 + β2) + α2β2

(
α1 log

(
β2
β1

)
+ β1 log

(
α2
α1

)
− α1 − β1

)
α2β2(α1 + β1)

,

which, as expected, is the sum of the KL divergences between two exponential and two
binomial distributions. The KL divergence may be interpreted as the expected amount
of extra information required to encode data from (α1, β1) using the model (α1, β2). The
expected KL divergence for both the ML and MML estimators is shown in the bottom
of Figure 1, conditional on k > 0 and k < n. It is clear that for n = 5 the MML87
estimate dominates the maximum likelihood estimate in terms of the KL divergence for all
φ∗ ∈ (0.05, 0.95). When the sample size is increased (n = 10), the MML87 estimate exhibits
smaller KL divergence compared to the ML estimate for all φ∗ except when φ∗ → 0 or
φ∗ → 1 where the maximum likelihood estimate has smaller KL divergence.
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Figure 1. Expected mean squared error of β∗ and expected KL divergence between the MML87 and
ML estimates. Ratio values less than 1 imply that the MML87 estimate has smaller mean squared
error in estimating β.
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5. Minimum Message Length Inference with Fixed Censoring

Consider now the fixed censoring scenario (6) introduced in Section 2 where the
negative log-likelihood function of the data is given in (10). If we wish to encode the data
D using the joint MML code (see Section 4.2), we require the negative log-likelihood, the
Fisher information and a prior distribution for the mean survival time θ > 0. The negative
log-likelihood is given in (10) while the Fisher information for Type I censored data with
fixed censoring is:

Jθ(θ; c) =
n(1− exp(−c/θ))

θ2 =
nFT(c|θ)

θ2 , (44)

where FT(·|θ) is the cumulative distribution function of the survival data T (see Section 2).
The reduction in information due to censoring is clearly a function of θ and the cumulative
density function of T, with large c resulting in little information loss compared to small c.
As expected, as c gets larger

lim
c→∞

Jθ(θ; c) =
n
θ2 , (45)

which is the usual Fisher information for the exponential distribution with no censor-
ing. The prior distribution for θ is chosen to be the Fréchet ditribution with scale c and
probability density function

πθ(θ; c) = c−1
(

θ

c

)−2
exp

(
− c

θ

)
. (46)

Substituting (44) and (46) into (15), we obtain the complete MML87 codelength for the
joint encoding

I87(D, θ) = (k + 1) log(θ) +
1
θ

(
c((n− k) + 1) +

n

∑
i=1

yiδi

)

+
1
2

log
(

1− exp(−c/θ)

c2

)
+

1
2
(1 + log n− log 12). (47)

Due to the form of the Fisher information, the MML87 estimate of θ that minimizes this
codelength is unavailable analytically and must be obtained via numerical optimisation.
The maximum likelihood estimate (11) may be used as a starting point for the numeri-
cal search.

Consider now the conditional encoding (see Section 4.1) where the probability of
observing an uncensored datum, say φ > 0, is

φ = P(Ti ≤ c) = FT(c|θ) = 1− exp(−c/θ), (i = 1, . . . , n), (48)

so that the number of uncensored data points k follows the binomial distribution k ∼
binomial(φ, n). This implies that the mean survival time can then written as

θ = −c/ log(1− φ), φ ∈ (0, 1). (49)

A naive conditional coding approach proceeds by encoding the censoring indicators fol-
lowing Section 4.1 with codelength (23). To encode I(y|δ), one would use the conditional
probabilities of the lifetime data which are

pY|∆(Yi = yi|∆i = 1) =
p(Ti = yi)

p(Ti ≤ c)
if yi ≤ c, (50)

and
pY|∆(Yi = c|∆i = 0) = 1, pY|∆(Yi > c|∆i = 0) = 0. (51)
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for all i = 1 . . . , n. The conditional likelihood of the k = (∑i δi) data points is then

p(y|θ; δ = 1) = ∏
i:δi=1

(1/θ) exp(−yi/θ)

1− exp(−c/θ)
= − ∏

i:δi=1

(1− φ)yi/c log(1− φ)

cφ
. (52)

Once the receiver has the censoring data and an estimate of φ, they implicitly know θ
from (49). The length of the message required to transmit the data y is

I87(θ, y|δ) = k log θ +
1
θ ∑

i:δi=1
yi + k log(1− exp(−c/θ))

= −1
c

(
∑

i:δi=1
yi

)
log(1− φ) + k log cφ− k log(− log(1− φ)) (53)

which is the negative log-likelihood of the data. However, this codelength is inefficient
since the probability of censoring φ(θ) is not independent of the mean survival time θ. This
implies that the precision to which φ(θ) is encoded must depend on the lifetime data y,
which is not the case in the naive approach where the precision quantum for φ(θ) depends
on the censoring data δ only. Consequently, joint MML coding should be used instead of
the conditional encoding approach for the fixed censoring setup.

5.1. Example

We observe n = 20 items with an exponential life distribution for c = 150 h. Out of the
20 items k = 15 items fail during the observation period and the sum of their lifetimes (in
hours) is s = ∑i yiδi = 835 [6]. The maximum likelihood estimate of the mean lifetime θ is

θ̂ML(D) =
150(5) + 835

15
= 105.6 h, (54)

with a negative log-likelihood of 84.9 at the minimum. The MML87 estimate is obtained by
a numerical search and is θ̂87(D) = 110.1 h with a codelength of 124.905 bits. The MML87
codelength at the maximum likelihood estimate is 124.924 bits suggesting that there is little
difference between the two estimates in this example.

5.2. Properties

To evaluate the performance of the MML87 estimate, we computed the mean squared
error risk and the expected Kullback–Leibler (KL) divergence for MML87 and the ML
estimates under the data generating model θ∗ = 1 and sample sizes n ∈ {5, 25}. Since the
ML estimate is undefined for k = 0, all the results discussed below are conditional on k > 0.
The KL divergence from the ‘true’ model θ1 to the approximating model θ2 is

DKL(θ1||θ2) =

(
1− θ1

θ2
+ log

(
θ1

θ2

))(
exp

(
− c

θ1

)
− 1
)

. (55)

The results are shown in Figure 2 where the x-axis of each plot is the censoring point c
set to the p-th percentile of the data generating model Exp(θ∗ = 1); for example c = 0.69
corresponds to the p = 0.50-th percentile of Exp(θ∗ = 1). It is clear that the MML87 estimate
is a reasonable alternative to the maximum likelihood estimate under fixed censoring. For
p ≥ 0.20 (i.e., the 20-th percentile of Exp(θ∗ = 1)) the MML87 estimate dominates the ML
estimate in terms of KL risk, while for p < 0.20 the estimates are very similar for both
sample sizes tested. In terms of the expected mean squared error, the MML87 estimate
dominates the ML estimate for all 0.20 ≤ p ≤ 0.80 when n = 5; for n = 25, the estimates
are indistinguishable for p < 0.1 and p > 0.69 and the MML87 estimate again dominates
ML for all 0.1 < p < 0.5.
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Figure 2. Expected Kullback-Leibler (KL) divergence and squared error (SE) risk of the maximum
likelihood and MML87 estimates for n = 5 (top) and n = 25 (bottom) data points generated from
model θ∗ = 1. The x-axis on all plots denotes the censoring point c and is set to a percentile of Exp(θ∗).

6. Discussion

This manuscript has demonstrated how minimum message length can be used to infer
data with censoring information. Specifically, we have derived MML87 codelengths for
the exponential distribution with fixed censoring and random type I censoring. Although
information theoretic universal models for the exponential distribution, including those
corresponding to MML codes, are known [4], this is the first time MML has been applied
to censored data.

The MML87 codelength for the exponential distribution with censoring provides a
new means of parameter estimation as well as model selection. In terms of parameter
estimation, the MML87 estimate of the mean lifetime θ under type I censoring described
in this paper has some advantages over the usual maximum likelihood estimate for small
sample sizes. First, the MML87 estimate is defined for all proportions of censoring unlike
the maximum likelihood estimate which does not exist when all observations are censored;
i.e., k = (∑i δi) = 0. In addition, the MML87 estimate has on average lower mean squared
error risk and lower KL divergence from the data generating model for a wide range of
censoring proportions.

In the case of random censoring, the MML87 estimate is available in closed-form
while for fixed censoring, it can only be obtained by numerical optimisation. Although
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the experiments in the manuscript utilised heavy-tailed prior distributions for the scale
parameter as recommended in, for example, [26], the Bayesian nature of MML allows for
information prior information to be incorporated directly into the estimation process. The
effect of the prior distribution in the examples considered here is expected to be negligible
for medium to large sample sizes.

Importantly, the proposed MML87 codelengths can also be used to discriminate
between competing models (e.g., exponential vs lognormal) and offer some advantages
over the well-known BIC model selection approach. BIC only considers the sample size
and the number of parameters when measuring model complexity. In contrast, MML takes
into account not just the number of parameters, but also the complexity of the distribution
(i.e., the number of random data strings that are fitted well by the distribution). As the
sample size n→ ∞, the MML87 codelength converges to the BIC and therefore inherits the
favourable asymptotic properties of BIC, such as model selection consistency.

The codelengths derived in this manuscript are extendable to MML inference of
other censored data types, such as the Weibull and the lognormal distribution, and can be
incorporated into more complex models as shown in the next section.

6.1. Clustering Survival Data

To demonstrate the applicability of the codes derived in the manuscript, we imple-
mented the MML87 codes into a Matlab software package for inference of finite mixture
models. Our software, called Matlab Snob, features mixture models with categorical data
(e.g., multinomial distribution), count data (e.g., geometric, Poisson and negative binomial
distributions), continuous data (e.g., normal, Laplace, gamma and Weibull distributions)
and survival data (type I fixed and random censored exponential distribution). As a
demonstration of Matlab Snob, we used two publicly available survival data sets: (1) Rossi
et al.’s criminal recidivism data [27], and (2) survival from malignant melanoma [28].

The crime data was recently analyzed in [29] using variational Bayes estimated finite
mixture models. For clustering we used all n = 432 observations and the following seven
attributes: (1) financial aid (no, yes), (2) full-time work experience before incarceration
(no, yes), (3) marital status at time of release (married, not married), (4) released on parole
(no, yes), (5) number of convictions prior to current incarceration, (6) age in years at time
of release and (7) week of first arrest after release (73.6% censored). This is an example
of fixed censoring as all censored observations were censored at 52 weeks. We modelled
the categorical attributes using a multinomial distribution, number of convictions was
modelled with a negative binomial distribution, while a Gaussian distribution was used for
age at time of release. For the week of arrest, we used the exponential distribution model
with fixed type I censored data (see Section 5).

The melanoma data set consists of n = 205 patients from Denmark who were diag-
nosed with malignant melanoma. Five attributes were used for clustering: (1) sex (male,
female), (2) ulcer (present, absent), (3) age at diagnosis in years, (4) tumour thickness in mm,
and (5) censored survival time in years (65.3% censored). Sex and ulcer were modelled via
multinomial distributions, while age and tumour thickness were modelled with univariate
Gaussian distributions. For the survival time, we used an exponential distribution with
random type I censoring (see Section 4) and combined death due to melanoma and death
due to other causes as the primary outcome of interest.

Clustering results for the Crime and the Melanoma data sets with Matlab Snob are
shown in Table 1. First, since Matlab Snob learns finite mixture models using the MML87
codelength approximation, the same framework is used to estimate all model parameters
as well as select the number of classes. For the Crime data, the model with three classes
had the smallest codelength, while two classes were selected for the Melanoma data set.
We observe that all the classes are relatively well differentiated in terms of average survival
time. In the case of the Crime data set, class 1 had the shortest average time to arrest
(θ = 119 weeks) and consists of younger individuals (mean age 20.7 years, std. dev.
2.1 years) who are primarily unmarried and have no full-time work experience before
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incarceration. In contrast, class 3 comprised older individuals (mean age 36.3 years, std.
dev. 4.9 years) 82% of which had full-time work experience, was estimated to have longest
average time to arrest (θ = 345.9 weeks). For the melanoma data set, class 1 was estimated
to have the shortest average survival time (β = 7.3 years) and consisted of individuals
diagnosed at an older age (mean: 57.3 years, std. dev. 17.1 years) with larger tumours
(mean: 5.4 mm, std. dev. 3.4 mm). In contrast, patients assigned to class 2 were diagnosed
at a younger age, had smaller tumours and were estimated to have longer survival time on
average (β = 37.0 years).

Table 1. MML finite mixture models for Crime and Melanoma data. The attribute modelling censored survival time is seven
in the Crime data set and five in the Melanoma data set.

Data Class Attributes
1 2 3 4 5 6 7

Crime
1 (50%, 50%) (73%, 27%) ( 3%, 97%) (42%, 58%) (r: 2.0, p: 0.4) (µ: 20.7, σ: 2.1) (θ: 119.0)
2 (55%, 45%) (15%, 85%) (23%, 77%) (28%, 72%) (r: 13.4, p: 0.8) (µ: 24.9, σ: 3.3) (θ: 249.3)
3 (40%, 60%) (16%, 84%) (18%, 82%) (51%, 49%) (r: 2.3, p: 0.5) (µ: 36.3, σ: 4.9) (θ: 345.9)

Melanoma
1 (43%, 57%) (17%, 83%) (µ: 57.3, σ: 17.1) (µ: 5.4, σ: 3.4) (α: 12.0, β: 7.3) – –
2 (73%, 27%) (80%, 20%) (µ: 49.5, σ: 15.8) (µ: 1.4, σ: 0.9) (α: 8.1, β: 37.0) – –

The Matlab Snob clustering software is freely available for download from the Math-
works Filexchange website (ID: 72310) and will be extended to incorporate other survival
distributions in the future (eg, Weibull and lognormal distribution). We note that the
MML87 codelengths for type I censored exponentially distributed data derived in this pa-
per can also be used in decision tree modelling [21,30,31]. For example, one could represent
the leaves of the decision tree with a censored exponential distribution and use MML to
infer an optimal decision tree for a data set.

6.2. Minimum Message Length and Minimum Description Length

Minimum message length is closely related to minimum description length (MDL), an
inductive inference principle independently developed by Rissanen and colleagues [32–35].
Like MML, the MDL principle is rooted in information theory and, given a data set, seeks
a model that would result in the shortest encoding of the data. A recent and popular
version of the MDL principle is the normalized maximum likelihood (NML) code which
says that the codelength for data y with respect to model classM parameterised by models
θ ∈ Rp ∈ M is

− log pNML(y|M) = − log p(y|θ̂(y),M) + log ∑
x

p(x|θ̂(x),M) (56)

where θ̂ is the maximum likelihood estimate of the p parameters and the sum in the second
term is taken over the entire data space; we replace the sum with an integral in the case of
continuous data. The first term in the NML codelength is the negative log-likelihood of the
data evaluated at the maximum likelihood estimate, while the second term represents the
parametric complexity of the model class and measures how well models θ ∈ M within
the model classM approximate random data sequences. In particular, a high parametric
complexity says that a large number of data sequences can be well-approximated by models
within the class. In contrast, the parametric complexity of a simple model that can only
well-approximate a few data sequences will tend to be small.

Rissanen [33] derives an asymptotic approximation for the NML codelength which is
accurate for medium to large sample sizes:

− log pNML(y|M) = − log p(y|θ̂(y),M) + log
∫

Θ

√
|J1(θ)|+

p
2

log
( n

2π

)
+ o(1) (57)
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where J1(·) is the per-sample Fisher information matrix. Mera et al. [36] derive a some-
what sharper approximation to the NML codelength using Riemannian geometry tools
and apply their new approximation to principal component analysis. Rissanen further
shows that, like the MML87 codelength, the NML codelength reduces to the well-known
Bayesian information criterion (BIC) in the limit as the sample size n→ ∞. Unfortunately,
in the case of the exponential distribution with or without type I censoring, the parametric
complexity is infinite for both the exact NML codelength and the asymptotic approxima-
tion. To circumvent the problem of infinite parametric complexity, one may consider the
restricted approximate normalized maximum likelihood (ANML), the two-part ANML or
the objective Bayesian code, among others [37].

Although there exist many similarities in the approaches to inference between MML
and MDL, there are some important differences which we summmarize below:

• MDL relies on the maximum likelihood estimator and does not offer new means for
parameter estimation;

• MDL is decidedly non-Bayesian avoiding the use of any (subjective or objective)
prior information;

• MDL nominates the model classM that would result in the shortest encoding of the
data and does not does not infer a fully specified model;

• while MML minimises the expected (average) codelength of the data with respect to
the marginal data distribution, MDL minimizes the worst-case codelength relative to
the ideal code.

In addition to the NML code, other MDL codes exist including the sequential NML
code [38] and the conditional NML distribution [34], among others. Clearly, both MML
and MDL approaches to inductive inference have merit, and if used correctly, will result in
excellent model selection performance as shown in a wide range of applications. A more
detailed discussion of MML and MDL similarities and differences can be found in [39]
and [1] (pp. 413–415).
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