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ABSTRACT
WI-38 and SV40WI-38 cells have been synchronized using centrifugal elutriation .
This technique allows for the rapid harvesting of early G, phase cells from
exponentially growing populations of both the normal and transformed cell . Using
these cells, as well as WI-38 cells synchronized by serum deprivation, we have
examined the effects of extracellular Ca and Mg levels on the progression of cells
through GI phase. A differential sensitivity to both Ca and Mg deprivation is
observed between normal and transformed cells. The WI-38 cell requires higher
levels of both ions for traversal of G, phase and for continued proliferation as
compared to the transformed cell . The temporal nature of the Ca and Mg
requirements for the WI-38 cell has been examined during G, phase . Ca is strictly
required during early and late G, phase, but not necessarily throughout mid-G, .
An early as well as a late G, Ca requirement is also found in serum-stimulated
WI-38 cells . In contrast, the Mg requirement of WI-38 cells does not appear to be
temporally well-defined . Mg appears to be a permissive factor, required through-
out G, phase rather than at certain prescribed intervals . On the basis of these
data, it seems unlikely that these two cations exert their effects on cell growth
entirely through a common competitive mechanism . Ca would appear to be
involved in early serum or growth factor-mediated G, events and later pre-S-
phase events, as suggested in previous studies on other cell lines
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The divalent cations Ca and Mg have been impli-
cated as growth-regulating substances in a variety
of in vivo and in vitro systems (for reviews see
references 3, 19, 21, and 28) . Ca and Mg are
required for cellular proliferation (e.g ., references
11, 22, and 28), and these requirements differ in
certain normal and transformed cells (2, 4, 10, 14) .
Growth control appears to be manifested in

early G, or Go phase of the cell cycle because
normal cells grown in vitro come to rest at this
point under a variety of conditions unfavorable

for further proliferation . Thus, we wished to eval-
uate the Go and G, phase requirements for extra-
cellular Ca and Mg in both normal and trans-
formed cells . Centrifugal elutriation has been used
to isolate G, phase cells from exponentially grow-
ing populations of both WI-38 and SV40-trans-
formed WI-38 cells . Using these cells as well as
serum-stimulated WI-38 cell populations, we have
examined the Ca and Mg requirements for suc-
cessful G, traversal and entry into S phase . Pre-
vious studies have suggested that a single Ca-de-
pendent period exists in late G, phase (5, 6) .
Recent observations, however, indicate that one
early effect of serum or serum-derived growth
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factors may involve changes in Ca binding and
metabolism (9, 14, 23, 24, 26, 27) . The present
study indicates that Ca is required in both early
and late Gt phase .

There also exist questions regarding the specific
roles of Ca and Mg in the control of cell growth .
Rubin and his colleagues have suggested that in-
tracellular Mg activity plays a central role in the
proliferative response (11, 21, 22) and that the
effects of Ca deprivation on normal cell growth
result from competition ofCa and Mg for common
intracellular binding sites . In contrast, other work-
ers have presented data that suggest that the effects
of Ca and Mg on cell growth are distinct, both
functionally and temporally (14, 28) . In an attempt
to clarify these possibilities, we have examined the
effects of Ca and Mg deprivation at various times
during Gt phase of the cell cycle in the normal
and transformed WI-38 cell . Our data suggest that
Ca and Mg play distinct roles in regulating G t
progression during portions of this phase in the
WI-38 cell .

MATERIALS AND METHODS
Cell Cultures

WI-38 human embryonic lung fibroblasts (passage 15, popu-
lation doubling 21) and WI-38VA 13 (SV40-transformed human
lung, passage 264) have been obtained from the American Type
Culture Cell Repository . WI-38 cells were used up to 30 passages
and then restarted from frozen stocks to eliminate variables
associated with aging. Stock cultures are maintained in basal
diploid medium-Eagle (BME) supplemented with 10% fetal calf
serum (FCS) and penicillin-streptomycin and subcultured every
3-4 d at confluence. Cultures are maintained at 37°C in a 5%
C0 2 air humidified atmosphere . Medium, serum, and antibiotics
were purchased from Grand Island Biological Co . (IGIBC01,
Grand Island, N. Y.) .

Manipulation of Culture Medium Divalent
Cation Content

For the majority of experiments, serum-free BME was pre-
pared without Ca and Mg salts . Such medium routinely con-
tained 1-5 mpCa and Mg, as determined by fluorometric titration
ofCa using the Ca-calcien complex (see reference 27) or atomic
absorption measurementsofMg . The serum levels ofCa and Mg
were reduced by treatment with a divalent cation chelator
(Chelex 100, Bio-Rad Laboratories, Richmond, Calif) . Resultant
Ca and Mg levels were <10-c M as measured by fluorometric
titrationor atomic absorption spectroscopy, respectively. Concen-
trated stock solutions (10 or 100 x) of CaC12 and MgC1 2.6H20
were prepared with glass-distilled, deionized water. These con-
centrates were added to the "Ca- and Mg-free" BME to give the
desired final concentrations. The terms "Ca-free" or "Mg-free"
medium will be used in this paper to refer to the medium
described above before readdition of the ion in question. Control
medium was made by supplementing Ca- and Mg-free BME

488

	

THE JOURNAL OF CELL BIOLOGY " VOLUME 83, 1979

with 10% chelexed FCS, then readding Ca and Mg to normal
levels (2 .0 and 0.96 mM, respectively) . Growth experiments
comparing cell proliferation in medium prepared in this manner
and reconstituted to normal Ca and Mg levels vs . medium
containing non-chelex-treated serum indicate that growth ofboth
normal and transformed cells is not significantly different .

Cell Synchronization
WI-38 and SV40WI-38 cells were synchronized via centrifugal

elutriation (15, 16) . 1.8-2.4 x 10' exponentially growing cells
were removed from the growth surface, resuspended in 10 ml of
BME (10% FCS), and drawn through a 20-gauge needle to
disperse the cells. These were injected into the elutriator system
(JE-6 rotor, Beckman Instruments, Inc., Spinco Div., Palo Alto,
Calif.) at a flow rate of 14 ml/min (normal cells) or 22 ml/min
(transformed) and a rotor speed of 2,000 rpm. The elutriation
medium was BME plus 3% FCS. Subsequently, 250 ml of
medium containing small, presumably G, phase cells were har-
vested at a flow rate of 18 ml/min (WI-38) or 28.2 ml/min
(SV40) and a rotor speed of 2,000 rpm. Elutriated cells were then
centrifuged for 10 min at 600 g and the medium was removed by
aspiration . Cells were resuspended in an appropriate volume of
medium, and 1-5 X 105 cells were plated on 35-mm plastic
dishes. All procedures were carried out sterilely .

For cell number determinations, 35-mm dishes were washed
with a balanced salt solution, lifted in I ml of GIBCO solution
A containing 0.25% trypsin and 0.25% EDTA, and counted with
a Coulter electronic cell counter.

For ['H]thymidine ([`'H]TdR) incorporation, cells were pulsed
with [''H]TdR (5-10ACi/ml) for 20 min to l h, depending on the
experiment in question. The pulse was terminated by washing
the plates once with a balanced salt solution and adding l ml of
cold 5% TCA with 0.1 mM thymidine . Dishes were subsequently
scraped with a rubber policeman and filtered on glass fiber filters
in a multiwell suction device . Filters were washed four times with
5% TCA and counted in 5 ml of Instabray (Yorktown Research
Inc., Hackensack, N. J.) in a liquid scintillation counter .

Autoradiography was carried out on cells pulsed for various
periods (see figure legends) with ['H]TdR (10 pCi/ml). At the
termination of the pulse, cells were lifted with solution A, spun
once through an excess ofbalanced salt solution, and fixed with
50 lil of 3:1 ethanol:acetic acid. In some experiments, the cells
were grown on cover slips and processed without lifting . The
cells were smeared on slides or the cover slips were attached to
slides, and they were subsequently dipped in Kodak NTB 2
nuclear track emulsion . Slides were developed after a minimum
of 5 d and scored for percent labeled nuclei under phase optics .

Serum Stimulation
Quiescent populations of normal WI-38 cells were obtained

by plating 1 x 10' cells per 35-mm dish and growing them to
confluence. The cultures were then incubated in serum-free
medium for 4 d. Cells were subsequently serum-stimulated with
fresh medium containing 10% chelexed FCS, in which Ca and
Mg levels were manipulated as described above. Specific details
for each experiment are given in the figure legends .

In several experiments, cell growth was inhibited by Ca or Mg
deprivation . For Ca-deprivation studies, 2 X 10 -5 cells were
plated in normal BME on 60-mm plastic dishes. 24 h after
plating, the medium was removed and the cells were washed with
a (Ca- and Mg-free) balanced salt solution and given low Ca
medium . This medium contained 3 x 10 - `' M Ca and 5 x 10-
M Mg . Mg-deprivation studies were done in the same manner,



but in this case the experimental medium contained 2 mM Ca
and 3 x 10 -5 M Mg or "Mg-free" medium (see figure legends).

RESULTS
Cell Synchrony
The technique of centrifugal elutriation allows

for the rapid harvesting of a large number of
presumably Gt phase cells from an exponentially
growing population . This technique avoids some
of the problems inherent in induction methods of
synchrony, such as unbalanced growth . A major
advantage of elutriation is that it allows both
normal and transformed cells to be synchronized
with the same technique (16) . The elutriator is a
modified continuous flow rotor designed such that
cells of the same density can be separated accord-
ing to size . In an exponential population of cells,
theoretically the smallest cells should be in early
Gt phase and the largest in late G2/early M phase .
If early G t phase cells were plated, one would
expect to see a lag in [ 3H]TdR incorporation cor-
responding to the length of Gt phase followed by
a synchronous entry into S phase . During this
same interval, there should be no substantial
change in cell number because M phase has not
been reached . When the smallest fraction of elu-
triated cells (Fig . I A and B) were plated and the
kinetics of [3H]TdR incorporation and cell number
were monitored, the parameters varied as expected
for both normal and transformed cells (Fig . l C
and D) . Cell populations treated in the same way
as elutriated early Gt phase cells, but harvested in
a manner to collect the entire range of cell sizes,
show no synchronous entrance to S phase (Fig. 1
D) .

It should be noted that the G t phase observed
for the normal elutriated WI-38 cells (- 15 h) is
longer than that observed for the transformed WI-
38 cells (-9 h) and longer than that observed for
cycling WI-38 cells (6-10 h ; 1, 12) . One possibility
is that the normal elutriated cells may have fallen
out of cycle and represent Go phase cells, which
typically have extended pre-replicative phases (1) .
We consider this unlikely, however, since the elu-
triation process requires -30 min whereas WI-38
cells exhibiting 14-h Go-G, phases must remain
quiescent for at least 4 d (1) . Furthermore, these
quiescent populations, when serum-stimulated, ex-
hibit ^-30% [3H]TdR labeled nuclei with a contin-
uous pulse of 28 h (1) . In contrast, our elutriated
populations exhibit 60-80% labeled nuclei when
pulsed for 30 h after plating, a value consistent

with cycling populations which have not entered
Go phase (1) .

Because WI-38 cells, like numerous other non-
transformed lines, require attachment for contin-
ued proliferation, it is possible that the extended
Gt period represents the time required for com-
plete cell attachment after elutriation, which is -5
h . We have examined this by placing elutriated
cells in suspension culture for 5 h before plating
and comparing their G, phase to that of elutriated
cells plated immediately . As is seen in Fig . 1 C,
the suspension cultures are delayed in entering S
phase as compared to the elutriated, nonsuspen-
sion cultures . Within the same experiment, cells
were pulsed continuously from 15 to 42 h with
[3H]TdR and processed for autoradiography . At
the termination of the pulse, cell number was also
determined. There was no significant difference in
the cell number for the initially suspension vs .
nonsuspension cultures (4 .6 x 10" and 4.4 x 10"
cells/plate, respectively) and the fraction of la-
beled nuclei was not significantly different (82 vs.
78%, respectively) . Thus, the delay observed in
Fig . 1 C is not caused by a reduction in the cycling
population . These data suggest that attachment is
required for G, progression and that the somewhat
extended G I phase in the elutriated cells is due, in
part, to this requirement . The SVWI-38 elutriated
cells do not appear to exhibit this requirement,
based on their 9-h Gt phase . This observation is
consistent with the absence of a strict attachment
requirement for transformed cells . On the basis of
these data, we shall refer to the elutriated normal
cells as early Gt phase cells throughout the text,
but the data should be viewed with the apparent
attachment delay in mind .

Effects ofExtracellular Ca on Cell
Proliferation

Initial studies were undertaken to determine the
levels of extracellular Ca required for traversal of
G t phase and entry into S, as monitored by auto-
radiography, in normal and transformed cells (Fig .
2) . If medium Ca is 0.06 mM or lower, a substantial
fraction of WI-38 cells is prevented from entering
S phase. SV40-transformed WI-38 cells, on the
other hand, show no decrease in the fraction of
nuclei labeled with [ 3H]TdR even when grown in
Ca-free medium (Fig . 2) . The observation of this
differential sensitivity to Ca deprivation between
normal and transformed WI-38 cells agrees with
a previous report (7) .
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Using normal WI-38 cells, we carried out further
studies to determine the temporal nature oftheCa
requirement during G, phase. Initial studies

showed that the synchronized WI-38 cells entered

S phase 15 h after being elutriated and plated (Fig .
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FIGURE I

	

(A)Typical volume distributions for an exponential population of WI-38 cells and a G, phase-
enriched fraction of WI-38 cells obtained by centrifugal elutriation. Cells were processed for elutriation as
described in Materials and Methods, and samples were analyzed at increments of 156 pat', with an
electronic cell counter. The fraction of cells with volumes of <1,400 gym' represents 36% of random and
71% of elutriated populations . The modal volumes of the random and elutriated populations were 1,800
and 950 Am', respectively . (B). The effect of fluid flow rate on the modal volume of populations of WI-38
cells obtained by centrifugal elutriation at a rotor speed of 2,000 rpm. The modal volume of cell
populations was determined with an electronic cell counter. (C and D) Profile of [3H]TdR incorporation
and cell number after replacing of early G, phase cells isolated from exponentially growing populations
using centrifugal elutriation. Time zero represents the time of plating. At the times indicated, cells were
pulsed for 20 min with 5 yCi/ml ['H]TdR, and acid-insoluble radioactivity (") was measured as described
in Materials and Methods. Cell number (x) was monitored with an electronic cell counter. For WI-38 (C),
modal volume of the random population was 1,500 pm3; G, population was 875 pin' . For SV40W1-38 (D),
the random population modal volume was 3,124 gym' . The G, population modal volume was 2,194 Am'' .

Data are typical of three such experiments, each composed of duplicate samples. Acid-insoluble radioac-
tivity (~s) and cell number (A) are also illustrated for a population of cells elutriated in the same way as
indicated above, except that the entire cell volume distribution was collected and plated . In panel C is also
shown the effect of delayed cell attachment on G, phase progression. WI-38 cells were elutriated as
described above and plated (O) or placed in suspension culture for 5 h and subsequently plated (") . The
cells were then pulsed as described above at the times indicated with [''H]TdR. The data represent the

mean ofduplicate samples. See text for further discussion .

1 C) . Based on these data, two types of experiments

were done within the 0-25 h postplating interval .
In Ca readdition experiments, cells were plated in
normal BME for 5 h, at which time they were
washed and given Ca-free BME. At subsequent
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FIGURE 2

	

The effect of extracellular Ca or Mg concen-
tration on the ability of elutriated G, phase cells to
traverse G, and enter S phase . Cultures were elutriated
and G, phase cells were plated in control medium (2
mM Ca, 0.96 mM Mg). 5 h after plating, cultures were
washed and given fresh medium with the designated
concentration of Ca or Mg . The ion which was not being
manipulated was always present at control levels . Cells
were pulsed continuously with 10 pCi/ml [''H]TdR from
5-30 h (WI-38) or 5-20 h (SV40WI-38) after plating . At
30 (20) h, all dishes were processed for autoradiography
as described in Materials and Methods, and the fraction
of labeled nuclei was scored under phase optics . The
data from separate experiments are normalized to frac-
tion of control, where control represents elutriated G,
phase cells exposed to normal Ca and Mg levels through-
out the experiments. All points represent the mean ±
SEM of three or four separate experiments, each con-
taining duplicate samples for autoradiography . A mini-
mum of200 nuclei were scored on each sample .

times during G, phase, Ca levels were returned to
normal by addition of a concentrated stock solu-
tion of CaC1 2 . If Ca is added back within 10 h
after plating, WI-38 cells can enter S phase as well
as cells that have been exposed to normal Ca since
plating, as monitored by both [3H]TdR incorpo-
ration and autoradiography (Fig. 3 A) . As Ca is
added beyond this 10-h period, an increasing frac-
tion of the cells is prevented from initiating DNA
synthesis. These results indicate that WI-38 cells
require Ca for some indeterminate time during the
last 8 h of G, phase. The data from these experi-
ments give no indication of whether this require-
ment is brief or continuous through late G, (see
below) .
The experimental procedure used in the above

experiments also provided no information con-
ceming a requirement during the first 5 h of G,
phase. This point is an important one in light of

the report of Boynton et al. (6) that 3T3 cells
appear to require Ca only in very late G, phase,
immediately before S. To examine the effect of Ca
deprivation during this interval, we plated cells in
Ca-free medium, and Ca was restored to normal
5 h after plating . As can be seen in Fig. 4 A, WI-
38 cells deprived ofCa for the first 5 h ofG, phase
are delayed in entering S phase by an approxi-
mately equivalent length of time, suggesting the
presence of an early G, Ca requirement in cycling
WI-38 cells. This experiment also serves to indicate
that any lag induced in G, progression by an
attachment requirement appears to be distinct
from an early Ca requirement . In this experiment,
both the control and Ca-deprived cells are washed
at 5 h and then control medium is readded to both
sets ofplates . Thus, only cells that had attached in
either low Ca or normal Ca medium at 5 h were
ultimately evaluated for DNA synthetic activity .
Under these conditions, an effect was still clearly
evident.

In Ca removal experiments, cells were main-
tained in control medium and, at various times
during G, phase, plates were washed with a Ca-
and Mg-free balanced salt solution and given Ca-
free BME. If WI-38 cells are exposed to Ca for up
to 15 h and then the Ca is removed, only ^-30% of
the cycling cells are able to initiate DNA synthesis
(Fig . 3 A) . Because WI-38 cells generally enter S
phase after a 15- to 18-h G, phase, these results
indicate a late G, phase Ca requirement in these
cells . The increase in percent of control observed
as Ca is removed at times later than 15 h is
probably due, in part, to cells that have already
entered S at the time of removal, because undoubt-
edly the length of G, phase is not constant for all
cells .
The requirement of WI-38 cells for Ca appears

to be continuous from 10 to 18 h after plating,
because pulses of Ca for 0.5-3 h at various times
within this interval are insufficient to allow more
than 25-30% ofcycling cells to enter S phase (Fig .
4 B) .
We have undertaken similar experiments using

serum stimulation of quiescent populations of WI-
38 cells . Such experiments might reflect any dif-
ferences in the Ca requirements of cycling (elu-
triated) cells presumably making the M-G, tran-
sition vs . noncycling (quiescent, serum-deprived)
cells making the Go-G, transition . Serum stimu-
lation in the presence of Ca allows for a synchro-
nous entry into S phase after 15-18 h (Fig. 5 A) .
In the absence of Ca, serum-stimulated cells do
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(A) Ability of WI-38 cells to enter S phase after Ca readdition to Ca-deprived cells or after
removal of Ca from cells previously exposed to control medium . Exponential populations of WI-38 cells
were elutriated, and early G, phase cells were plated in control medium . In one set of cultures, medium
was replaced after 5 h with fresh Ca-free medium and, at the indicated intervals Ca was returned to
normal (2 mM) by addition from a concentrated stock of CaC1 2 (0). Other cultures were left in control
medium until the times indicated, when they were washed and given fresh Ca-free medium (0) . The
results of two readdition experiments using ['H]TdR incorporation into acid-insoluble material vs . two
experiments using autoradiography were directly comparable when normalized as fraction of control,
where control represents cultures exposed to Ca continuously for 26 h. Ca removal data (0) represents
['H]TdR incorporation only and are expressed as fraction of the control (same as above) . All cultures were
processed for [ 3H]TdR incorporation or autoradiography 26 h after plating as described in Materials and
Methods. Cultures used to determine acid-insoluble ['H]TdR incorporation were pulsed for I h with 10
,yCi/ml [ 3H]TdR. Cultures used for autoradiography were exposed to 10 jCi/ml ['H]TdR continuously
from 5 to 26 h after plating . Data are the mean t SEM of two (0) or four (0) separate experiments, each
comprised of duplicate samples . (B) Ability of WI-38 cells to enter S phase after Mg readdition to Mg-
deprived cells or after removal of Mg from cells previously exposed to control medium. Exponential
populations of WI-38 cells were elutriated, and early G, phase cells were plated in control or Mg-free
medium. At the times indicated, cells were either washed and given fresh Mg-free medium (0) or given
Mg to 0.96 mM by addition from a concentrated stock of MgC1 2 (0). At 25 h after plating, the cultures
were pulsed for 30 min with 10 I,Ci/ml [ 3H]TdR, and acid-insoluble radioactivity was measured as
described in Materials and Methods. Data are the mean ± SEM of two (0) or four (0) separate
experiments, each comprised of duplicate samples . Data are expressed as fraction of control, where control
represents cells exposed to Mg continuously for the duration of the experiment .
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to this regimen was higher than that of cells re-
ceiving Ca only from 7.5 h on, but lower than that
of controls .

If WI-38 cells are deprived of Ca for 4 d, they
cease proliferating. If Ca is readded to such Ca-
deprived cultures, the cells enter S phase synchro-
nously, after a lag period of ^-18 h (Fig. 6B) . The
kinetics of ['H]TdR incorporation in this instance
are very similar to those seen with serum-stimu-
lated cells .

Effects ofExtracellular Mg on Cell
Proliferation

It has been suggested that Mg mayplay a central
role in the regulation of cell growth and that effects
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(A) The effect ofCa deprivation during the first 5 h of G, phase on the kinetics of WI-38 cell
entry into S phase. Exponential cultures were elutriated as described in Materials and Methods, and early
G, phase cells were plated in control (") or Ca-free (O) medium . At 5 h after plating, all plates were
washed and cultures in Ca-free medium received Ca to 2 mM by addition from a concentrated stock of
CaC12 (O). At the times indicated, cultures were pulsed for 30 min with 10 tLCi/ml ['H]TdR, and acid-
insoluble radioactivity was measured as described in Materials and Methods. Data are typical of two such
experiments, each composed of duplicate samples . In an identical experiment, cells were grown on cover
slips and treated as described above. They were pulsed from 15 to 42 h with ['H]TdR and processed for
autoradiography as described in the text . The fraction oflabeled nuclei for the control vs . 5-h-delayed Ca
addition were 78 ± 5% and 82 ± 2% S.E., respectively, indicating that the elutriated cells were not
irreversibly damaged by the delayed Ca addition. (B) . The effect of limited exposures to Ca on G, phase
progression . Exponential cultures were elutriated as described above, and early G, phase cells were plated
in control medium . At 5 h after plating, cultures were washed and given fresh Ca-free medium. At the
times indicated, cultures were given Ca to 2 mM by addition from a concentrated stock of CaC12. The Ca
pulse was terminated by washing the cultures and giving them fresh Ca-free medium . Horizontal lines
denote the position and duration of the Ca pulse. Vertical lines indicate the fraction of [''H]TdR
incorporation as compared to control, where control represents cultures exposed to Ca for the duration of
the experiment (25 h) . Cultures were pulsed for 25 h after plating with 10 tLCi/ml [3H]TdR for 30 min, and
acid-insoluble radioactivity was measured as described in Materials and Methods. Data are typical of four
separate experiments, each comprised of duplicate samples. Data were corrected for any differences in cell
number .

of Ca deprivation on proliferation may be due to
competition between Ca and Mg for common
cellular binding sites (21) . If the roles of these two
cations are tightly linked, it is conceivable that the
temporal profile of a G, phase Mg requirement
could parallel that of Ca . It is possible, however,
that Mg may be a permissive factor for G, pro-
gression with no specific temporal requirement
during G, . These possibilities have been examined .
WI-38 cells were brought to quiescence by se-

rum deprivation and were subsequently serum-
stimulated in the presence or absence of Mg. If
Mg is removed at the time of serum stimulation,
the cells are prevented from entering S (Fig. 7) .
Readdition of Mg to the cultures at a time after
addition of fresh serum results in a delay in the
cell population's entering the S phase. However,
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an equivalent fraction of the population ultimately
enters DNA synthesis (Fig . 7) . These data indicate
that, as with Ca, Mg is required for normal exit
from the quiescent state. We also observe that
when cycling cells are deprived of Mg, they come
to rest in the early G, or Go phase, as observed
upon Ca deprivation (Fig . 6 B) .
We have examined the Mg requirement under

conditions analogous to those used to determine
temporal Ca requirements during G, phase. These
data then allowed us to evaluate the possibility of
competition between Ca and Mg . In Fig. 2, data
similar to those seen with lowered Ca indicate that
with Mg deprivation there exists a differential
sensitivity between normal and SV40-transformed
G, phase cells isolated by centrifugal elutriation .
In the WI-38 cells, the effect of Mg deprivation
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FIGURE 5 The effect of delayed Ca readdition on
['H]TdR incorporation in WI-38 cells serum-stimulated
in the absence of Ca . Cells were brought to quiescence
as described in Materials and Methods. At time zero,
cultures were given fresh 10% serum low Ca medium
(0 .03 mM Ca). Ca was readded to 2 mM by addition
from a concentrated stock of CaC12 at 0 ("), 4 (O), or 8
(A) h after serum stimulation . NA (A) designates low Ca
throughout the experiment. At the times indicated, cul-
tures were pulsed for 1 h with 10 pci/ml ['H]TdR, and
acid-insoluble radioactivity was measured as described
in Materials and Methods. (B) . The effect of varying
periods of exposure to Ca on [''H]TdR incorporation in
serum-stimulated WI-38 cells . Cells were brought to
quiescence as described in Materials and Methods. At
time zero, cultures were given fresh 10% serum medium
containing 0.03 mM Ca . At the time of serum addition,
three sets of cultures were given Ca to 2 mM by addition
from a concentrated stock of CaCl 2 (", O, A) . At 5 h
after serum stimulation, two sets of cultures were washed
and given fresh low Ca medium (O, A) . At 10 h, two sets
of cultures received Ca to 2 mM as above (A, O) . At the
times indicated, cultures were pulsed and processed for
acid-insoluble radioactivity as described in A.

appears to be an actual block rather than merely
a delay or elongation of G, phase, because Mg-
deprived cells were unable to enter S phase up to
40 h after elutriation (unpublished observations) .
Experiments similar to those done with Ca-de-
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prived cells are seen in Fig. 3 B. In both Mg-
removal and Mg-readdition experiments, there
does not appear to be a specific temporal require-
ment for Mg, contrary to our observations on the
Ca requirements of WI-38 cells. We would note
that the inhibition observed by Mg deprivation
during G, phase using ['H]TdR incorporation
(Fig . 3 B) is identical to that using autoradiogra-
phy (Fig . 2), indicating that effects on thymidine
uptake and metabolism are unlikely. The ability
of WI-38 cells to enter S phase seems to be expo-
nentially related to the length of exposure to nor-
mal levels of Mg (Fig . 8) . As Mg is removed at
progressively later times, an increasing fraction of
cells is able to enter S. If cells are plated in Mg-
free medium and if Mg is returned to normal at
various times thereafter, the ability of cells to enter
S decreases as the duration of Mg deprivation is
prolonged. These data, in contrast to those seen
under conditions of Ca deprivation, indicate that
WI-38 cells require Mg through G, phase. They
do not suggest specific times during G, phase in
which Mg is or is not required .

DISCUSSION
The observation that extracellular Ca is able to
regulate normal WI-38 cell growth much more
strictly than transformed cell growth has been
made previously (7) and is confirmed in the pres-
ent study for WI-38 and SVWI-38 cells . However,
the point (or points) in the cell cycle at which Ca
exerts its effect on proliferation is unknown. This
question has been previously addressed by Boyn-
ton and Whitfield (5) and Boynton et al . (6) in
studies on the 3T3 cell . They have concluded that
the extracellular Ca requirement for proliferative
activity in the 3T3 cell resides only in late G,
phase. This conclusion was based on the following
observation (5) : Quiescent 3T3 cells, when serum-
stimulated, were observed to exhibit a maximum
fraction of ['3H]TdR-labeled nuclei -20 h after
serum addition . If Ca was not present at the time
of serum addition but added back by 10 h, the
peak of labeling was not significantly altered . This
was interpreted'as the absence ofa Ca requirement
during the first 10 h of G, phase. Examination of
Fig. 1 from two such studies (5, 6), however,
indicates that entrance into S phase is delayed by
Ca deprivation during early G, phase. The fraction
oflabeled nuclei at 12 or 16 h is consistently below
that of control values when Ca is withheld for
periods after serum stimulation . Thus, in the 3T3
cell, Ca removal during early G, phase does ap-
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pear to reduce the rate at which cells enter the S
phase. A recent report on the 3T3-4a clone also
supports this conclusion . Paul and Ristow (17)
have observed that readdition of Ca to Ca-de-
prived cells in the presence of excess serum results
in a 14- to 16-h delay before entrance into S phase,
an observation consistent with an early G, phase
block due to Ca deprivation .
A further indication that Ca plays a role in

regulating the events of early G, is evident from
Fig. 6 B. Readdition of Ca to quiescent, Ca-de-
prived WI-38 cells results in the entrance to S
phase - 18 h after Ca readdition . This time period
is very consistent with an early G, or Go phase,
Ca-dependent block because cells brought to qui-
escence by serum deprivation for an equivalent
time period (4 d) require virtually an identical
time to enter S phase after addition offresh serum.
It is generally agreed that such serum-deprived
cells are blocked in the early G, (Go) phase of the
cell cycle . In similar studies on Ca-deprived WI-
38 cells, Boynton et al. (7) have observed that
readdition of Ca to 2-d Ca-deprived cells results

3
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FIGURE 6

	

(A) The effect of varying periods of Ca deprivation on [3HJTdR incorporation after serum
stimulation of WI-38 cells. Cells were brought to quiescence as described in Materials and Methods. At
time zero, cultures were given fresh 10% serum medium containing 2 mM`(", O) or 0.03 mM (A) Ca . At
1 h, one set of cultures was washed and given low Ca medium (0). At 7.5 h after serum stimulation, these
cells (O) and another set of cultures (A) were given Ca to 2 mM by addition from a concentrated stock of
CaC1 2. At the times indicated, cells were pulsed for 1 h with 10 ,uCi/ml [ 3HJTdR, and acid-insoluble
radioactivity was determined as described in Materials and Methods. (B) The effect ofCa or Mg readdition
on [3H]TdR incorporation of 4-d Ca- or Mg-deprived WI-38 cells. Cells were plated at 9.5 x 10" cells/cm2
in control medium, and 24 h later the cells were washed and given fresh low Ca medium or Mg medium .
Cultures were maintained in these media for 4 d. At time zero, Ca or Mg was returned to normal in some
cultures by addition from a concentrated stock of CaC12 (") or MgC12 (A). The remaining cultures
received no additional Ca (O) or Mg (A). Cells were at a density of 1.7 x 104 cells/cm2 at this time . At the
indicated times, cells were pulsed and processed for measurement of acid-insoluble radioactivity as in A .

in two waves of DNA synthesis, one initiated
within an hour after Ca readdition and a second
wave - 16 h later. The ability of a fraction of the
population to respond immediately to Ca readdi-
tion is consistent with a portion ofthese cells being
blocked in late G, phase. Blockage of cells in early
or late G, phase is not unique to Ca deprivation
because it has been observed in a variety of cells
under various experimental conditions (see refer-
ence 8 for complete references) . Because in WI-38
cells the pre-replicative phase increases with the
time of quiescense (1), i.e ., the cells appear to
move deeper into the Go state, the early or late G,
phase response may be a function of the duration
of Ca deprivation . Extended deprivation, like ex-
tended quiescence, may move all cells to the early
G, or Go Ca-sensitive step . Preliminary experi-
ments in our laboratory indicate this to be the
case.

Recently, other data have emerged that support
the concept of a very early G, phase requirement
for Ca in normal cells . Human diploid fibroblasts
show reduced growth capability in platelet-poor
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The effect of extracellular Mg on G, pro-
gression after serum stimulation of quiescent WI-38 cells.
Cells were brought to quiescence by serum starvation as
described in Materials and Methods. At zero time, fresh
medium containing normal (") or low Mg (~, O) was
added. In some plates, Mg was brought to normal levels
at 9 h after serum addition (A) by addition from a
concentrated stock ofMgC1 2 . NA (O) designates low Mg
throughout the entire period . At the times indicated, the
cultures were pulsed for l h with 10 yCi/ml [3H]TdR,
and acid-insoluble radioactivity was measured as de-
scribed in Materials and Methods. Data are the mean of
duplicate samples .

plasma as compared to serum (25) . However, this
occurs only at hypophysiologic levels of extracel-
lular Ca, suggesting that Ca may substitute, in
part, for platelet-derived growth factors found in
serum but not platelet-poor plasma . The platelet-
derived growth factors act in early G, or Go phase
(e .g ., reference 18). The ability of fetal bovine
serum protein to support growth of diploid fibro-
blasts shows a dependence on the availability of
extracellular Ca (14) . Insulin or serum stimulation
of quiescent cells in culture leads to rapid changes
in Ca associated with the cell surface (24, 27).
Thus, several studies indicate that serum or serum-
derived growth factors, which act to effect normal
cell growth in early G, or Go phase, also appear to
act synergistically with extracellular Ca and to
modify Ca binding and Ca transport at this phase
of the cell cycle (10, 26). Also, the observation that
a short Ca pulse given at the time of serum stim-
ulation greatly enhances subsequent G, progres-
sion (Fig . 6 A) is consistent with the necessity of
extracellular Ca for the Go to G, transition . The
nature of this relatively brief Ca requirement is
unknown. It may represent a role ofsurface Ca in
growth factor binding or the necessity of surface
membrane localized Ca for activation of mem-
brane-bound, Ca-dependent regulator proteins .
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Numerous other possibilities exist .
It also appears that there exists a second require-

ment for extracellular Ca in late G, phase, because
removal ofCa as late as 15 h into G, phase inhibits
S phase entrance (Fig . 3 A), and short exposures
to Ca in early or mid G, phase (Figs. 4 B and 5 B)
are insufficient for complete G, progression . Whit-
field et al. (28) have proposed that an increase in
intracellular Ca activity in late G, phase may act
to trigger the DNA synthetic process. The late G,
requirement may be related to this. We have pre-
viously demonstrated that increases in both Ca
uptake and content precede entrance into S phase
in 3T3 cells progressing through G, phase (26) .
Whether the absence or presence of Ca in the
extracellular medium is directly related to changes
in the intracellular activity of Ca or, alternatively,
to changes in surface Ca levels only, remains to be
evaluated.
We believe that our observations on Mg and Ca

requirements for cell proliferation are of particular
interest as regards models suggesting distinct vs .
related roles for these ions in growth control.
Rubin and his colleagues (e.g . 21-23) suggest that
because Mg ion regulates numerous intracellular
metabolic processes, the availability of Mg for
such events is central to the control of cell prolif-
eration . They have also postulated that the effects
of extracellular Ca ion on cell proliferation result
from indirect effects on intracellular Mg activity
(e.g ., reference 23). In their studies on 3T3 cells
(23) and in our own studies on WI-38 cells (Ha-
zelton and Tupper, manuscript submitted for pub-
lication), Ca deprivation inhibits cell proliferation
but does not significantly reduce intracellular Mg

TIME OF Ca OR Mg ADDITION AND REMOVAL Ih )
FIGURE 8

	

Data from Fig. 3 presented as a semi-loga-
rithmic function . See Discussion for details .



content. Observations such as these have led them
to propose that Ca and Mg compete for common
intracellular binding sites (21) . Thus, it is postu-
lated that Ca deprivation inhibits cell proliferation
through loss or redistribution of cell Ca such that
Mg now occupies binding sites formerly occupied
by Ca. Under these conditions, the availability of
Mg for other processes is reduced and proliferation
is inhibited. We would note, however, that it is
equally plausible to argue that Ca deprivation
inhibits normal cell proliferation as a result ofthe
unavailability of Ca for critical intracellular met-
abolic events . This seems quite merited in view of
the fact that numerous Ca-dependent regulator
proteins have been identified, and some are sen-
sitive to Ca at micromolar levels (e .g ., reference
13) . We would also note that the ability of supra-
normal Mg levels to reverse the effects of Ca
deprivation (23) could result from increased intra-
cellular Mg activity due to an enhanced inward
passive Mg flux or, alternatively, from increased
Ca activity resulting from Mg displacement of
bound Ca. Thus, in the absence of reliable mea-
surements of intracellular Mg or Ca activity in
cultured cells, such arguments seem equivocal.

If Mg and Ca effects on proliferation were
related strictly through competition for common
intracellular binding sites, one might predict that
addition or removal of either of the ions during
G, phase should produce qualitatively similar ef-
fects on cell proliferation. Our present data and
one previous study (14) suggest that the roles of
Ca and Mg in regulating cell proliferation are not
strictly competitive and are at least temporally
distinct. The ability of cells to enter S phase as a
function of the availability of extracellular Mg
appears to follow an exponential process (Fig . 8
A) . In view of the fact that Mg is required for
various aspects of macromolecular synthesis and
transphosphorylation reactions, it seems quite rea-
sonable that a continuous requirement for this ion
would exist through G, phase because the proc-
esses themselves are continuous during this time .
The Ca requirement, on the other hand, does not
follow the same kinetics observed for Mg (Fig . 8
B) . At this time, the functional basis of the pattern
exhibited by the cells after Ca addition or removal
is not clear. These data do not exclude the possi-
bility that portions of the G, phase in the WI-38
cell may be influenced by competitive effects of
these two ions . In fact, recent experiments in our
laboratory indicate that, as observed with the 3T3
cell (23), hyperphysiological levels of Mg can re-

verse the effects of Ca deprivation in the WI-38
cell.
The present data also suggest that the ability of

Ca and Mg to influence growth of the cells de-
pends, in part, on the position in the cell cycle
during which manipulation of the ion occurs . In
growing populations of normal WI-38 cells, both
Ca and Mg deprivation give rise to cells blocked
in early G, or Go phase. Thus, under these con-
ditions the cells appear to be capable ofcompleting
at least one cell cycle before becoming arrested. It
is likely that these cells are represented in the
cycling populations synchronized by elutriation as
that small fraction which progresses G, phase
under Ca or Mg deprivation (Fig. 2) . In contrast,
when quiescent cells presumably in Go are stimu-
lated to reenter the cycle, they cannot when de-
prived of Ca or Mg . These data are in agreement
with recent observations in 3T3 cells (20) which
suggest that a fraction of serum-deprived or iso-
leucine-deprived cells do not become arrested
upon their first G, encounter but are capable of
continuing through at least one more cell cycle. In
contrast, Go cells do not reenter the cycle under
growth-restrictive conditions (20) . Thus, extracel-
lular Ca and Mg both appear to be required when
transition from quiescence or the Go state is initi-
ated, at least by serum stimulation . However, once
this transition occurs, different temporal require-
ments, and presumably functional requirements,
can be demonstrated as the cells traverse G, phase.
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