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Abstract: We present a fast and accurate analytical method for fluorescence lifetime imaging mi-
croscopy (FLIM), using the extreme learning machine (ELM). We used extensive metrics to evaluate
ELM and existing algorithms. First, we compared these algorithms using synthetic datasets. The
results indicate that ELM can obtain higher fidelity, even in low-photon conditions. Afterwards,
we used ELM to retrieve lifetime components from human prostate cancer cells loaded with gold
nanosensors, showing that ELM also outperforms the iterative fitting and non-fitting algorithms. By
comparing ELM with a computational efficient neural network, ELM achieves comparable accuracy
with less training and inference time. As there is no back-propagation process for ELM during the
training phase, the training speed is much higher than existing neural network approaches. The
proposed strategy is promising for edge computing with online training.

Keywords: fluorescence lifetime imaging microscopy; single-photon time-correlated counting (TCSPC);
computational imaging; machine learning

1. Introduction

Fluorescence lifetime imaging microscopy (FLIM) has attracted growing interest in
biomedical applications, such as surgical procedures [1], tumor detection [2,3], cancer
diagnosis [4], and the study of protein interaction networks using Förster resonance energy
transfer (FRET) techniques [5]. It can quantitatively investigate local microenvironments
of fluorophores by measuring fluorophores’ lifetimes. For example, FLIM can observe
dynamic metabolic changes in living cells by measuring autofluorescence lifetimes of
NAD and NADP. This is utilized to mediate cell fate for diabetes and neurodegeneration
research [6]. Fluorescence lifetime is the average time a fluorophore stays excited before
releasing fluorescence. The process can be analyzed in the time or frequency domain. Time-
correlated single-photon counting (TCSPC) techniques [7] are more widely used [8–10] due
to their superior signal-to-noise ratio (SNR) and precise temporal resolution (in picoseconds)
compared with frequency-domain approaches. During data acquisitions, emitted photons
are detected by a single-photon detector, wherein a high-precision stopwatch circuit records
timestamps of detected photons. The stopwatch circuit generates an exponential histogram,
from which the fluorescence lifetime is extracted.

Estimating lifetime parameters is an ill-posed problem with high computational com-
plexity. Numerous algorithms have been developed to quantify lifetimes and relevant
parameters. Iterative fitting and optimization approaches were reported to deduce fluo-
rescence lifetimes. A convex optimization method [11] was utilized for high-resolution
FLIM, where the accuracy is related to fine-tuned hyperparameters in the cost function.
An F-value-based optimization algorithm [12] was used to minimize signal distortion
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introduced by pile-up effects and the dead time of single-photon detectors. A Laguerre
expansion method [13–15] was reported to speed up least-squares deconvolutions.

On the other hand, non-iterative fitting methods were introduced to reduce computing
complexity whilst maintaining high accuracy. A new nonparametric empirical Bayesian
framework [16] was adopted for lifetime analysis based on a statistical model, where the
expectation–maximization algorithm was employed to solve the optimization problem.
A hardware-friendly fitting-free center of mass (CMM) [17–19] algorithm was proposed
to deliver fast analysis and has been applied to a flow-cytometry system [20,21]. Integral
equation methods (IEM) [22] were also implemented in FPGA devices to provide real-
time analysis. Direction-of-arrivals estimation [23] was adopted to deliver a non-iterative
and model-free lifetime reconstruction strategy, requiring a few time bins. A histogram
cluster method [24] divides histograms into clusters instead of processing histograms
pixel-by-pixel, enhancing the analysis speed. However, challenges remain. Firstly, most
of these algorithms need a long acquisition time to guarantee the reconstruction fidelity,
likely causing photobleaching. A fast algorithm suitable for low photon counts conditions
is, therefore, desirable. Secondly, iterative or probabilistic methods are not portable to
hardware, impeding the on-chip computing of TCSPC systems.

Artificial neural networks (ANNs) have proved promising for FLIM analysis. FLI-
NET [25] used a 3-D convolutional neural network (CNN) to analyze bi-exponential decays
via a branched architecture. Its compressed-sensing [26] version used a single-pixel detector
and a digital micromirror device to reconstruct intensity and lifetime images. A 1-D CNN
architecture [27] was introduced to reduce the computational load for multi-exponential
analysis, using a similar branched structure. A multi-layer perceptron (MLP) method [28]
was proposed for mono-exponential analysis with high spatial-resolution SPAD arrays.
Another MLP [29] was reported combining maximum likelihood estimation algorithms
and using fully connected layers to resolve bi-exponential decays. Moreover, another
ANN technique [30] was introduced to fuse high-resolution fluorescence intensity and
low-resolution lifetime images for wield-field FLIM systems. However, the training and
inference of the ANNs are slow. Even with powerful GPUs, it usually takes a long training
time (hours) to train a network. It is also time consuming to retrain a model when the
lifetime range is altered.

Pixel-wise lifetime recovery has been widely used, since it is consistent with the sensor
readout and more computationally economical than 3-D algorithms. The extreme learning
machine (ELM) [31] is an efficient algorithm to process 1-D signals for biological appli-
cations, such as electrocardiogram (ECG) and electroencephalogram (EEG) signals [32].
Inspired by related literature, we used ELM to reconstruct lifetimes from 1-D histograms us-
ing multi-variable regression. Contributions of the ELM-based lifetime inference approach
are that:

(1) It is data-driven without a back-propagation learning strategy. It achieves less training
time than existing ANN methods, paving the way for fast online training on embedded
hardware for FLIM.

(2) It can resolve mono- and bi-exponential models widely employed in practical experi-
ments, wherein the amplitude and intensity average lifetimes were investigated.

(3) Reconstructed lifetime parameters from ELM are more accurate than fitting and
non-fitting algorithms regarding synthetic and experimental data under different
photon-counting conditions whilst maintaining fast computing speed.

This paper presents a theory applying ELM to FLIM (Section 2), algorithms’ compar-
isons regarding synthetic data with low-photon-count scenarios (Section 3), and algorithms’
comparisons regarding an incubated living cell under different levels of photon counts
(Section 4).
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2. Apply ELM to FLIM

Due to ELM’s superior capability of processing 1-D signals, we associated synthetic
1-D histograms with ELM regarding training and inferencing phases. We also illustrate the
probabilistic model of photon arrivals of FLIM data and the artificial IRF based on TCSPC.

2.1. ELM Theory

Conventionally, back-propagation is the gold standard to minimize object functions in
most ANN architectures. ELM is theoretically a single hidden layer feed-forward neural
network (SLFN) that uses matrix inversion (or Moore–Penrose matrix inversion) and
minimum norm least-square solution to train models. The training can be accelerated
significantly compared with iterative back-propagation procedures whilst avoiding slow
converges and over-fitting resulting from back-propagation. Assume H training samples
(H pairs of vectors xi = [xi1, xi2, . . . , xim]

T ∈ Rm and yi = [yi1, yi2, . . . , yin] ∈ Rn are the
ith input vectors and the ith target vectors, respectively, and suppose there are L nodes in
the single hidden layer; the output matrix of the hidden layer can be defined as:

A =

 ϕ(w1 · x1 + b1) · · · ϕ(wL · x1 + bL)
...

. . .
...

ϕ(w1 · xH + b1) · · · ϕ(wL · xH + bL)


H×L

, (1)

where ϕ(·) is the activation function, and usually, a sigmoid function can achieve a relatively
good result, and wl = [wl1, wl2, . . . , wlm]

T and bl = [b1, b2, . . . , bL]
T , l = 1, . . . , L. are

randomly assigned weights and biases between the input nodes and the hidden layer
before training. Say βl is the weighting connecting the lth hidden layer and output nodes,
defined as:

β =

 βT
1
...

βT
L

 =

 β11 · · · β1n
...

. . .
...

βL1 · · · βLn


L×n

. (2)

To learn the parameter matrix of β with a dimension of L × n, the ridge loss function
is widely adopted as:

argmin
β∈RL×n

‖Aβ− Y‖2 + λ‖β‖2, (3)

where A is the matrix composed of the activation functions with dimensions H × L; Y is a
matrix with dimensions H × n containing ground truth (GT) data:

Y =

 yT
1
...

yT
H

 =

 y11 · · · y1n
...

. . .
...

yH1 · · · yHn


H×n

. (4)

Through solving the loss function, we can obtain the matrix β by:

β̂ = (ATA + λI)
−1

ATY, (5)

where I is an identity matrix with dimensions L × L, the hyperparameter λ helps obtain a
reliable result when the matrixATA+ λI is not full rank.

2.2. TCSPC Model for FLIM

Fluorescence emission can be modeled with mono- or multi-exponential decay func-
tions and a bi-exponential model can approximately deduce a signal following a multi-
exponential decay. Therefore, we focus on lifetime analysis from mono- and bi-exponential
models in this work. Fluorescence functions can be adopted to formulate measured his-
tograms containing multiple lifetime components and corresponding amplitude fractions.
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Therefore, for each pixel, the measured decay consisting of K lifetime components is
formulated as:

h(t) = IRF(t) ∗ P
K

∑
k=1

αke−t/τk + n(t), (6)

where the IRF(·) is the system’s instrument response function, P is proportional to the
fluorescence intensity, τk is the kth lifetime component, αk is the kth amplitude fraction,
and n(t) includes Poisson noise [33] and dark count rate of the sensor, t = [1, 2, . . . , T] is the
time-bin index of the TCSPC module. As photon arrivals follow the Poisson distribution,
with C cycles of laser excitation, the ultimate distribution in one pixel can be derived as:

D ∼ Poisson(C
∫ T

0
h(t)dt). (7)

Based on this theoretical TCSPC model, we can generate training datasets for ELM.
Synthetic curves correspond to column vectors in the input matrix x. Apart from multi-
exponential decays, we define the amplitude-weighted lifetime τA

τA =
K

∑
k=1

αkτk (8)

and intensity-weighted average lifetime τI

τI =

K
∑

k=1
αkτk

2

K
∑

k=1
αkτk

(9)

to evaluate ELM.

2.3. Training Data Preparation

The training datasets contain 20,000 synthetic histograms, and ground truth (GT)
lifetime parameters were generated to train the ELM network. Synthetic decays comply
with Equation (6) and the IRF curve is modelled via a Gaussian curve:

IRF(t) = e[−(t−t0
2·4 ln 2h2/FWHM2], (10)

where FWHM (0.1673 ns) is compatible with the two-photon FLIM system for FLIM mea-
surements, t0 (14th) is the index of the peak, h (0.039 ns) is the bin width of the TCSPC
system. Both mono- and bi-exponential decay models were generated for performance
evaluation. Lifetime constants t were set in [0.1, 5] ns for the mono-exponential decay
model and τ1, τ2 are set in [0.1, 1], [1, 3] ns for bi-exponential models. The structure of ELM
is depicted in Figure 1. Suppose the input vector is a pixel-wise histogram measured by
a TCSPC system containing 256 time bins in the inference phase. The number of output
nodes depends on the number of lifetime components we defined in synthetic datasets.
For instance, if the measured data consists of bi-exponential decay model, the output layer
should be configured as three nodes, namely, τ1, τ2, and α. We can easily obtain average
lifetimes from Equations (8) and (9). All the histograms from the sensor are fed into the
network sequentially; lifetime parameters can be obtained from output nodes pixel by pixel.
The number of nodes in the hidden layer can be flexibly adjusted to achieve a trade-off
between accuracy and computing time consumption.
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Figure 1. ELM is used for lifetime analysis. The input data are a 1-D pixel-wise histogram from the
raw point cloud that contains 256 time bins. The histogram is fed into a single-hidden-layer ELM,
and lifetime parameters (τ1, τ2, and α) can be obtained from output nodes.

3. Synthetic Data Analysis

τA and τI are used to estimate energy transfer for FRET or indicate fluorescence
quenching behaviours [34]. This section compares NLSF, BCMM, and ELM to retrieve
τA from bi-exponential decays. Likewise, we also compared NLSF, CMM, and ELM to
reconstruct τI. Besides, ELM was compared with existing ANNs for FLIM in terms of (1)
the network scale and (2) training time. Multiple widely used metrics (F-value, SSIM, R2,
MSE) were adopted for performance evaluations.

3.1. Comparisons of Individual Lifetime Components

As NLSF was usually adopted in previous studies [25,27,35], we compared the infer-
ence performances of ELM and deconvolution-based NLSF (implemented with lsqcurvefit(·)
function in MATLAB using iterative Levenberg–Marquardt algorithm) in Figure 2. As such,
2000 simulated testing datasets were generated for recovery for single and double lifetimes.
Here, we define the absolute error ∆g = |g − gest|, where g = τ1, τ2, α, τA and gest is the
estimated g. ∆gELM and ∆gNLSF are the absolute errors for ELM and NLSF. Figure 2a,b show
the ∆g of ELM and NLSF for mono-exponential decays, respectively. ∆g decreases as the
peak intensity increases, and ∆gELM is smaller than ∆gNLSF. Likewise, Figure 2c,d indicate
∆g plots for g = τ1, τ2, and α, where ∆gELM is smaller than ∆gNLSF. Similarly, Figure 2e,f
indicate ELM obtained a much more accurate τA than NLSF. Therefore, ELM can perform
better than NLSF in mono- and bi-exponential decays. Additionally, as shown in Figure 3,
we visually inspected estimated τ1, τ2, and α, based on pre-defined variables in synthetic
2-D images. We used the SSIM to evaluate reconstructed images in Figure 3a,b. The 2-D
lifetime images were reconstructed from a 3-D synthetic data cube, composed of either
mono- or bi-exponential decays (256× 256× 256, representing spatial and temporal dimen-
sions). All the GT lifetime parameters (τ and α) are pre-defined in Equation (1). The 2-D
lifetime images are recovered pixel by pixel from noisy synthetic 3-D data cubes. Figure 3a
shows reconstructed 2-D images from mono-exponential decays with GT τ varying from
0.1 to 5 ns. Likely, Figure 3b shows estimated τ1, τ2, and α bi-exponential decays. Results
obtained from ELM are more accurate than NLSF. Figure 3c shows the phasor plots of GT
distributions of mono- (Figure 3a) and bi-exponential (Figure 3b) decays. From the phasor
theory [36], cluster points of mono-exponential decays should locate on the semi-circle.
For bi-exponential decays, two-lifetime components are indicated by the intersections of a
fitted line and the semi-circle. We utilized R2 defined as:
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R2 = 1−
∑P

i=1 (τ
i
A − τi

A_GT)

∑P
i=1 (τ

i
A − τA_Ave)

, (11)

to evaluate the estimation consistency, where τi
A is the predicted parameter, τi

A_GT is the
GT parameter, τA_Ave is the average of GT parameters, P is the number of simulated decay
curves. As shown in Figure 3d, the scatter plots show ELM is closer to GT, and NLSF
shows more outliers. We further evaluated ELM and NLSF using the F-value defined as
Equation (12) [37] with synthetic mono- and bi-exponential decays.

F =
δx
x
·
√

I. (12)
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Figure 2. Box plots of absolute error versus different peak intensity levels regarding testing datasets.
(a,b) Single lifetime estimations of mono-exponential decays from ELM and NLSF, respectively.
(c,d) Double lifetime estimations of bi-exponential decays from ELM and NLSF, respectively. (e,f) τA

estimated by ELM and NLSF, respectively.

F > 1 and a lower F means higher precision, where I is the detected photon count, δx is
the standard deviation of the estimated lifetime parameter, and x is the GT parameter. We
generated 200 synthetic decays for given ranges of lifetimes and peak intensities in Figure 4.
Figure 4a shows the F-value of mono-exponential decays versus the lifetime in the range
~ [0.1, 5] ns. Figure 4b shows the F-value of bi-exponential decays versus τ1, τ2, and α in
[0.1, 1] ns, [1, 3] ns, and [0, 1], respectively. We assigned 200 decays with a total photon
count (<2000) per synthetic histogram for both scenarios. Both figures show that ELM
obtained a smaller F than NLSF, meaning ELM can achieve better precision. Furthermore,
we defined the bias ∆τ/τ to evaluate ELM and NLSF versus the photon count. τ was
set to 3.0 ns for mono-exponential decays. τ1, τ2, and α were set to 0.3 ns, 3.0 ns, and 0.5
for bi-exponential decays. Figure 4c shows that the bias of NLSF increases as the photon
count increases, which is worse than ELM. Figure 4d shows that the bias of ELM is smaller
than NLSF, and ELM is more robust to varying photon counts. Moreover, NLSF is also
sensitive to initial conditions of lifetime parameters [34]. The bias decreases when the initial
conditions are closed to GT values, meaning that users need to have prior knowledge about
the parameters to be extracted.
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τ ∈ [0.1, 5] ns from top to down in the image. (b) The two estimated lifetimes using a bi-exponential
decay model where τ1= 0.3 ns, τ2= 3 ns, and α ∈ [0, 1] from the top down. (c) Two phasor plots of
ground truth distributions of (a,b). (d) Prediction accuracy and R2 of τA from ELM and NLSF, with
τ1 = 0.3 ns and τ2 = 2.5 ns, respectively.
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3.2. Comparisons of τA

We evaluated ELM in estimating τA in various count conditions. As shown in
Figure 5a, we set three regions at three count levels, changing τA from top to bottom.
We refer to the three regions as low, middle, and high counts hereafter. Figure 5b depicts
the GT τA. From Figure 5c,d, ELM shows a more accurate τA image than NLSF, with
ELM producing a smaller MSE than NLSF in each region. We also included the non-fitting
BCMM [18] for the comparison due to its fast speed and capacity to resolve bi-exponential
decays. From Figure 5e, BCMM is not robust in low counts, outperforming NLSF in middle
and high regions. Further, ELM obtained better results than BCMM. BCMM is less photon
efficient, and it is sensitive to the measurement window T (T should be larger than 5 × τ2,
otherwise bias correction is needed [18]).
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Figure 5. (a) Intensity image of GT τA in exact ranges. Ipc depicts total photon counts in one pixel.
The range from 40 to 400 is viewed as low photon counts. (b) the GT τA lifetime image with the range
~ [0.3, 2.5] ns. (c–e) reconstructed τA images from ELM, NLSF, and BCMM.

Table 1 compares ELM with NLSF regarding the time consumption for inference
(forward-propagation) tasks in Figure 3a,b. NLSF resolving mono-exponential decays
consumes more time than for bi-exponential decay models. In contrast, the analysis time
of ELM is not affected by the number of lifetime components and it is substantially less
than NLSF.

Table 1. Time Consumption (Seconds) of NLSF And ELM for Inference Lifetime Parameters.

Algorithm Mono-Exponential Decay Mode Bi-Exponential Decay Mode

NLSF 371.9 (s) 670.9 (s)
ELM 6.2 6.5

CMM [17] 1.9 1.9 (τI)
BCMM [18] - 16.1 (τA)

3.3. Comparisons of τI

CMM [17] achieves the fastest speed for intensity average lifetime analysis. We further
compared CMM with ELM for τI reconstruction. As shown in Figure 6, the result from
ELM is better than NLSF but slightly worse than CMM. However, CMM is sensitive to and
biased by the measurement window if bias correction is not included. Although CMM
obtained a smaller overall MSE, the bias occurs as τI becomes longer. It agrees with the
conclusion from the previous work [34], indicating that CMM causes misleading inference
when there are multi-lifetime species in the field of view. Further, τI sometimes generates
a shorter dynamic lifetime range than τA as τI cannot correctly distinguish clusters with
different lifetimes, especially for strong FRET phenomena [5]. ELM and CMM can achieve
shorter processing time than NLSF and BCMM, as shown in Table 1. In this case, although
ELM is slightly slower than CMM, the consumed time varies with the number of nodes in
the hidden layer. Figure 7a shows training errors indicated by mean square errors (MAE)
versus different numbers of nodes in the hidden layer. Here, the number of the hidden
layer is set to 500 for both mono- and bi-exponential models, as there was no apparent
MAE decrease, and a moderate processing time was achieved, as shown in Figure 7b.
Moreover, we compared ELM with relevant ANNs for FLIM. Since ELM uses the Moore–
Penrose matrix inversion strategy to learn parameters instead of back-propagation, it is
much faster. As shown in Table 2, although ELM has more parameters than 1-D CNN [27],
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the training time is much shorter than the other existing studies [25,27–29]. Many CNN
hyperparameters should be fine-tuned, and batch normalizations should be implemented
to avoid gradient vanishing [38]. In contrast, ELM’s architecture is much simpler, and
we simply need to adjust the number of nodes in the hidden layer. Furthermore, the
efficient training process enables online training and is suitable for embedded hardware
implementations [39]. ELM is highly reconfigurable to provide a flexible solution to balance
the trade-off between computing complexity and accuracy. The evaluations of ELM and
NLSF were conducted in MATLAB R2016a, 64-bit CPU (Intel Core i5-4200H @ 2.80 GHz)
with 8 GB memory. Notably, other studies in Table 2 used much more powerful GPU to
train their models. Despite this, ELM still delivers the shortest training time.
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exponential decays.

Based on the analysis of synthetic datasets, ELM is more robust for analyzing mono-
and bi-exponential decays than traditional NLSF methods. We will evaluate ELM using
realistic experiment data in the next section.

4. Experimental FLIM Data Analysis

To investigate the feasibility of ELM for experimental FLIM data, we utilized living
prostate cancer cells incubated with functionalized gold nanorods (GNRs). A commercial
two-photon FLIM system was used to acquire raw 3-D data cubes. This section compares
ELM with 1D-CNN, NLSF, and BCMM.
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4.1. Experimental Setup and Sample Preparation

We used the proposed ELM to analyze a living cellular sample, acquired by a two-
photon FLIM system. To achieve an efficient imaging contrast, prostate cancer cells were
treated with GNRs functionalized with Cy5 labeled ssDNA [40]. GNRs have tunable
longitudinal surface plasmon resonance and enable the interactions between the strong
electromagnetic field and activated fluorophore in biological samples [41,42]. Function-
alizing GNRs with fluorophore-labelled DNA has been adopted to probe endocellular
components [43,44], including microRNA detections for human breast cancer or moni-
toring the intracellular level of metal ions in human serums. Here, prostate cancer cells
were incubated with nanoprobe for 6 h and washed three times with phosphate-buffered
saline (PBS). Cells were blended with 4% paraformaldehyde for 15 min. After removing
paraformaldehyde, cells were washed with distilled water three times. The two-photon
FLIM platform consists of a confocal microscope (LSM 510, Carl Zeiss, Oberkochen, Ger-
many) with 256 × 256 spatial resolution, where the scan module includes four individual
PMTs. A TCSPC module (SPC-830, Becker & Hickl GmbH, Berlin, Germany) with 256 time
bins and 39 picosecond timing resolution was mounted on the microscope. A tunable
femtosecond Ti: sapphire laser (Chameleon, Coherent, Santa Clara, CA, USA) was con-
figured with a repetition frequency 80 MHz and 850 nm wavelength to excite the sample.
The emission light was collected using a 60× water-immersion objectives lens (numerical
aperture = 1.0) and a 500–550 nm bandpass filter. One hundred scanning cycles were
selected to prevent GNRs heating and obtain sufficient photons, where each cycle took
three seconds.

4.2. Algorithm Evaluation

Due to the strong two-photon photoluminescence property of GNRs, high optical
discernibility can be observed between the GNRs and cell tissues [45]. Figure 8a shows
the grey-scale intensity image of the sample, where the bright spots are GNRs. As the
background pixels with fewer photon counts imply less useful information, they can be
neglected during the analysis. In this case, a threshold (100 photon counts) was considered
to neglect these pixels. As conventional data readout from TCSPC systems is pixel by pixel,
accumulated histograms can be directly fed into the ELM without data conversion. The
biological sample should be illuminated with a long acquisition time to achieve a high
SNR to obtain a reliable reference. However, a long acquisition time can easily lead to
photobleaching. The previous study [27] reported that a phasor projection image could
alternatively serve as a reference image to identify autofluorescence and gold nanoprobes.
Two clusters representing autofluorescence of the cell and gold nanoprobes can be observed
in the phasor plot shown in Figure 8b, after we had applied pixel filtering. Cluster 2
contains the majority of pixels with shorter lifetimes depicting gold nanoprobes. A fitted
line was obtained by a linear regression fitting algorithm:

argmin
a,b

N

∑
n=1
‖sn − (agn + b)‖2

2 (13)

where a and b are slope and intercept of the fitted line, gn and sn are locations of pixels in the
phasor domain. The intersection points A(ga,sa) and B(gb,s2b) can be obtained accordingly.
As shown in Figure 8c, we employed the pixel-wise phasor score ρ to generate a phasor
projection image by computing:

ρn = [(gn − g2)(g1 − g2) + (sn − s2)(s1 − s2)]/D, (14)

where D is the Euclidean distance between A and B, n is the number of filtered pixels.



Sensors 2022, 22, 3758 11 of 14

Sensors 2022, 22, x FOR PEER REVIEW 11 of 14 
 

 

terms of τA using the same training datasets. From Figure 8d,e, ELM is in good agreement 

with 1D-CNN, and they showed similar distributions of pixel counts, as shown in Figure 

8h. However, in Figure 8g, the NLSF’s result is significantly more biased than the other 

three algorithms. This is because deconvolution was involved in NLSF, causing non-con-

vergent results due to dealing with ultra-short decays caused by gold nanoprobes. As 

mentioned, BCMM is not robust in varying ranges of photon counts; many pixels are out 

of the defined range (0 to 2 ns), as the white pixels show in Figure 8g. Nevertheless, BCMM 

is a fast algorithm that only took 6.53 s to reconstruct the image. The inference time of 1-

D CNN on a GPU (NVIDIA GTX 850M) is 116.43 s, whereas ELM only consumed 1.73 s 

during inference on the CPU. 

 

Figure 8. Lifetime analysis of prostatic cells loaded with gold nanoprobes. (a) The intensity image, 

(b) phasor plot, and (c) phasor projection image. (d–g) τA restored by ELM, 1-D CNN, NLSF, and 

BCMM. (h) Lifetime histograms of ELM, 1-D CNN, NLSF, and BCMM. 

4.3. Low Counts Scenarios 

Fragile tissues, such as retinas, cannot be excited by laser for a long time. To avoid 

tissue damage and photobleaching caused by a long acquisition time, we investigated 

ELM’s performance for data in low-photon scenarios. We kept the experimental setup 

identical to Section 4.1. To acquire less-emitted photons, we chose the field of view with 

fewer nanoprobes. Increased scanning cycles were set on the software. As the number of 

cycles increased, we changed the intensity threshold to guarantee sufficient pixels were 

saved. The value of the intensity threshold should be fine-tuned according to different 

bio-samples (5% of total counts in our experiments). Figure 9a,b depict intensity and re-

constructed τA images, respectively. The lifetime of cells and nanoprobes can be consist-

ently reconstructed, even if the cycle decreases to 10. Notably, nanoprobes and boundaries 

of cells cannot be identified in intensity images with 10 and 40 cycles, yet lifetime images 

can restore the lifetime and reveal cell boundaries. Below each lifetime image in Figure 

9b, histograms of pixel occurrence were below τA images, showing means μ and standard 

deviations σ. There was no distinct shift in μ and σ at different collection cycles, indicating 

that ELM is robust, even at low counts. 

Figure 8. Lifetime analysis of prostatic cells loaded with gold nanoprobes. (a) The intensity image,
(b) phasor plot, and (c) phasor projection image. (d–g) τA restored by ELM, 1-D CNN, NLSF, and
BCMM. (h) Lifetime histograms of ELM, 1-D CNN, NLSF, and BCMM.

By comparing τA images obtained from ELM (Figure 8d), 1D-CNN (Figure 8e), NLSF
(Figure 8f), and BCMM (Figure 8g), the image from NLSF shows obvious bias because,
as mentioned, NLSF is sensitive to initial values and fails to converge sometimes. Given
that the 1-D CNN [27] achieved high speed and accuracy, we compared ELM and 1-D
CNN in terms of τA using the same training datasets. From Figure 8d,e, ELM is in good
agreement with 1D-CNN, and they showed similar distributions of pixel counts, as shown
in Figure 8h. However, in Figure 8g, the NLSF’s result is significantly more biased than
the other three algorithms. This is because deconvolution was involved in NLSF, causing
non-convergent results due to dealing with ultra-short decays caused by gold nanoprobes.
As mentioned, BCMM is not robust in varying ranges of photon counts; many pixels are
out of the defined range (0 to 2 ns), as the white pixels show in Figure 8g. Nevertheless,
BCMM is a fast algorithm that only took 6.53 s to reconstruct the image. The inference
time of 1-D CNN on a GPU (NVIDIA GTX 850M) is 116.43 s, whereas ELM only consumed
1.73 s during inference on the CPU.

4.3. Low Counts Scenarios

Fragile tissues, such as retinas, cannot be excited by laser for a long time. To avoid
tissue damage and photobleaching caused by a long acquisition time, we investigated
ELM’s performance for data in low-photon scenarios. We kept the experimental setup iden-
tical to Section 4.1. To acquire less-emitted photons, we chose the field of view with fewer
nanoprobes. Increased scanning cycles were set on the software. As the number of cycles
increased, we changed the intensity threshold to guarantee sufficient pixels were saved.
The value of the intensity threshold should be fine-tuned according to different bio-samples
(5% of total counts in our experiments). Figure 9a,b depict intensity and reconstructed τA
images, respectively. The lifetime of cells and nanoprobes can be consistently reconstructed,
even if the cycle decreases to 10. Notably, nanoprobes and boundaries of cells cannot be
identified in intensity images with 10 and 40 cycles, yet lifetime images can restore the
lifetime and reveal cell boundaries. Below each lifetime image in Figure 9b, histograms
of pixel occurrence were below τA images, showing means µ and standard deviations σ.
There was no distinct shift in µ and σ at different collection cycles, indicating that ELM is
robust, even at low counts.
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5. Conclusions 

In summary, we presented an ELM architecture to accurately retrieve fluorescence 

lifetime parameters from mono- and bi-exponential decays. Both synthetic and realistic 

experimental FLIM datasets were employed to evaluate the proposed network. Our re-

sults show ELM outperforms fitting and non-fitting methods, regarding synthetic datasets 

at different photon counts. Further, ELM can better identify NRs and cells and yield a 

comparable result to the 1-D CNN method. Since ELM does not need back-propagation 

to train the network, it is more flexible to reconfigure the network topology. Due to the 

potential online training property, it is promising to implement it on embedded hardware 

in the future, coupling with sensors and readout circuits to achieve fast on-chip training 

and inference. More FLIM applications relying on gold nanoparticles will benefit from 

this study for cellular cancer diagnosis. 

Author Contributions: Conceptualization and methodology Z.Z.; software, Z.Z. and D.X.; valida-

tion, Z.Z.; formal analysis, Z.Z.; investigation, Z.Z.; Bio-sample preparation, Z.L. and Q.W.; writ-

ing—original draft preparation, Z.Z.; writing—review and editing, Z.Z., Y.C. and D.D.U.L.; visual-

ization, Z.Z. and W.X.; supervision, D.D.U.L.; project administration, D.D.U.L.; funding acquisition, 

D.D.U.L. All authors have read and agreed to the published version of the manuscript. 

Funding: This work was supported, in part, by Medical Research Scotland (MRS-1179-2017), and 

BBSRC (BB/V019643/1 and BB/K013416/1). We would like to acknowledge Photon Force, Ltd. and 

Datalab for supporting this project. 

Institutional Review Board Statement: Not applicable. 

Informed Consent Statement: Not applicable. 

Data Availability Statement: Data underlying the results presented in this paper are not publicly 

available at this time but may be obtained from the authors upon reasonable request. 

Conflicts of Interest: The authors declare no conflict of interests. 

References 

1. Gorpas, D.; Ma, D.; Bec, J.; Yankelevich, D.R.; Marcu, L. Real-Time Visualization of Tissue Surface Biochemical Features Derived 

from Fluorescence Lifetime Measurements. IEEE Trans. Med. Imaging 2016, 35, 1802–1811. 

2. Harbater, O.; Ben-David, M.; Gannot, I. Fluorescence Lifetime and Depth Estimation of a Tumor Site for Functional Imaging 

Purposes. IEEE J. Sel. Top. Quantum Electron. 2010, 16, 981–988. 

3. Eruv, T.; Ben-David, M.; Gannot, I. An Alternative Approach to Analyze Fluorescence Lifetime Images as a Base for a Tumor 

Early Diagnosis System. IEEE J. Sel. Top. Quantum Electron. 2008, 14, 98–104. 
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5. Conclusions

In summary, we presented an ELM architecture to accurately retrieve fluorescence
lifetime parameters from mono- and bi-exponential decays. Both synthetic and realistic
experimental FLIM datasets were employed to evaluate the proposed network. Our results
show ELM outperforms fitting and non-fitting methods, regarding synthetic datasets
at different photon counts. Further, ELM can better identify NRs and cells and yield a
comparable result to the 1-D CNN method. Since ELM does not need back-propagation
to train the network, it is more flexible to reconfigure the network topology. Due to the
potential online training property, it is promising to implement it on embedded hardware
in the future, coupling with sensors and readout circuits to achieve fast on-chip training
and inference. More FLIM applications relying on gold nanoparticles will benefit from this
study for cellular cancer diagnosis.
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