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Abstract Biomolecular condensates are formed by liquid-liquid phase separation (LLPS) of

multivalent molecules. LLPS from a single ("homotypic") constituent is governed by buffering:

above a threshold, free monomer concentration is clamped, with all added molecules entering the

condensed phase. However, both experiment and theory demonstrate that buffering fails for the

concentration dependence of multicomponent ("heterotypic") LLPS. Using network-free stochastic

modeling, we demonstrate that LLPS can be described by the solubility product constant (Ksp): the

product of free monomer concentrations, accounting for the ideal stoichiometries governed by the

valencies, displays a threshold above which additional monomers are funneled into large clusters;

this reduces to simple buffering for homotypic systems. The Ksp regulates the composition of the

dilute phase for a wide range of valencies and stoichiometries. The role of Ksp is further supported

by coarse-grained spatial particle simulations. Thus, the solubility product offers a general

formulation for the concentration dependence of LLPS.

Introduction
Biomolecular condensates comprise a novel class of intracellular structures formed by a biophysical

phenomenon called liquid-liquid phase separation (LLPS) (Banani et al., 2017; Hyman et al., 2014;

Shin and Brangwynne, 2017). These structures serve as membraneless compartments where com-

plex biochemistry can be organized and facilitated (Holehouse and Pappu, 2018); for example, T

cell receptor-mediated actin nucleation efficacy spikes up multifold when all the associated signaling

molecules concentrate into a condensate (Su et al., 2016) near the plasma membrane. These struc-

tures are also implicated in many age-related or neurological diseases (Shin and Brangwynne,

2017; Alberti et al., 2019; Mathieu et al., 2020).

Numerous theoretical and experimental studies have illuminated many of the biophysical require-

ments for condensate formation (Li et al., 2012; Shin et al., 2017; Wang et al., 2018). In particular,

it is firmly established that clustering of weakly interacting multivalent proteins or nucleic acids is a

prerequisite for the phase separation. Even a sufficiently concentrated solution of a single self-inter-

acting protein (homotypic interaction) with multiple binding sites in its sequence can partition into

protein-dense and dilute phases. Such homotypic systems display a strict threshold concentration

above which phase separation occurs. This phase separation serves as a buffering mechanism for the

protein in the dilute phase (Holehouse and Pappu, 2018; Klosin et al., 2020), which remains at the

threshold concentration; thus, as more protein is added to the system, the dense phase droplets

grow in size and number, keeping the concentration clamped in the dilute phase. Although a homo-

typic system closely conforms to a single fixed threshold concentration, the picture gets much more

complex with multicomponent (heterotypic interactions) systems, which underlie all the biomolecular

condensates found in living cells and contain complex mixtures of multivalent proteins and/or nucleic

acid. Detailed theoretical analysis of lattice-based simulations explained why the dilute phase
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concentrations of specific components need not stay fixed when phase separation is driven by het-

erotypic interactions (Choi et al., 2019). This was recently followed by a thorough experimental

study of the thermodynamics of the liquid-liquid phase transitions in heterotypic systems, showing

clearly that concentration thresholds for phase separation no longer remain fixed and vary with rela-

tive compositions of interacting binding partners (Riback et al., 2020). But a theoretical framework

for quantitatively predicting such complex varying concentration thresholds is still lacking.

We have previously distinguished between strong multivalent interactions, which can produce

molecular machines, and weak multivalent interactions, which can produce what we termed ‘pleo-

morphic ensembles’ (Mayer et al., 2009; Falkenberg et al., 2013). The strong binding affinities in

molecular machines (e.g., ribosomes, flagella) enforce a specific parts list with a fixed stoichiometry.

Pleomorphic ensembles (e.g., cytoskeletal polymers and their associated binding proteins, neuronal

post-synaptic densities, etc.) are much more plastic in their composition than molecular machines.

Biomolecular condensates are a subclass of pleomorphic ensembles in that their molecular compo-

nents simultaneously coexist within both a distinct phase and as solutes in the surrounding solution.

In trying to quantitatively understand the relationships governing condensate formation from hetero-

typic components, we asked if there may be lessons to learn from ionic solution chemistry, where

salts in solution are in equilibrium with a solid crystalline phase composed of a lattice of

counter ions. We realized that the liquid phase separation at threshold concentrations of heterotypic

biological molecules might resemble the precipitation of anions and cations from solution.

Consider a salt (let’s say silver chloride, AgCl) in water; dissolution takes place until the solution

becomes saturated; further addition of salt results in precipitation. In the simplest case of pure

AgCl, this seems to be similar to the behavior of a homotypic (single component) condensate; that

is, above a threshold total concentration of dissolved AgCl, the salt will not dissolve further, main-

taining a clamped concentration of Ag+ and Cl- in the solution above, whatever amount of AgCl is

added. However, the key concept is that the saturation threshold is governed by the solubility prod-

uct (SP) – the product of the individual concentrations of Ag+ and Cl-, [Ag+] * [Cl-]. Precipitation

starts when this product reaches the thermodynamic parameter called the solubility productconst-

ant, Ksp. For AgCl Ksp = 1.7 � 10�10 M2 at 25˚C. Importantly, if we add any Cl- in the form of a

highly soluble salt (e.g., KCl) into the solution, some AgCl will precipitate to maintain the solubility

product at Ksp. Of course, the crystal lattice in an ionic solid is very different from the set of weak

multivalent interactions inside a biomolecular condensate. But we wondered whether the Ksp might

at least approximately be used to understand heterotypic LLPS.

We explore how well Ksp may apply to biomolecular condensates using two stochastic modeling

approaches. With a non-spatial network-free simulator (NFsim; Sneddon et al., 2011), we show how

Ksp can approximately predict the phase separation threshold for a two-component system by sys-

tematically changing the concentration of individual components with a variety of valencies. We sim-

ulate the dynamics of cluster formation, demonstrating a dramatic transition from a stable

distribution of small oligomers below Ksp to an unstable bimodal distribution of small oligomers and

explosively growing large polymers at or above Ksp. We will also show how a more complex mixed-

valent three-component system also conforms to a Ksp. Moreover, these simulation results help

explain experiments (Riback et al., 2020), where individual components of heterotypic biomolecular

condensates are not effectively buffered in the dilute phase. We then expand on prior work on the

structural features governing multivalent clustering (Chattaraj et al., 2019) with a spatial kinetic sim-

ulator (SpringSaLaD; Michalski and Loew, 2016) to support these conclusions and also point to

some limitations.

Results

Phase boundary of a two-component system with molecules of the
same valency
Our baseline model system consists of a pair of tetravalent molecules (A4 and B4), each having four

binding sites that can interact with an affinity (Kd) of 350 mM. We start the NFsim simulation with the

same concentrations of monomers of each type and measure the free monomer concentrations

when the system reaches the steady state (Figure 1A). The product of both free concentrations is

called solubility product (SP). As we increase the total concentration (synchronously of both A4 and
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B4), the concentration of monomeric molecules initially goes up (Figure 1A, inset) and of course SP

also goes up; upon reaching a concentration threshold (total concentration ~120 mM in this case), SP

plateaus to a constant value (169 mM2). This is the solubility product constant or Ksp for this pair of

tetravalent molecules.

Next, we ask how the system might behave differently below and above the Ksp. Similar to an

analysis we employed in previous work using spatial simulations (Chattaraj et al., 2019), we probed

for how the number of available molecules (i.e., the system volume) affects the cluster size distribu-

tion below and above the threshold, 80 mM and 160 mM (Figure 1B, C). If the system shows no ten-

dency to condense into large clusters, the size distribution will be insensitive to the number of

molecules at a given total concentration. Figure 1B shows this to be the case for the 80 mM total

concentration (SP = 154 mM2 < Ksp). The shape of the cluster size distribution displays an exponen-

tial decline from monomers to higher oligomers, and this shape is insensitive to increasing the num-

ber of molecules (i.e., volume) in the system (unbinned histograms are in Figure 1—figure

supplement 1A). Even in the presence of 800 molecules, there are hardly any clusters greater than

40 molecules (lowest panel of Figure 1B). Approximately 80% of the total molecules are in clusters

containing less than 10 molecules, no matter how many molecules are available in the system.

Extrapolating to a macroscopic system, this would be equivalent to a single soluble phase consisting

of mainly monomers and small oligomers.

Figure 1C and Figure 1—figure supplement 1B illustrate the cluster distribution for total con-

centration = 160 mM, above the threshold for constant SP (SP = 169 mM2 = Ksp). The histogram

does change shape, extending the tail to larger clusters eventually to become a bimodal distribution

Figure 1. The solubility product constant corresponds to a threshold above which molecules distribute into large clusters. These simulation results

correspond to equal total concentrations of a heterotypic tetravalent pair of molecules with Kd for individual binding of 350 mM. (A) Product of the free

monomer concentrations (solubility product) as a function of the total molecular concentrations. The black dashed line indicates the plateau,

corresponding to the solubility product constant (Ksp), 169 mM2. Inset plot shows the change of free molecular concentrations of both tetravalent

molecules with their respective total concentrations. Each data point is an average of steady-state values from 200 trajectories. In these simulations, we

titrate up the molecular counts (200, 400, 600, ...., 2000 molecules, respectively), keeping the system’s volume fixed. (B, C) Distribution of cluster sizes

with varying system sizes at two different total concentrations, 80 mM and 160 mM, respectively below and above the plateau in (A). The histograms

show how the molecules are distributed across different ranges of cluster sizes.

The online version of this article includes the following source data and figure supplement(s) for figure 1:

Source data 1. Source data for Figure 1.

Figure supplement 1. Full (unbinned) distributions of cluster sizes corresponding to Figure 1B, C.

Figure supplement 2. Pair of tetravalent heterotypic binders shows an identical Ksp even for a larger system.

Figure supplement 3. Distributions of cluster sizes for single trajectories.
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as we feed more molecules into the system (i.e., as we increase the volume). With 1600 molecules in

the system, more than 20% of the total molecules are in clusters larger than 100 molecules. Fig-

ure 1—figure supplement 2 shows simulations with 10,000 molecules, averaged over 100 trajecto-

ries, systematically varying the total concentrations by changing the simulation volume (as opposed

to changing the number of molecules within a fixed volume in Figure 1A); the Ksp is still 169 mM2

and bimodal distributions clearly develop above Ksp. We note that the long tail in these histograms

(unbinned distribution in Figure 1—figure supplement 1B) is an average of 100 stochastic trajecto-

ries; examination of individual histograms in Figure 1—figure supplement 3 (note the logarithmic

scale on the abscissa) shows almost all of them individually containing just one huge cluster along

with small oligomers. Thus, Figure 1C, Figure 1—figure supplement 2B, and Figure 1—figure sup-

plement 3 demonstrate that if the system is above Ksp, molecules are funneled into macroclusters.

We hypothesize that this tendency to form increasingly larger clusters with more available mole-

cules is a hallmark of phase separation behavior, as previously established (Chattaraj et al., 2019),

and that a constant solubility product (Ksp) is a quantitative indicator to mark the threshold that

underlies biomolecular condensates. Here, we use the percolation boundary, the threshold for form-

ing large clusters, as a proxy for phase separation, realizing that they may not be completely coinci-

dent (Choi et al., 2020a; Choi et al., 2020b). Below a threshold total concentration, when SP

has not reached the constant level of Ksp, the tendency to form large clusters is low and the system

Figure 2. An alternative approach to quantify the phase transition boundary. (A) Illustration of the clamped monomer concentration (CMC) approach.

Both the molecules (A4 in magenta and B4 in green) can enter the simulation box with a rate constant kcreate (molecules/s) and exit with a rate constant

kdecay (s
-1). The ratio of these two parameters clamps the monomer concentration to (kcreate/kdecay). (B) Average time course (over 100 trajectories) of

total molecular concentrations as a function of different CMCs. Error bars show the standard deviations across 100 trajectories. (C) Eight sample

trajectories for different CMCs.

The online version of this article includes the following source data and figure supplement(s) for figure 2:

Source data 1. Source data for Figure 2.

Figure supplement 1. Individual trajectories of total molecular concentrations (A4 in magenta and B4 in green) at clamped monomer
concentration (CMC) = 12.9 mM.

Figure supplement 2. Individual trajectories of total molecular concentrations (A4 in magenta and B4 in green) at clamped monomer
concentration (CMC) = 13 mM.

Figure supplement 3. Individual trajectories of total molecular concentrations (A4 in magenta and B4 in green) at clamped monomer
concentration (CMC) = 13.1 mM.

Figure supplement 4. Summary of fixed total concentration (FTC) and clamped monomer concentration (CMC) method predictions.
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would exist as a single phase (e.g., Figure 1B). Above the threshold where SP converges to the Ksp,

the system tends to form very large clusters, yielding two different phases, manifest as bimodal clus-

ter size histograms (Figure 1C, Figure 1—figure supplement 2B, and Figure 1—figure supplement

3). The dense phase containing the larger clusters grows in size and the dilute phase concentration

remains constant. Importantly, this behavior is precisely that of a buffering system, which has been

proposed as one of the important biophysical functions of biomolecular condensates. The generality

of this hypothesis will now be further explored through additional modeling scenarios.

Simulations with monomeric A4 and B4 maintained at fixed
concentrations
We now further demonstrate that Ksp marks the phase transition threshold using an alternative

modeling approach. In the first approach, we used a fixed total concentration (FTC) of molecules

and measure the free monomer concentrations as the system reaches the steady state. In this second

approach, we clamp the monomer concentrations to a constant value (clamped monomer

concentration [‘CMC,], Figure 2A) and allow the total concentration (free plus bound) to change

over time. This is achieved by creating reactions that rapidly create and destroy monomers, such

that the concentration is clamped at the ratio of these rate constants – as long as these rates are

much faster than the rates of the binding reactions. The SP, in this case, is simply the product of

CMC_A4 and CMC_B4.

For CMC_A4 = CMC_B4 = 12.9 mM (SP = 166.4 mM2, below Ksp), total molecular concentrations

rise up initially and then converge to a steady state (~56 mM) (Figure 2B). However, going to CMC =

Figure 3. The Ksp defines a threshold for unlimited growth of clusters even when the individual concentrations of heterotypic multivalent binding

partners are unequal. With Ksp determined from Figures 1 and 2 at ~169 mM2, solubility product (SP) was clamped above in (A) at 172 mM2 and below

in (B) at 160 mM2. The solid lines (magenta and green) and error bars represent the mean and standard deviations across 100 trajectories.

The online version of this article includes the following source data and figure supplement(s) for figure 3:

Source data 1. Source data for Figure 3.

Figure supplement 1. System (A4– B4) deviates from a fixed Ksp when initial conditions are not stoichiometrically matched.

Chattaraj et al. eLife 2021;10:e67176. DOI: https://doi.org/10.7554/eLife.67176 5 of 18

Research article Cell Biology Structural Biology and Molecular Biophysics

https://doi.org/10.7554/eLife.67176


13 mM (SP = 169 mM2 = Ksp), the total concentrations never reach a steady state. This phenomenon

is more pronounced for a higher CMC (13.1 mM). Clearly the system is undergoing a fundamental

change around SP = 169 mM2, identical to the threshold determined for FTC (Figure 1). Both these

modeling paradigms indicate that there is a solubility product constant (Ksp = 169 mM2) beyond

which the system has a much higher propensity to form larger molecular clusters, the prerequisite

for phase-separated droplet formation. Another striking feature is the variability of the total concen-

trations at CMC = 13 mM as illustrated by the error bars around the mean counts (second panel,

Figure 2B). When we look at the individual trajectories (Figure 2C and Figure 2—figure supple-

ments 1–3), the system shows large fluctuations and variable lag times before irreversible growth

near the phase boundary (Figure 2C, CMC = 13 mM); the total concentration explodes in some runs

or fluctuates around a metastable state within the given time frame. The behavior is less stochastic

away from the Ksp (Figure 2B, C, CMC = 12.9 mM and 13.1 mM) as quantified by the relatively nar-

rower error bars. The behavior at Ksp represents stochastic nucleation of clusters containing enough

crosslinking that disassembly becomes unlikely; such larger clusters are sufficiently stable only at or

above Ksp.

When we compare the outcomes from FTC and CMC methods, we see that the results are consis-

tent with each other (Figure 1A, Figure 2B, and Figure 2—figure supplement 4). Below the phase

boundary, if we clamp the monomer concentrations to the value of free concentrations obtained

from the FTC method, we recover the same steady-state total molecular concentrations (top six pan-

els in Figure 2—figure supplement 4). However, at even slightly above the Ksp, the CMC total con-

centration increases with time, rather than leveling off to a higher steady value (bottom panels in

Figure 2—figure supplement 4).

Phase transition depends on Ksp even when individual monomer
concentrations are unequal
From ionic solution chemistry, we know that irrespective of the individual ionic concentrations, if the

product of ion concentrations exceeds the Ksp of the salt (i.e., supersaturation), we always get pre-

cipitation to restore the solution concentrations to Ksp, even if one ion is present at a different con-

centration than the other (‘common ion effect’). We wanted to test whether that simple chemical

principle works for our relatively complex multivalent molecular clustering system. In Figure 3, we

analyze two cases when the product of reactant’s concentrations (SPs) is above (SP = 172 mM2) and

below (160 mM2) the Ksp (169 mM2, derived from Figure 1). For each of those SPs, we vary the

CMCs of A4 and B4 in such a way that the products of the CMCs are always equal to the assigned

SP. Satisfyingly, we find that for SP < Ksp (Figure 3B), the systems converge to stable steady states

(no phase transition); but for SP > Ksp (Figure 3A), irrespective of individual clamped concentra-

tions, systems always show unbounded growth (phase transition). We also titrated unequal FTCs,

maintained at a ratio of 3:2 (Figure 3—figure supplement 1). Interestingly, in this computational

experiment the free monomer concentration of the lower abundant component (B4) gets exhausted

disproportionately as the threshold is approached, so that SP cannot quite reach Ksp (169 mM2) and

actually begins to diminish somewhat at still higher FTC. However, cluster size distribution (Fig-

ure 3—figure supplement 1B) still becomes increasingly bimodal with higher concentrations sug-

gesting a phase separating behavior. Thus, even when monomer supply becomes depleted, the Ksp

still serves as an upper limit for free monomer concentrations.

Higher valency promotes phase transition by reducing the Ksp
Increasing valency is known to increase the propensity for phase separation (Holehouse and Pappu,

2018; Mathieu et al., 2020). Therefore, we ask how the valency of the interacting heterotypic

monomers affects the Ksp. We altered the molecular valencies (number of binding sites per mole-

cule) from 3 to 5 and compute the SP profiles as a function of total concentrations (Figure 4). The

total concentration needed to reach the Ksp goes down with higher valency, consistent with experi-

ment. Going from 3v,3v pair to 4v,4v pair, Ksp changes over fivefold (852 mM2 to 169 mM2), whereas

approximately threefold change (169 mM2 to 55 mM2) can be observed for transitioning into 5v,5v

pair from 4v,4v.
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Ksp for a mixed-valent system
We next explore what happens when we mix molecules with different valencies. Consider a penta-

and trivalent (A5–B3) molecular pair (Figure 5). To optimize the clustering such that all sites could

potentially be bound would require a stoichiometry of 3A5:5B3. Maintaining this concentration ratio,

as we titrate up the total concentrations, we see an interesting pattern (Figure 5A, inset): the free

monomer concentration of B3, which is present in excess, goes up steadily; but the free A5 goes up

first and then starts to go down. When we take the product of free monomer concentrations (Fig-

ure 5—figure supplement 1), we do not see an SP profile that plateaus to a constant Ksp (as in

Figure 1A). However, when we correct the SP expression by taking the ideal stoichiometry into

account, SP = (free A5)
3(free B3)

5, we get an SP profile that does plateau to a fixed Ksp beyond the

total concentration threshold of ~128 mM (Figure 5A). The Ksp expression for this mixed-valent

binary system is analogous to a mixed-valent salt like Al2(SO4)3. Indeed, examining the cluster size

distribution confirms that this mixed-valent system has a concentration threshold at the same total

concentration 128 mM (48 mM A5 + 80 mM B3) where this stoichiometry-adjusted SP becomes con-

stant; beyond that point the cluster size distribution becomes bimodal and more and more mole-

cules populate the larger clusters (Figure 5B). Importantly, the free monomer concentrations do not

display buffering above this threshold (Figure 5A, inset), with the concentration of the pentavalent

monomer actually decreasing. Thus, the Ksp analogy between ionic solution chemistry and biomo-

lecular condensates seems to hold for even these more complex stoichiometries.

A ternary heterotypic system lacks dilute phase buffering while still
being governed by Ksp
In some elegant recent experiments, Riback et al., 2020 titrated up the concentration of one com-

ponent of several cellular multicomponent biomolecular condensates and showed that the expected

buffering behavior did not pertain to heterotypic systems. We decided to see if our simple non-

Figure 4. Change of Ksp with molecular valency. For 3,3 case (blue stars), molecular counts of each type = [500,

1000, 1500, ..., 3000]. For 4,4 case (red stars), molecular counts of each type = [100, 200, 300, ..., 1000]. For 5,5 case

(cyan stars), molecular counts of each type = [50, 100, 150, ..., 500]. Kd is set to 3500 molecules in all these cases.

Horizontal dashed lines indicate the Ksp of the corresponding system.

The online version of this article includes the following source data for figure 4:

Source data 1. Source data for Figure 4.
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spatial simulations, which only consider binding and valency, could recapitulate these experimental

observations.

To do this, we consider a mixed-valent three-component system. Component A3 has three sites

that can bind to a single domain of component B1,3; six sites in component C6 interact with three dif-

ferent sites on component B1,3. In our simulations, all these bindings are assumed to have the same

weak affinities (Kd = 350 mM). We started by establishing conditions where B1,3 and C6 alone could

form a bimodal cluster distribution (Figure 6—figure supplement 1), corresponding to a phase sep-

aration. We found that this binary system has a Ksp of ~2700 mM3 (the units correspond to the ideal

stoichiometry of 2 B1,3:1 C6). We then chose total concentrations of 120 mM B1,3 and 60 mM C6 (well

above the phase transition in Figure 6—figure supplement 1B) and performed a series of simula-

tions with increasing levels of A3 (Figure 6). Figure 6A–C shows three ways to analyze these data,

which we chose to match the way experimental data for titration of NPM1, a key component of the

nucleolus, was analyzed in Riback et al., 2020 (shown in the corresponding insets in the panels of

Figure 6A–C). We do not know the valencies and affinities for the components that make up the

nucleolus, an archetypal biomolecular condensate, so we made no attempt to match the data quan-

titatively. However, we are gratified with the obvious qualitative match to the experimental patterns,

especially the ability of our simple binding model to show how A3 does not display simple buffering

in this scenario. Specifically, buffering, as observed in homotypic biomolecular condensates, would

result in a plateau level of monomeric A3 (or NPM1) as a function of total A3 (the illustrative

Figure 5. A mixed-valent binary system obeys a stoichiometry-adjusted Ksp. (A) Logarithm of solubility product (SP) as a function of total

concentrations (A5 + B3). Inset shows the variation of free molecular concentrations w.r.t. their initial total concentrations. Molecules are added at a

fixed volume to vary the total concentrations. (B) Cluster size distributions become more bimodal as we go beyond the critical concentration (128 mM in

this case).

The online version of this article includes the following source data and figure supplement(s) for figure 5:

Source data 1. Source data for Figure 5.

Figure supplement 1. Simple product of free molecular concentrations does not work for mixed-valent binary systems.
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‘expected’ behavior is shown for NPM1 in red in Figure 6A, inset). Instead, our simulations and the

corresponding data on the levels of NPM1 in the nucleoplasm (dilute phase) show an increasing con-

centration of the titrant. Because the dilute phase would contain small oligomers, not just monomer,

we confirmed that the patterns in Figure 6A, B for the monomeric A3 are also present for small

oligomers of A3 (Figure 6—figure supplement 2).

Importantly, Figure 6D demonstrates how this complex ternary system obeys the Ksp just as well

as the previously analyzed binary systems. The SP for this system is calculated based on the ideal

valency matching stoichiometry: SP = [A3]
2[B1,3]

6[C6]
3. The blue triangles show this analysis for the

same simulations that generated Figure 6A–C, where the total concentrations of B1,3 and C6 are

kept fixed sufficiently high to be phase separated without any A3 (Figure 6—figure supplement 1B)

at 120 mM and 60 mM, respectively, while the total concentration of A3 is titrated from 1 mM up to

200 mM. The red stars show a computational experiment where the total concentrations of the three

Figure 6. Titration of one molecular component in a heterotypic condensate yields correlations with the experimental results [Riback et al., 2020]. We

begin with 120 mM B1,3 and 60 mM C6, which displays a bimodal cluster distribution (condensate formation; Supp. Fig. S6); we then titrate up A3

concentration from 1 mM to 200 mM. (A–C) Free A3 (monomeric) concentration, bound A3 (total A3 – free A3) concentration and their ratio as a function

of total A3 concentrations. Inset figures are replotted from the data reported in Riback et al., 2020. To guide the eye, we fit their experimental data to

a generic function, y = a * xn where a and n are pre-exponent and exponent factors, respectively. The red lines in the inset plots demonstrate the

’expected’ trend if the condensation is purely driven by homotypic interactions. (D) Blue triangles correspond to the solubility product (SP) of the three-

component system when A3 is being titrated up gradually, with fixed total [B1,3] = 120 mM and [C6] = 60 mM. Red stars indicate the scenario when we

simultaneously change concentrations of all three components, keeping a concentration ratio of 2:6:3.

The online version of this article includes the following source data and figure supplement(s) for figure 6:

Source data 1. Source data for Figure 6.

Figure supplement 1. A pair of trivalent (B1,3) and hexavalent (C6) molecules forms condensates when their solubility product reaches to a plateau.

Figure supplement 2. Titration profiles for A3 in ternary system.

Figure supplement 3. Solubility product(SP) profile for A3–B1,3–C6 system.

Chattaraj et al. eLife 2021;10:e67176. DOI: https://doi.org/10.7554/eLife.67176 9 of 18

Research article Cell Biology Structural Biology and Molecular Biophysics

https://doi.org/10.7554/eLife.67176


components are varied concertedly, maintaining the ideal stoichiometric ratios of 2 A3:6 B1,3:3 C6.

Both of these titrations plateau to the same value of Ksp of ~1012 mM11, even though they reach this

Ksp at different values of the total concentration. The red star simulations display the characteristic

bimodal cluster size distributions at a total concentration of [A3] + [B1,3] + [C6] = (30 + 90 + 45) mM =

165 mM, that is, just when SP plateaus to the Ksp (Figure 6—figure supplement 3). Thus, even for

this more complex mixed-valent ternary system, a threshold for monomer concentrations is set by a

Ksp, and it determines the point for formation of the large cluster phase. Figure 6—figure supple-

ment 3A also shows how the individual monomer concentrations (insets) continue to change dramat-

ically even after the Ksp is reached. Taken together, these results demonstrate the usefulness of the

Ksp concept in explaining the concentrations of individual components of complex heterotypic multi-

valent binding systems and how they lead to LLPS.

Spatial simulations
Because of the efficiency of the NFSim non-spatial stochastic simulator, we were able to rapidly

explore many scenarios using large numbers of molecules and demonstrate that the solubility prod-

uct constant (Ksp) may generally serve as a quantitative indicator for phase transitions of multivalent

heterotypic binders. These simulations also allowed us to focus on only the effects of binding valency

and stoichiometry. We now apply a spatial simulation framework, SpringSaLaD (Michalski and

Loew, 2016), where the roles of spatial features, such as steric hindrance, molecular flexibility and

proximity, may also impact Ksp. A biomolecule is modeled as a collection of spherical sites con-

nected by spring-like linkers. The spheres may be designated as binding sites within a rule-based

modeling interface, assigning them macroscopic on and off rates that the software translates to

reaction probabilities as the spheres penetrate a computed reaction radius dependent on the on-

rate constant. Thus, the software is amenable to computational experiments where the geometric

and reaction parameters of the system can be systematically varied.

Our spatial system consists of a pair of matched tetravalent molecules (A4a and B4b) where each

molecule contains four binding sites, with interspersed pairs of linker sites (Figure 7A). These linker

sites impart flexibility to the molecules mimicking the intrinsically disordered linker sequences that

are found in many phase-separating multivalent proteins (Posey et al., 2018). Each of the magenta

sites can bind to each of the green sites with an affinity of 350 mM. We begin with 100 A4a and 100

B4b molecules, randomly distributed in a three-dimensional rectangular volume. As the system

relaxes to the steady state, we quantify the monomer concentrations and plot their product (SP) as a

function of the initial total concentration – the FTC approach we described above for NFsim. We

generate an SP profile by systematically varying the FTC by changing the volume of the compart-

ment, keeping the total molecular numbers same (Figure 7B). The SP converges to a constant value

(Ksp = 318 mM2) at a threshold FTC (~138 mM in this case). When we look at the detailed cluster size

distributions at steady state (Figure 7—figure supplement 1A), the dimer emerges as a preferred

configuration both below and above the Ksp. This dimer preference arises from the matching

valency and spatial arrangement of the binding sites in the two partner molecules; such an effect,

which we term a ‘dimer trap,’ cannot be realized in non-spatial methods, such as NFsim. Above Ksp,

however, most of the individual trajectories, much like NFsim, produce discontinuous distributions

with small oligomers along with one or two very larger clusters (Figure 7—figure supplement 2).

This obvious bifurcation is obscured when averaging over multiple individual histograms (Figure 7—

figure supplement 1A) because the consistent population of small oligomers is reinforced while

individual large clusters will become smeared out.

Having established the Ksp with the FTC spatial simulations, we turned to the CMC approach,

again using high values for kcreate and kdecay (as in Figure 2A). One can think of the CMC approach

as being equivalent to having a large external reservoir of monomers that can rapidly diffuse into a

volume where clustering is enabled. As we titrate up the CMCs (Figure 7C), the system undergoes a

fundamental change at 17.85 mM, corresponding to SP = 318.6 mM2, which is approximately at the

Ksp we derived from the FTC calculations. Below that boundary (CMC = 16.7 mM), total concentra-

tions converge to a steady state (Figure 7C, top panel); at (CMC = 17.85 mM) or above the bound-

ary (CMC = 18 mM), the total concentration of molecules keeps on going up with time (Figure 7C,

second and third panels). When we look at the individual total concentration trajectories for CMC =

17.85 mM (Figure 7—figure supplement 3), much like our NFsim results, some trajectories fluctuate

around a lower steady state (dilute phase) for the given time frame while some trajectories shoot up
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Figure 7. Spatial simulations demonstrate similar phase boundary behavior as network-free simulator (NFsim). (A) SpringSaLaD representations of a

pair of tetravalent binders. A4a and B4b consist of four magenta and green spherical binding sites (radius = 1.5 nm) and six orange and pink linker sites

(radius = 0.75 nm). Diffusion constants for all the sites are set to 2 mm2/s. For individual binding, dissociation constant, Kd = 350 mM (Kon = 20 mM�1.

s�1, Koff = 7000 s�1). Simulation time constants, dt (step size) = 10�8 s�1 , dt_spring (spring relaxation constant) = 10�9 s�1 . (B) Solubility product (SP)

profile of the spatial system. We place a total of 200 molecules (100 A4a + 100 B4b) in 3D boxes with varying volumes and quantify the monomer

concentrations (free A4a and free B4b) at steady states. Each data point is an average over 100 trajectories. Solubility product constant (Ksp) = 318 mM2,

the horizontal dashed line. (C) Total molecular concentration profiles for three clamped monomer concentrations (CMCs). The solid lines and error bars

represent the mean and standard deviation over 50 trajectories. (D) Cluster size distributions at the last time point of CMC trajectories, that is, 1000 ms

for CMC = 16.7 mM, 400 ms for CMC = 17.85 mM and 18 mM. More detailed histograms without binning are shown in Figure 7—figure supplement 1.

(E, F) Irrespective of individual monomer concentrations, total molecular concentrations converge to steady states as long as the solubility product (SP

= 280 mM2) < Ksp (E) and diverge with time when SP (= 330 mM2) > Ksp (F). The solid lines and error bars represent the mean and standard deviation

over 50 trajectories.

The online version of this article includes the following video, source data, and figure supplement(s) for figure 7:

Source data 1. Source data for Figure 7.

Figure supplement 1. For SpringSaLaD system, (A) cluster size distributions at steady state (sampled from last time point) for different fixed total
concentrations; (B) cluster size distributions at last time point for different clamped monomer concentrations.

Figure supplement 2. Cluster size distributions for single SpringSaLaD trajectories.

Figure supplement 3. For SpringSaLaD system, individual total concentration trajectories at (A) clamped monomer concentration (CMC) = 16.7 mM
(below Ksp), (B) CMC = 17.85 mM (at Ksp), and (C) CMC = 18 mM (above Ksp).

Figure 7—video 1. Single trajectory for spatial simulations below Ksp.

https://elifesciences.org/articles/67176#fig7video1

Figure 7—video 2. Single trajectory for spatial simulations at Ksp.

https://elifesciences.org/articles/67176#fig7video2

Figure 7—video 3. Single trajectory for spatial simulations slightly above Ksp.

https://elifesciences.org/articles/67176#fig7video3

Figure 7—video 4. Dynamics of individual clusters below (left panel) and above (right panel) the Ksp.

https://elifesciences.org/articles/67176#fig7video4
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(dense phase) after a variable lag. This stochastic behavior is also present for CMC = 18 mM,

although the rate of growth is much faster in this case. As quantified by the error bars (Figure 7C,

second and third panels), stochastic fluctuations are somewhat greater in spatial simulations than the

non-spatial scenario. This stochasticity can be attributed to the variable lag before the nucleation of

a sufficiently large cluster for irreversible and accelerating growth; higher variability in spatial simula-

tions is expected due to a larger number of contributing factors like steric crowding and optimal

geometric conformations of binding sites.

Certain features of these results are better appreciated via Figure 7—videos 1–3, each corre-

sponding to a typical single trajectory at the three CMCs. Interactive 3D visualizations of these three

simulations are available on the ‘Simularium’ website hosted by the Allen Institute for Cell Science;

readers may access them here: Below Ksp; At Ksp; Above Ksp. The videos each show the actual

dynamics of cluster formation and diffusion within the 3D volume, synchronized with the time course

of total molecular concentration and a dynamic histogram of cluster size distribution. Figure 7—

video 1, where monomer concentration is clamped at 16.7 mM (SP = 279 mM2, below Ksp), shows

that the total molecular concentration fluctuates around ~80 mM, matching the third data point in

Figure 7B. While this single trajectory is noisy, it corresponds well to the average of 50 trajectories

in the top panel of Figure 7C. Importantly, the dynamic histogram in Figure 7—video 1 shows that

the system rarely samples a cluster size greater than 15 molecules, which we associate with a single

dilute phase. Figure 7—video 2 displays a typical trajectory with CMC at the Ksp (monomer concen-

tration 17.85 mM, SP = Ksp = 318.6 mM2). Instead of the steady state attained below Ksp (Figure 7—

video 1), Figure 7—video 2 displays a noisy but accelerating increase in total concentration to a

maximum of 500 mM at 400 ms and a corresponding filling of the simulation volume; the dynamic

histogram (note the logarithmic scale of the x-axis compared to Figure 7—video 1) shows primarily

small clusters until about 200 ms, followed by a steady siphoning of newly appearing monomers into

a single large cluster, which we associate with phase separation. Figure 7—video 3, with CMC set

just above Ksp at 18 mM, illustrates how one trajectory reaches a metastable steady state that lasts

until ~180 ms, but ultimately explodes to almost 800 mM total concentration, virtually filling the avail-

able volume (as also noted for the corresponding averaged trajectories in the lowest panel of

Figure 7C). This corresponds to a nucleation step, which lasts until the formation of a sufficiently

large cluster to capture most newly appearing monomers. Motions and spatial locations of individual

clusters can be visualized through Figure 7—video 4, which is based on the same simulations used

to produce Figure 7—video 1 and Figure 7—video 3 (i.e., below and above Ksp, respectively). Fig-

ure 7—video 4 displays the individual clusters in a given time frame by computing their centroids

and a radius of gyration around that center. For visual clarity, the cluster sizes are scaled down pro-

portionately (by a factor of 4); for example, the largest cluster in the last time frame of the above

Ksp (right panel) has a radius of gyration of ~48 nm. The dimension of the simulation volume is

100 * 100 * 120 nm3. Through Figure 7—video 4, we can better appreciate the dramatically differ-

ent spatial distributions of clusters below and above Ksp. The left panel, below Ksp, corresponds to

a collection of small clusters homogeneously distributed across the simulation volume (single dilute

phase), while the right panel illustrates the evolution of a large cluster (dense phase) coexisting with

a pool of randomly distributed small clusters (dilute phase).

Like our non-spatial simulations, both FTC and CMC approaches yield self-consistent results for

the spatial system: as the monomer SP remains below the Ksp threshold (318 mM2), the system

exhibits only one phase; but above that threshold boundary, the molecules get partitioned into two

different phases – a dilute phase with monomers and small oligomers and a highly clustered phase

(Figure 7D and Figure 7—figure supplement 1B). The validity of the Ksp is preserved even when

the CMCs are unequal. We illustrate this by choosing two SPs, 280 mM2 and 330 mM2, respectively

below and above the Ksp, and varying the individual CMCs (Figure 7E, F). Both the cases with SP =

280 mM2 converge to a steady state, while SP = 330 mM2 combinations explode in both cases. It

should be noted that as the total concentration explodes in these simulations, the volume can

become filled with newly created molecules; this puts a brake on the total concentration in long

duration simulations.
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Discussion
It has been widely understood that for single component, self-interacting (homotypic) multivalent

systems undergoing liquid-liquid phase separation (LLPS), the concentration of monomer in the

dilute phase remains fixed above the phase transition, no matter how much of the monomer is

added to the system; this feature of biomolecular condensates underlies buffering and noise reduc-

tion (Holehouse and Pappu, 2018; Klosin et al., 2020). Of course, the maintenance of a fixed con-

centration in a saturated solution of a solute in equilibrium with its solid phase is an elementary

thermodynamic rule. Recognizing this, we set out to see how far the analogy to solution chemistry

could take us in considering heterotypic interactions between different multivalent binders. Some-

what more complex than the saturated solution of a single solute is the precipitation of solid salts

from saturated solutions of their ions. Chemists well know that ionic solutions of weakly soluble salts

are governed by the solubility product constant, Ksp = [Cm+]n[An-]m, where m and n are the valen-

cies, respectively, of the cation Cm+ and anion An-; importantly, n and m are the stoichiometries,

respectively, of the cation and the anion in the solid phase to balance the positive to the negative

charges. The solubility product constant derives from a fundamental thermodynamic principle –

equality of chemical potential between coexisting phases (ions in solution and solid). We wondered

whether similar expressions could define the thresholds for LLPS in multicomponent (heterotypic)

multivalent interaction systems.

One limitation in the analogy is that the composition of the ionic solid phase, and therefore the

activity, is invariant, making the system-free energy dependent on only the activities of the ions in

solution. However, the ideal stoichiometry, which absolutely constrains the composition of an ionic

solid, is not so strictly enforced in the condensed phase of a multivalent condensate because of the

weak binding affinities that underlie these systems. Therefore, to explore how well the Ksp might

apply to LLPS, we used a non-spatial stochastic network fee simulator, NFsim (Sneddon et al.,

2011); it isolates only the effect of valency and binding on the concentration dependence of cluster-

ing. We used a single weak binding affinity (Kd = 350 mM) for all our simulations. The efficiency of

this computational method also made it possible to screen many scenarios with a sufficient number

of molecules and trajectories to assure statistically that we were not missing any interesting effects.

We used two approaches to assess the threshold behavior. First, we titrated up the total concentra-

tion of pairs of multivalent binders. We found that there was a threshold above which the concentra-

tion of free monomers obeyed a Ksp expression – that is, [A]n[B]m, where m and n are the ideal

stoichiometries for an oligomer with all binding sites occupied. Below the Ksp threshold, the histo-

gram of cluster size distributions tails off exponentially from monomers to small oligomers and its

shape is independent of the number of molecules available (e.g., Figure 1B and Figure 1—figure

supplement 1A). However, for total concentrations above the Ksp threshold, the histogram of clus-

ter size distributions becomes bimodal, with an increasing population of huge clusters as more mole-

cules are added to the system (e.g., Figure 1C and Figure 1—figure supplement 1B); we consider

this bimodal cluster size distribution to be a hallmark of phase separation. The individual trajectories

show a separation between small oligomers and a single large cluster (Figure 1—figure supplement

3). This bifurcation between one large cluster and small oligomers has been used to define a perco-

lation boundary, generally considered a proxy for phase separation (Choi et al., 2019; Choi et al.,

2020a). To further relate the behavior of these stochastic systems to the macroscopic phase transi-

tion, we used a second modeling approach where we clamped the monomer concentrations (CMC)

while allowing the clusters to grow. When monomer concentrations were clamped below the Ksp,

the system reached a steady state identical to that of the corresponding closed fixed total concen-

tration simulations (Figure 2—figure supplement 4), with identical cluster distributions containing a

single decaying histogram of cluster sizes. However, when the CMC was set to the Ksp or slightly

above it, the plot of total concentration vs. time exploded following an initial lag (e.g., Figure 2),

indicating that as new monomers enter the system they were funneled into large clusters without

attaining a steady state. Together, we feel that the behavior of these two different modeling

approaches shows that the Ksp defines a threshold of monomer concentrations above which a phase

separation occurs.

The generality of the Ksp as an indicator of threshold was then further tested using different sce-

narios. We tested a situation where the total concentrations of each molecule in the binary tetrava-

lent heterotypic system were unequal; while these simulations showed that the Ksp determined in
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the analysis of the equal concentration system was obeyed for a range of unequal concentrations

(Figure 3), there will be deviations if the range is extended too far (Figure 3—figure supplement

1). This deviation is not surprising considering that the binding affinities are weak, leaving an excess

of binding sites empty within a cluster, when the free concentration of one binding partner is too

highly depleted. We tested cases where the valencies were not identical for a binary (Figure 5) and

even a ternary system of mixed valency interactors (Figure 6D). In these systems, a more complex

Ksp formulation was required to account for the appropriate ideal stoichiometry of the cluster. In

both of these cases, the Ksp was successful in defining a threshold for phase separation.

The ternary system of Figure 6 also allowed us to explore how well the simple multivalent binding

simulations could reproduce some recent experiments demonstrating how the components of het-

erotypic biomolecular condensates are not effectively buffered in the dilute phase (Riback et al.,

2020). For several prototypical cellular LLPS systems, this study elegantly showed that titration of a

single component produced a free concentration of that component that increased even more rap-

idly than its total concentration (Figure 6A inset is an example). The simulation results in Figure 6

show that our simple multivalent binding system is able to reproduce these experimental titration

patterns; importantly, it also further demonstrates, despite this failure of simple buffering, that the

concentrations of individual components in the dilute phase are still constrained by Ksp.

Recent computational (Choi et al., 2019) and theoretical (Deviri and Safran, 2021) studies dem-

onstrated that buffering of dilute phase concentrations in multicomponent systems has a complex

relationship with the interplay of homotypic and heterotypic interactions. For a two-component het-

erotypic system, plotting the total concentrations of one component against the other produces a

phase diagram with an elliptical region corresponding to the coexistence of the dilute and con-

densed phases; the system has a single phase anywhere outside that ellipse. In fact, the dilute and

condensed phase concentrations remain constant (i.e., buffered) along tie lines that are approxi-

mately parallel to the major axis of the ellipse; buffering fails perpendicular to tie lines (Deviri and

Safran, 2021). The derivation of approximate order parameters, such as a percolation boundary

(Choi et al., 2019; Choi et al., 2020b), to estimate the shape of phase diagrams, could be possible

with our approach, but it is beyond the scope of this work. However, the SP should be approxi-

mately constant (Ksp) within the two-phase elliptic region. That is, the SP may be used to predict

concentrations in the dilute phase even for short traversals perpendicular to tie lines in the phase

diagram.

We turned to coarse-grained spatial simulations of clustering to determine if the Ksp might still

be generally applicable when the shape and flexibility of multivalent molecules is explicitly consid-

ered. We used SpringSaLaD (Michalski and Loew, 2016) software; it models molecules as a series

of linked spheres to represent domains within macromolecules. We had previously used this software

to address the structural features that control clustering of multivalent molecules and showed that

above a concentration threshold, the system display unlimited growth characteristic of LLPS

(Chattaraj et al., 2019). In the present study, we examined a heterotypic pair of tetravalent binders

(Figure 7), similar to the non-spatial model used in Figures 1 and 2. The SpringSaLaD structures

included four binding spheres, each separated by a pair of linker spheres; the distances between

sites were identical within each binding partner. The results (Figure 7) show that this model displays

the same behavior noted for the non-spatial model. The product of concentrations of monomer

becomes independent of the total concentration above a threshold (Figure 7B). When monomer

concentrations are clamped at or above this Ksp threshold, the total concentration explodes after a

lag time (Figure 7C, F) and the histogram of cluster sizes becomes bimodal (Figure 7E). These

results are dramatically displayed in Figure 7—videos 1–3, corresponding to typical single trajecto-

ries for the clamped monomer concentrations below, at, and above Ksp, respectively; Figure 7—

video 4 offers a view directly comparing cluster sizes as a function of time below and above Ksp.

Thus, the Ksp concept remains valid for the spatial system shown in Figure 7A.

Manipulation of computational models thus allowed us to systematically determine how well the

Ksp concept, familiar from ionic solution chemistry, might apply to the very different situation of

weak interactions between multivalent macromolecules. We found that for most scenarios, if not all,

the Ksp does define a threshold for the unbounded growth of large clusters and a quantitative met-

ric for the tendency of a system to phase separate. Additionally, for those cases where there are

deviations from the stereotypical behavior, insights may be gleaned into the underlying molecular

factors inhibiting cluster growth. But it is important to appreciate that experimental systems may
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introduce additional levels of complexity, such as nonspecific low-affinity binding interactions and

long-range electrostatic forces. For real biomolecular condensates, the valency and stoichiometry of

the components may be unknown, and they may have multiple binding interaction of differing affini-

ties. However, it should be possible to measure Ksp experimentally using fluorescently labeled bind-

ing partners and determining their concentrations in the dilute and condensed phase via

quantitative confocal microscopy (Fink et al., 1998). Titration experiments can readily be performed

in vitro and have been among the earliest studies of biomolecular condensates (Li et al., 2012).

More recently, methods have been developed to perform titrations in cells (Riback et al., 2020).

Such experiments could serve, initially, to validate the Ksp concept. Beyond validation, enough such

data may make it possible to find optimal fits to a Ksp expression, providing an indication of the

effective valency of the interactions in complex multivalent biomolecular condensates.

Materials and methods

Non-spatial simulations (NFsim)
To develop models that probe for the effects of valency and concentrations but do not account for

spatial effects, we employ the NFsim (Sneddon et al., 2011) – a non-spatial rule-based stochastic

simulation framework where each biomolecule represents a molecular object that may have multiple

binding sites. These sites can bind with other sites depending on a set of rules defined in the model.

The simulations have units of molecular counts, but these can be readily converted to equivalent

concentrations, which is how we present our results.

The NFsim model file is specified in BioNetGen Language (BNGL; http://bionetgen.org/). Let us

take the example of tetravalent binders – A4 (a1, a2, a3, a4) and B4 (b1, b2, b3, b4). We need 16

binding rules to define all the bimolecular interactions, each having an affinity (Kd) of 350 mM. Now

1000 molecules of A4 and B4 with an affinity of 3500 molecules would translate to 100 mM molecular

concentrations with 350 mM binding affinity. There are two equivalent ways to change the molecular

concentrations: (1) change the Kd, keeping the molecular counts same, which is mathematically

equivalent to changing the volume of the system; (2) change the molecular counts, keeping the Kd

same. We utilize both approaches for our simulations and specify which is used in our descriptions of

the results. We chose binding rules to only allow inter-molecular binding; we felt this was appropri-

ate because NFsim cannot account for spatial proximity of binding sites or steric crowding within

clusters. Once the BNGL file is defined, we then generate the corresponding XML file, which serves

as the NFsim input file. We run multiple stochastic simulations in parallel using the high-performance

computing facility at UConn Health (https://health.uconn.edu/high-performance-computing/). A sin-

gle NFsim run (500 ms, FTC approach), containing 1000 A4 and B4 molecules each, took ~1 min with

100 trajectories run in parallel. A Python script is then used to perform statistical analysis across all

the trajectories.

Spatial simulations (SpringSaLaD)
To account for realistic spatial geometry, we employ SringSaLaD (Michalski and Loew, 2016) – a

particle-based spatial simulation platform where each biomolecule is modeled as a collection of hard

spheres connected by stiff spring-like linkers. The simulation algorithms are fully described

(Michalski and Loew, 2016), and we previously studied various spatial biophysical factors in the con-

text of multivalent biomolecular cluster formation (Chattaraj et al., 2019) with this software. Spring-

SaLaD also uses a rule-based method to define binding reactions between multivalent binders.

The SpringSaLaD model files are generated using the graphical user interface (GUI) of the soft-

ware (https://vcell.org/ssalad). We define the size of binding sites, distance between the binding

sites and the overall shape of the molecule inside the GUI. To build a spatial version of the reference

system (A4a and B4b), two linear tetravalent molecules are constructed first, each having four binding

sites and six linker sites. Unlike NFsim, in SpringSaLaD, one binding rule between ‘A_type’ and

‘B_type’ sites can take care of all the possible binding interactions. Also, we can define the binding

affinity in concentration units (350 mM) directly inside the GUI. We initialize our system in a 3D rect-

angular geometry; for example, 100 molecules in a 106 nm3 cubic volume (X = Y = Z = 100 nm)

would correspond to 166 mM. We change the volume of our system to alter the molecular concentra-

tions. Once the model is specified, as before, we run multiple stochastic simulations in parallel using
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our high-performance computing facility. Execution time is very much sensitive to the number of

total sites due to the computational overhead of tracking individual site locations. A typical run (50

ms, FTC approach), containing 100 molecules each of A4a and B4b (total sites = 2000), took ~6 hr.

Data analysis and visualization
Python scripts are used to analyze and visualize the data. All the scripts are written with Spyder IDE

(version 4.0.0) (https://www.spyder-ide.org/). Frequently used Python libraries are numpy 1.17.3,

pandas 0.25.3, and matplotlib 3.1.2. All the packages are managed by anaconda package distribu-

tions (https://www.anaconda.com/).

All the model files, Python scripts, and a ‘Readme’ description of all the contents are available in

a public GitHub repository: https://github.com/achattaraj/Ksp_phase_separation, (copy archived at

swh:1:rev:22643ca2ed21b527ccdedbe6a99c2cfc29780df8), Chattaraj, 2021 .
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Data availability

All the model files, Python scripts and a "Readme" description of all the contents are available in a

public GitHub repository: https://github.com/achattaraj/Ksp_phase_separation (copy archived at

https://archive.softwareheritage.org/swh:1:rev:22643ca2ed21b527ccdedbe6a99c2cfc29780df8).

Also source data files are given for 7 figures that are part of the manuscript.
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