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Electroencephalogram (EEG)-based brain-computer interfaces (BCIs) can potentially

enable people to non-invasively and directly communicate with others using brain

activities. Artifacts generated from body activities (e.g., eyeblinks and teeth clenches)

often contaminate EEGs and make EEG-based classification/identification hard.

Although independent component analysis (ICA) is the gold-standard technique for

attenuating the effects of such contamination, the estimated independent components

are still mixed with artifactual and neuronal information because ICA relies only on

the independence assumption. The same problem occurs when using independent

vector analysis (IVA), an extended ICA method. To solve this problem, we designed

an independent low-rank matrix analysis (ILRMA)-based automatic artifact reduction

technique that clearly models sources from observations under the independence

assumption and a low-rank nature in the frequency domain. For automatic artifact

reduction, we combined the signal separation technique with an independent component

classifier for EEGs named ICLabel. To assess the comparative efficiency of the proposed

method, the discriminabilities of artifact-reduced EEGs using ICA, IVA, and ILRMA

were determined using an open-access EEG dataset named OpenBMI, which contains

EEG data obtained through three BCI paradigms [motor-imagery (MI), event-related

potential (ERP), and steady-state visual evoked potential (SSVEP)]. BCI performances

were obtained using these three paradigms after applying artifact reduction techniques,

and the results suggested that our proposed method has the potential to achieve

higher discriminability than ICA and IVA for BCIs. In addition, artifact reduction using the

ILRMA approach clearly improved (by over 70%) the averaged BCI performances using

artifact-reduced data sufficiently for most needs of the BCI community. The extension

of ICA families to supervised separation that leaves the discriminative ability would

further improve the usability of BCIs for real-life environments in which artifacts frequently

contaminate EEGs.
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independent low-rank matrix analysis

https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org/journals/human-neuroscience#editorial-board
https://www.frontiersin.org/journals/human-neuroscience#editorial-board
https://www.frontiersin.org/journals/human-neuroscience#editorial-board
https://www.frontiersin.org/journals/human-neuroscience#editorial-board
https://doi.org/10.3389/fnhum.2020.00173
http://crossmark.crossref.org/dialog/?doi=10.3389/fnhum.2020.00173&domain=pdf&date_stamp=2020-06-09
https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/human-neuroscience#articles
https://creativecommons.org/licenses/by/4.0/
mailto:s.kanouga@aist.go.jp
https://doi.org/10.3389/fnhum.2020.00173
https://www.frontiersin.org/articles/10.3389/fnhum.2020.00173/full
http://loop.frontiersin.org/people/722938/overview
http://loop.frontiersin.org/people/992520/overview


Kanoga et al. ILRMA-Based Automatic Artifact Reduction

1. INTRODUCTION

An electroencephalogram (EEG)-based brain–computer
interface (BCI) is a well-established technology that enables
communicating with others without performing actual body
movements by finding specific brain activity patterns from
EEGs and converting these into predefined commands (Wolpaw
et al., 2002). Several paradigms are used for eliciting robust
time-independent or -dependent potentials in EEGs, such
as motor imagery (MI) (Pfurtscheller and Da Silva, 1999),
event-related potential (ERP) (Squires et al., 1976), and steady-
state visual evoked potential (SSVEP) (Regan, 1966). Along
with these paradigms, developments in machine-learning-
based classifiers/identifiers have contributed to improvements
in finding specific (elicited) patterns. These paradigms, in
combination with signal processing modules and emerging
technologies (e.g., wearable sensing, mobile computing, and
virtual/augmented reality), have attracted increasing attention
in many domains, such as medicine and robotics for real-world
applications (Wang et al., 2018; Ogino et al., 2019; Vourvopoulos
et al., 2019).

Artifact potentials must be reduced in all EEGs in order
to realize robust real-world BCI applications because
strong artifact contamination effects can easily reduce BCI
performances (Kanoga et al., 2019b). During EEGmeasurements
in real environments, biological artifacts like muscular and
ocular ones cannot be avoided because it is difficult for people
to voluntarily control the number of their artifact-generating
activities. For example, healthy adult males blink ∼20 times
per minute (i.e., once every ∼3 s) to maintain the moisture
of their eyes (Karson, 1983). Most BCI paradigms provide
visual stimuli or cues for eliciting specific neuronal patterns,
and the abovementioned artifacts could contaminate the
resulting EEGs. Further, muscular and ocular artifacts will
contaminate all EEGs as long as the scalp has some conductivity.
These unavoidable artifacts have high-amplitude electrical
potentials and overlapping frequency characteristics compared
to EEGs (Halliday et al., 1998; Hagemann and Naumann,
2001); thus, contamination by such artifacts makes EEG-
based classification/identification hard. These contamination
effects can be attenuated by increasing the distance from the
source (Kanoga et al., 2016).

For denoising the contamination effects in EEG analysis,
the well-known and powerful blind source separation (BSS)
technique based on independent component analysis (ICA) has
been widely used for the last 20 years (Jung et al., 2000).
Usually, artifact reduction involves three steps: (1) training
a demixing matrix, (2) identifying the types of separated
independent components (ICs), and (3) remixing EEGs by
using only neuronal ICs and an inverse demixing matrix.
To improve both the computational cost and the accuracy
of training a demixing matrix, many ICA algorithms, such
as fast ICA (Hyvärinen and Oja, 1997), second-order blind
interference (SOBI) (Belouchrani et al., 1997), and information
maximization (infomax) ICA (Bell and Sejnowski, 1995), have
been proposed. The SOBI and infomax ICA algorithms are used
most commonly for EEG signal processing (Choi et al., 2005;

Urigüen and Garcia-Zapirain, 2015). For example, EEGLAB, an
enormous interactive toolbox for EEG analysis, implements the
infomax ICA algorithm (Delorme and Makeig, 2004). Recently,
ICLabel (Pion-Tonachini et al., 2019), an automatic IC classifier,
has been integrated into the EEGLAB toolbox for online
streaming EEG data. Overall, an ICA-based approach remains the
gold-standard for artifact reduction.

While real-world EEG-based BCI applications are being
developed steadily, ICA-based source estimation still poses
some problems. ICA algorithms comprehensively minimize the
reconstruction error with a linear combination for an entire
sequence of trials. However, this approach overestimates sources
for representing the latent waveform of an observation; thus, the
estimation leads to oversubtraction or spectral distortion of the
EEG power (Wallstrom et al., 2004; Castellanos and Makarov,
2006). Proposing a more rigorous representation of estimated
sources than ICA is a major challenge in EEG signal processing
for constructing effective classifiers/identifiers.

To represent meaningful waveforms from an observation,
we focused on the recurrent properties of an artifactual
waveform over trials. Biological artifacts are based on a
person’s organ structure. An organ system reproducibly and
unconsciously activates a non-cerebral source (e.g., eyeball) in
the same manner and generates similar electrical potentials (e.g.,
electrooculogram signals); therefore, person-specific artifacts
share a few basic functions for representing the waveforms
and can be considered low-rank matrices comprising multiple
short time segments. This study represents and removes such
waveforms using an independent low-rank matrix analysis
(ILRMA) that finds a low-rank non-negative matrix based on
statistical independence (Kitamura et al., 2016). To improve its
usability for EEG analysis, we used ICLabel for artifact reduction.
We investigated the discriminabilities of artifact-reduced EEGs
obtained by different methods by using OpenBMI, an open-
access EEG dataset that contains EEG data, through the three
abovementioned BCI paradigms (MI, ERP, and SSVEP). The BCI
performances with these three paradigms after applying artifact
reduction techniques were obtained. The results suggest that the
proposed method can potentially achieve higher discriminability
than ICA for BCIs.

2. ARTIFACT REDUCTION TECHNIQUES

2.1. Mixing and Demixing of EEGs
A typical approach to artifact reduction in EEG observations is
based on the following assumption: P-channel EEG observations
are overdetermined/determined and linear combinations of
unknown cerebral Q sources including artifactual and neuronal
ones and white noises. Neuronal cells have limited propagation
because the cortical connectivity is highly weighted toward short
(< 500 µm) connections (Budd and Kisvárday, 2001). Thus,
the electrical potentials of neuronal activities spread through a
contiguous cortical region with a high attenuation penalty in
proportion with the distance from the sources (Arieli et al.,
1996; Onton and Makeig, 2006). By matching the underlying
dynamics of the generation and propagation of EEG potentials,
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the aforementioned assumption can be represented as

x(n) = As(n)+ d(n), (1)

where x(n) = [x1(n), x2(n), . . . , xP(n)]
T is the EEG

observation at the nth sampling point (1 ≤ n ≤ N),
s(n) = [s1(n), s2(n), . . . , sQ(n)]

T is the unknown source,
A is the P × Q full-rank unknown mixing matrix, and
d(n) = [d1(n), d2(n), . . . , dP(n)]

T is the additive zero-mean
noise (T indicates the transpose).

Here, we have only an artifact-(un)contaminated EEG
observation matrix X = [x(1), . . . , x(N)] ∈ R

P×N . Because
source estimation through the inverse process is evidently
intractable, four additional assumptions are made (James and
Hesse, 2004; Vigario and Oja, 2008): (1) the noise is spatially
uncorrelated with the observed data (E[As(n)d(n)] = 0, where
E[·] is the expectation operator); (2) the noise is temporally
uncorrelated (E[d(n)d(n + τ )] = 0, where τ is the lag
time (∀τ > 0)); (3) the number of sources is equal to or
lower than the number of observations (P ≥ Q); and (4)
the mixing matrix A does not change over time. Under these
assumptions, we can simultaneously estimate both the source
matrix Ŝ = [ŝ(1), . . . , ŝ(N)] ∈ R

Q×N and the demixing matrix
W(= A−1) ∈ R

Q×P to blindly separate the observations into
artifactual/neuronal sources:

ŝ(n) =Wx(n). (2)

The linear mixing and demixing of EEGs shown in Figure 1

accounts for the comprehensive demixing matrix W(= W1W2)
because signal separation algorithms sometimes first decorrelate
the data by W1 and then demix them by W2, which is originally
learned from the algorithm. In this study, we decorrelated the

data before applying a matrix factorization technique; thus, the
following representation of W has the same meaning as W2 in
Figure 1.

In practice, artifact reduction requires three stages of
processing: (1) decomposing the input matrix; (2) identifying
whether the decomposed component is artifactual or neuronal;
and (3) reconstructing the artifact-reduced signals using only
neuronal components. In this case, we assumed that the EEG
observations are labeled signals; the dimensionality of the sources
and observations is the same (the value of P and Q is 20, 32,
or 10 for MI, ERP, or SSVEP paradigm. The value depends on
the number of selected channels in the BCI paradigm. More
detailed information is described in sections 3.1, 3.2, and 3.3).
In addition, we decomposed datasets using three BSS methods
for ICA families: ICA, independent vector analysis (IVA), and
ILRMA. Then, the decomposed components were automatically
identified using the ICLabel function in the EEGLAB toolbox
proposed by Pion-Tonachini et al. (2019). Based on the labels,
artifact-reduced signals were linearly reconstructed.

Although ICA algorithms handle time-series data, IVA
and ILRMA algorithms approximate a bin-wise instantaneous
mixturemodel in a short-time Fourier transform (STFT) domain.
An EEG time series is transformed into a sequence of complex-
valued signals by using STFT with a 50% overlapped 1-s
Hamming window. Thus, the observations and sources in each
time-frequency slot are described as xij = [xij1, xij2, . . . , xijP]

T ∈

C
P and ŝij = [ŝij1, ŝij2, . . . , ŝijQ]

T ∈ C
Q, where a couple of

(i, j) defines the ith frequency bin and jth time frame over STFT
(1 ≤ i ≤ I and 1 ≤ j ≤ J). IVA and ILRMA algorithms assume
the following mixing system:

xij = Ai sij, (3)

FIGURE 1 | Linear mixing and demixing of EEGs (Kanoga and Mitsukura, 2017).
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where Ai = [ai1, ai2, . . . , aiQ]
H ∈ C

P×Q is a frequency-wise
mixing matrix (aiq is the steering vector for the qth source, and

H

indicates the Hermitian transpose). In this paper, we set the value
of time length to 1 s because some frequency-domain artifact
reduction techniques translate EEG data into STFT domain based
on 1-s windows (Kanoga and Mitsukura, 2014; Mohammadpour
and Rahmani, 2017) and ILRMA showed its high separation
accuracy for 1-s time length data (Kitamura et al., 2017). This
mixing system is the rank-1 spatial model (Duong et al., 2010);
thus, the relationships between observations and sources can
be represented:

ŝij ≈ yij =W i xij, (4)

where yij = [yij1, yij2, . . . , yijQ]
T ∈ C

Q is the STFT of the

estimated signals andW i = [wi1,wi2, . . . ,wiQ]
H= Ai

−1 ∈ C
Q×P

is the demixing matrix. Note that the demixing matrices for IVA,
ILRMA, and ICA have different dimensionalities because of the
differences in the domain used (IVA and ILRMA:W ∈ R

Q×P×I ,
ICA:W ∈ R

Q×P).

2.2. Matrix Factorization Techniques
2.2.1. Independent Component Analysis
ICA is the most famous classical method for separating
multichannel EEG observations x(n) into statistically
independent sources ŝ(n) based on an estimated demixing
matrix W (Jung et al., 2000; Delorme et al., 2007). The sources
can be said to be statistically independent when the following
relationship holds:

p(ŝ) =

Q
∏

q=1

p(ŝq), (5)

where p(ŝ) and p(ŝq) are the joint and the marginal probability
distribution of the sources, respectively. Thus, ICA algorithms
optimize the demixing matrixW by minimizing the dependence
between these distributions. This study applied the extended
infomax ICA algorithm implemented by Lee et al. (1999) using
the runica function in EEGLAB to the observations. In this
algorithm, the dependence in the distributions is represented as
the mutual information (Kullback–Leibler distribution) between
the estimated sources and observations I(ŝ; x):

I(ŝ; x) = H(ŝ)−

Q
∑

q=1

H(ŝq), (6)

where

H(ŝ) = −

∫

p(ŝ) log p(ŝ)dŝ, (7)

H(ŝq) = −

∫

p(ŝq) log p(ŝq)dŝq. (8)

By applying the relationship p(x) = p(ŝ)/| detW| to Equation (7),
Equation (6) can be rewritten as a cost function for optimizing

the demixing matrix:

I(W) = const.−

Q
∑

q=1

H(ŝq)− log | detW|. (9)

The entropy of given observations H(x) is a constant.
In addition, a gradient update rule based on the natural
gradient (Amari, 1998) with learning rate η is used to solve the
optimization problem:

W ←W + η1W, (10)

where

1W = (I − E[ϕ(ŝ)ŝT])W. (11)

In every iteration, the distribution of the estimated source for the
score function ϕ(ŝq) is chosen from the super-Gaussian or sub-
Gaussian based on the sign of the fourth cumulant of each source

c4 = M4 − 3M2
2 , whereMk is the kth moment (Mk = E[ŝkq]).

ϕ(ŝq) = −(ŝq + sgn(c4)tanh(ŝq)). (12)

In a real environment, the expectation operator E[·] is the
expected value of the empirical distribution (the sample average
of the variable).

2.2.2. Independent Vector Analysis
IVA is an extension of the ICA algorithm to multivariate
components (vectorized signals) (Hiroe, 2006; Kim et al., 2006b).
Like ICA algorithms, IVA defines the dependence between
joint probability distributions and marginal probability products
using the Kullback–Leibler divergence; however, it introduces
a vector density model that has a variance dependency within
a source vector. This study applied the natural-gradient-based
IVA algorithm implemented by Kim et al. (2006b) based on
the ivabss function from an open-access toolbox available on
Github (https://github.com/teradepth/iva).

Two conditions are assumed: (1) elements of a source vector
are mutually independent of those of other source vectors; and
(2) within a source vector, the elements are highly dependent
on each other. Based on these assumptions, the cost function for
multivariate random variables to separate the components from
the observations can be written as

I(W) = const.−

Q
∑

q=1

H(ŝq)−

I
∑

i=1

log | detW i|. (13)

The cost function preserves the inherent dependency within
each source vector, though it removes the dependency between
different source vectors.

By differentiating the object function with respect to the
coefficients of demixing matrices W i and using the natural
gradient, we can derive a gradient update rule as

1W i ←W i + η1W i, (14)
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where

1W i = (I − E[ϕi(ŝ1, . . . , ŝI)ŝ
⋆
i )]W i, (15)

where a⋆ denotes the complex conjugate of a. Among a number
of possible function forms, one of the simplest and most effective
score functions is given as follows:

ϕi(ŝ1, . . . , ŝI) =
ŝi

√

∑I
i=1 |ŝi|

2
(16)

To define an optimal form of the function p(ŝq), which has
dependency within a source vector, IVA algorithms introduce a
vector density model as a scale mixture of a Gaussian distribution
with a fixed mean and a variable variance (Kim et al., 2006a):

p(ŝq) =

I
∏

i=1

p(ŝiq) = α

I
∏

i=1

exp

(

−

√

(ŝiq − µiq)
†
6iq
−1(ŝiq − µiq)

)

(17)
where α is a normalization term, µiq and 6iq are respectively the
mean vector and covariance matrix of the qth source signal in the
ith frequency bin, and a† is the conjugate transpose of a.

2.2.3. Independent Low-Rank Matrix Analysis
The ILRMA method unifies IVA and non-negative matrix
factorization (Lee and Seung, 1999; Sawada et al., 2013) by
considering the determined situation (P = Q) and a linear
time-invariant mixing system (Kitamura et al., 2016). This study
applied the ILRMA algorithm implemented by Kitamura et al.
(2016) using the ILRMA function from an open-access toolbox
available on Github (https://github.com/d-kitamura/ILRMA).
The algorithm estimates both the demixing matrix W i and the
STFT of the estimated signals yij by approximately decomposing

|yijq|
2 into the non-negative elements tik and vkj of the basis

matrix Tq ∈ R
I×K and the activation matrix Vq ∈ R

K×J with a
latent variable zqk of the partitioning function Z, which indicates
whether or not the kth basis (1 ≤ k ≤ K) belongs to the
qth source. For the decomposition, the ILRMA algorithm has the
following cost function:

I(W) =
∑

ij

{

∑

q

log
∑

k

zqktikvkj +
∑

q

|yijq|
2

∑

k zqktikvkj
− 2 log | detW i|

}

,

(18)

where yijq = wiq
Hxij. The cost function finds a low-

rank time-frequency structure for sources using the first and
second terms in Equation (18) and maximizes the statistical
independence between sources using the second and third terms
in Equation (18).

In this algorithm, the demixing matrix W i can be efficiently
updated through iterative projection based on the auxiliary
function technique (Ono, 2011):

Viq =
1

J

∑

j

1

rijq
xijx

H
ij , (19)

wiq ← (W iViq)
−1eq, (20)

wiq ← wiq(w
H
iqViqwiq)

− 1
2 , (21)

where rijq is the estimated variance of each source under the
complex Gaussian distribution and eq, a unit vector in which
the qth element is equal to unity. These update rules have been
reported to be faster and more stable than conventional update
rules (e.g., natural gradient). After the update, the separated
signal yij is also updated:

yijq ← wH
iqxij. (22)

In addition, the basis matrix Tq, activation matrix Vq, and
partitioning function Z can be updated by the majorization-
minimization algorithm (Hunter and Lange, 2000):

zqk ← zqk

√

√

√

√

∑

ij |yijq|
2tikvkj(

∑

k′ zqk′ tik′vk′j)
−2

∑

ij tikvkj(
∑

k′ zqk′ tik′vk′j)
−1

, (23)

tik ← tik

√

√

√

√

∑

jq |yijq|
2zqkvkj(

∑

k′ zqk′ tik′vk′j)
−2

∑

jq zqkvkj(
∑

k′ zqk′ tik′vk′j)
−1

, (24)

vkj ← vkj

√

√

√

√

∑

iq |yijq|
2zqktik(

∑

k′ zqk′ tik′vk′j)
−2

∑

iq zqktik(
∑

k′ zqk′ tik′vk′j)
−1

. (25)

Finally, the estimated source model is represented as

rijq =
∑

k

zqktikvkj. (26)

Note that the demixing matrix W i and the estimated variance
rijq are normalized at each iteration to avoid the risk of diverging
as follows:

λq =

√

√

√

√

1

IJ

∑

ij

|yijq|2, (27)

wiq ← wiqλ
−1
q , (28)

yijq ← yijqλ
−1
q , (29)

rijq ← rijqλ
−2
q . (30)

The number of bases for all sources K and number of iterations
were set to J/10 and 200, respectively.

2.3. Component Identification
For identifying the estimated ICs obtained from ICA, IVA, and
ILRMA, we used the ICLabel (https://github.com/sccn/ICLabel)
classifier proposed by Pion-Tonachini et al. (2019) (freely
available as a package in EEGLAB; Delorme and Makeig, 2004;
Delorme et al., 2011). This classifier uses three artificial neural
networks (ANNs) (specifically, two “Classifier” networks and
one “Generator” network): (1) a convolutional neural network
(CNN) optimized by an unweighted cross-entropy loss, (2) a
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CNN optimized by a weighted cross-entropy loss and neuronal
IC classification errors, and (3) a semi-supervised learning
generative adversarial network (SSGAN) (Odena, 2016; Salimans
et al., 2016). The ICLabel classifier inputs, architectures, and
training paradigms are described in detail in Appendices B and
E in Pion-Tonachini et al. (2019). By using these three ANNs and
the three IC features, the ICLabel classifier classified unlabeled
EEG ICs into seven categories: (1) brain, (2) muscle, (3) eye,
(4) heart, (5) line noise, (6) channel noise, and (7) others. In
this study, because of the property of the epoch identification
method described in section 4, we removed ICs whose labels
were “muscle” or “eye.” Currently, the ICLabel classifier has been
trained using 6352 EEG recordings in storage drives collected
over the past 15 years at Swartz Center for Computational
Neuroscience (SCCN) at UC San Diego.

To accurately identify IC labels using the ICLabel classifier,
three discriminable features were calculated from each IC: (1)
32 × 32 pixel scalp topography using the topoplot function
in EEGLAB, (2) median power spectral densities (PSDs) from 1
to 50 Hz using a variation of the Welch method (Welch, 1967),
and (3) the autocorrelation function. The scalp topographies and
PSDs were scaled such that each had a maximum absolute value
of 0.99. Further, the autocorrelation vectors were normalized
such that the zero-lag value was 0.99. Note that the estimated
mixing matrix (W−1), channel locations in 3D space, and
channel labels were required to generate the scalp topographies.
We collected information about the channel locations in 3D
space from the sample_locs folder in EEGLAB toolbox. In
addition, the estimated demixing matrix has a 3D structure
except for ICA; thus, the corresponding frequency band (e.g.,
8–30 Hz) was extracted from whole frequency bins, and the
summation was computed to transform the matrix into a 2D
structure. Furthermore, the matrix was scaled by the number of
extracted frequency bins.

2.4. Signal Reconstruction
By performing the identification process using ICLabel, labels
are obtained for the estimated ICs. If the label is “eye” or
“muscle,” all components of the artifactual IC are set to zeros.
Based on the modified sources, artifact-reduced EEG signals in
EEG observations were reconstructed using the inverse linear
demixing process in ICA. While applying IVA and ILRMA, the
sources were translated into frequency components. Thus, all
frequency components of the artifactual ICs were set to zeros and
translated into time-series data by the inverse STFT. Then, the
artifact-reduced EEG signals were reconstructed, and the inverse
ICA linear demixing process was performed.

3. MATERIALS AND BASELINE METHODS

To assess the discriminability of artifact-reduced EEGs by ICA,
IVA, and ILRMA, we downloaded an open-access EEG dataset
published by Lee et al. (2019) from the webpage http://gigadb.
org/dataset/view/id/100542/File_page. The EEG data were
recorded using 62 electrodes according to the International 10-
20 system using BrainAmp (Brain Products; Munich, Germany)
with a sampling rate of 1,000 Hz. In the analysis procedures, we

commonly downsampled all EEG data to 100 Hz. The reference
and ground channels were nasion and AFz, respectively. The
impedance of the EEG electrodes was maintained below 10 k�.
Participants were instructed to comfortably sit in a chair with
armrests ∼60 cm in front of a 21-inch LCD monitor (refresh
rate: 60 Hz; resolution: 1, 600 × 1, 200). In addition, they were
asked to relax their muscles and minimize their eye and muscle
movements during the BCI paradigms. Before beginning the
experiments, five kinds of 10-s artifact-contaminated EEG data
were measured: (1) eye blinking, (2) repetitive horizontal eye
movements, (3) repetitive vertical eye movements, (4) teeth
clenching, and (5) flexing both arms.

The dataset has the following three properties: (1) a large
number of subjects (54 healthy participants; 29 males and 25
females; age: 24–35 years), (2) multiple sessions (two sessions
on different days), and (3) multiple paradigms (a binary-class
MI, a 36-symbol ERP, and a four-target-frequency SSVEP).
Each session consisted of training and testing phases. All BCI
paradigms were developed based on the OpenBMI toolbox (Lee
et al., 2016) and Psychtoolbox (Brainard, 1997). We used this
dataset because (1) EEGs in the three BCI paradigms were
collected from the same participants, (2) each paradigm was
conducted for 2 days, and (3) baseline analysis methods based on
Matlab functions in the OpenBMI toolbox (https://github.com/
PatternRecognition/OpenBMI) are available. A single dataset
having all these properties is very important for fairly comparing
algorithms to reveal general performances with intra- and inter-
subject/paradigm variabilities in BCI research. To verify the
change in the discrimination accuracy with artifact-reduced
EEGs, the baseline analysis methods, including feature extraction
and classification algorithms for each paradigm described in Lee
et al. (2019), were used. Each paradigm and processing stream are
described in detail in the following subsections.

3.1. MI Paradigm and Processing
The MI paradigm was designed based on a well-established
protocol (Pfurtscheller and Neuper, 2001): a training/testing
phase had 100 trials with 50 right and 50 left hand motion
imagery tasks resulting in binary classification. Each trial lasted
13 ± 1.5 s. In the first 3 s, a black fixation cross appeared at the
center of the monitor. After the preparation time, the participant
imagined a right or left grasping motion for 4 s depending on
whether a right arrow or left arrow was displayed, respectively,
and then remained in the resting state for 6 ± 1.5 s.

In the MI paradigm, 20 electrodes in the motor cortex region
(FC-5/3/1/2/4/6, C-5/3/1/z/2/4/6, and CP-5/3/1/z/2/4/6) were
selected. The EEG data of the selected channels were band-pass
filtered between 8 and 30 Hz through a fifth order Butterworth
filter and further segmented into 2.5-s epochs, which are data
segments of 1.0 to 3.5 s after the cue onsets (Pfurtscheller and
Neuper, 2001; Fazli et al., 2009). We applied the filter bank
common spatial pattern (FBCSP) to the epochs, which has been
widely used in MI-based BCIs to maximize the discrimination of
the binary class (Ang et al., 2008). A subset of the top and bottom
two rows from the projection matrix was used for calculating
log-variance features. Based on the features, linear discriminant
analysis (LDA) classifiers were constructed and used.
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3.2. ERP Paradigm and Processing
The ERP paradigm was designed based on a typical row-
column speller system with random-set presentation (Yeom
et al., 2014) and face stimuli (Kaufmann et al., 2011). The
six rows and six columns were configured with 36 symbols
(alphabets A to Z, numerals 1 to 9, and underscore “_”). Each
trial sequence lasted 19.5 s. In the first 4.5 s, a target character
was highlighted for attracting the participant’s attention. After
the preparation time, all rows and columns were flashed
one by one (12 stimulus flashes) for 13 s and then remained
in the resting state for 2 s. The stimulus-time interval was
set to 80 ms and the interstimulus interval (ISI) to 135 ms.
The highlighted target character was estimated based on
data of five sequences (i.e., 60 flashes). In the training phase,
participants were asked to copy the 33 characters including
spaces in “NEURAL_NETWORKS_AND_DEEP_LEARNING”
by gazing at the target character on the monitor, resulting
in 1980 trials and binary classification (target or non-
target character). In the testing phase, participants
tried to copy the 36 characters including spaces in
“PATTERN_RECOGNITION_MACHINE_LEARNING,”
resulting in 2,160 trials.

In the ERP paradigm, 32 electrodes (Fp-1/2, F-7/3/z/4/8, FC-
5/1/2/6, T-7/8, C-3/z/4, TP-9/10, CP-5/1/2/6, P-7/3/z/4/8, PO-
9/10, and O-1/z/2) were selected. The EEG data of the selected
channels were band-pass filtered between 0.5 and 40 Hz through
a fifth order Butterworth filter and then baseline-corrected by
subtracting the average amplitudes of the prestimulus within
an interval of 200 ms with respect to the stimulus onset. In
addition, 0.8-s epochs after the onset were extracted for analysis.
From the epochs, the mean amplitudes (MAs) over eight non-
overlapping samples were calculated as the 320-dimensional
subject-dependent spatio-temporal features (10 dimensions,
32 channels). Based on the features, LDA classifiers were
constructed and used.

3.3. SSVEP Paradigm and Processing
The SSVEP paradigm was designed based on general
requirements for SSVEP-based BCIs that run over four
specific commands (Parini et al., 2009). Four flickers at 5.45,
6.67, 8.57, and 12 Hz were displayed at four positions (down,
right, left, and up) on a monitor. Each target frequency was
presented 25 times for both the training and the testing phases,
resulting in four target identification problems. Each trial lasted
10 s. In the first 4 s, the participant gazed in the box where the
target was highlighted (not flickering) in a different color, and
the target flicker was then presented for 4 s with an ISI of 6 s to
induce the target SSVEP.

In the SSVEP paradigm, 10 electrodes in the occipital region
(P-7/3/z/4/8, PO-9/10, and O-1/z/2) were selected. The EEG data
of the selected channels were segmented into 2-s epochs with
respect to the stimulus onset. We applied multichannel canonical
correlation analysis (CCA) (Lin et al., 2006) for identifying
the target frequency index by calculating the correlation values
between the input data and the prepared sinusoidal templates
of the corresponding frequencies (5.45, 6.67, 8.57, and 12 Hz).
Although this identification process does not need training data

owing to the use of an unsupervised classifier, only data from the
testing phase were used for evaluating the BCI performance.

4. ASSESSMENTS

In this study, we assumed that artifact-reduced epochs
are correctly classified if the artifact reduction technique
effectively reduced artifactual effects from artifact-contaminated
epochs. However, we do not know how many epochs of the
aforementioned paradigms were contaminated by artifacts
because the open-access EEG dataset does not provide such
information. Empirically, it is difficult to completely avoid the
generation of biological artifacts during EEG paradigms. Thus,
we expected that some epochs were contaminated by some
artifacts during each BCI paradigm. To identify the type of epoch
(not artifact-contaminated or artifact-contaminated), we applied
the detection of events in continuous time (DETECT) epoch
identification method proposed by Lawhern et al. (2013); this
method requires training data with clean and artifactual label
information to make a multiclass SVM model (https://github.
com/VisLab/detect). Usually, training data has a short time
length (e.g., less than 5 s). Thus, in this study, 10 1-s no artifact-
contaminated EEG data detected based on a manual inspection
and extracted from the training phase of each BCI paradigm as
“clean” epochs and five types of 10-s EEG data contaminated
by artifacts, such as eye blinking, horizontal/vertical eye
movements, teeth clenching, and flexing both arms, were
prepared as “artifactual” epochs because these are well-known to
generate ocular/muscular artifacts during EEG measurements.
For training an SVM model, each 10-s-length artifactual data
was separated into 10 1-s-length data without overlapping.
Based on the 60 1-s epochs (10 1-s epochs × 6 classes), a 6-class
SVM model was constructed. Note that segmented epochs of
the BCI paradigms have different time length (i.e., MI: 2.5,
ERP: 0.8, and SSVEP: 2.0 s). To apply DETECT based on a
processing strategy for 1-s-length data, we extracted first 1-s data
from the “clean” epochs if the target BCI paradigm was MI or
SSVEP. For the epochs of the ERP paradigm, 0.2-s data before
the stimulus onsets were concatenated to the “clean” epochs.
Then, autoregressive features were extracted from the epochs to
construct a multiclass SVM classifier of each BCI paradigm. The
classifier and hard thresholding for the estimated artifactual class
(certainty value obtained using the DETECT toolbox was over
0.5 or not) finally identified each epoch as being clean or artifact
contaminated. Table 1 lists the identification results. In all
paradigms, data recorded in session 2 (day 2) had less artifactual
data than data recorded in session 1 (day 1). In the MI and ERP
paradigms, the number of artifactual data recorded in day 2 was
significantly lower than data recorded in day 1 (p = 0.001, 0.009
for MI and ERP paradigms in t-test). However, in the SSVEP
paradigm, the number in day 2 was not significantly lower
(p = 0.172 in t-test). Note that we identify the epoch is neuronal
unless a certainty value of all classes exceeded the hard threshold;
thus, the thresholding process found an explicit artifactual class
over 6 class labels. If the certainty values distributed throughout
all classes and no one did not exceed the threshold, this modest
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TABLE 1 | Number of artifact-contaminated epochs in training and testing phases of each BCI paradigm and subject.

Subject MI ERP SSVEP

Session 1 Session 2 Session 1 Session 2 Session 1 Session 2

Train Test Train Test Train Test Train Test Train Test Train Test

s1 6 2 8 6 149 330 (36) 80 215 (33) 3 2 0 1

s2 2 0 0 1 95 5 (5) 38 115 (25) 0 0 0 0

s3 1 0 7 10 158 62 (20) 17 14 (9) 14 10 1 2

s4 0 0 0 0 32 34 (14) 7 10 (4) 9 18 0 0

s5 4 4 7 5 0 0 (0) 395 282 (25) 19 11 14 8

s6 4 2 4 3 159 113 (24) 171 146 (29) 25 26 5 6

s7 21 30 6 8 75 200 (25) 52 21 (10) 8 7 4 4

s8 2 0 4 1 427 325 (32) 35 87 (22) 3 2 9 5

s9 0 0 9 2 43 73 (24) 145 99 (25) 1 9 0 1

s10 0 2 0 0 94 15 (6) 61 78 (20) 0 0 2 4

s11 5 4 0 0 50 56 (15) 16 47 (17) 0 0 0 0

s12 0 16 2 6 75 94 (22) 98 185 (31) 0 1 1 7

s13 1 0 1 1 131 212 (29) 139 103 (26) 6 3 3 1

s14 1 0 2 1 18 35 (11) 234 190 (32) 4 6 13 22

s15 3 20 0 1 25 19 (11) 48 7 (5) 1 1 3 16

s16 0 2 13 10 492 322 (33) 113 92 (19) 0 0 8 9

s17 27 36 4 6 232 187 (30) 263 267 (34) 1 1 15 21

s18 1 11 13 9 166 404 (31) 92 122 (29) 3 2 2 4

s19 1 8 2 7 159 300 (33) 36 169 (30) 7 15 2 3

s20 0 7 1 1 236 240 (34) 112 323 (35) 2 2 1 2

s21 31 30 0 0 69 84 (29) 268 129 (26) 15 9 3 5

s22 2 8 2 0 131 128 (32) 11 48 (18) 9 2 0 1

s23 0 0 9 0 141 194 (29) 160 227 (26) 0 36 1 1

s24 0 1 8 4 65 106 (27) 87 158 (31) 2 1 1 5

s25 3 11 6 2 184 122 (24) 14 59 (15) 2 2 8 4

s26 0 1 0 0 447 552 (36) 196 265 (32) 20 22 7 6

s27 3 12 1 1 172 312 (34) 150 346 (32) 1 5 11 14

s28 2 6 0 0 93 63 (21) 37 52 (19) 6 4 2 1

s29 8 20 2 4 32 159 (25) 101 27 (9) 3 4 3 3

s30 3 9 4 0 141 171 (34) 38 30 (14) 0 1 0 0

s31 7 3 0 1 33 82 (23) 25 60 (29) 0 0 1 0

s32 33 67 0 2 122 339 (33) 80 32 (13) 13 34 19 21

s33 0 1 4 0 119 52 (17) 107 59 (15) 0 2 1 2

s34 32 18 8 19 254 181 (33) 142 441 (35) 13 21 18 16

s35 7 2 0 3 35 41 (13) 135 82 (22) 1 0 11 18

s36 3 2 6 17 178 189 (34) 110 159 (32) 3 4 0 4

s37 5 15 0 1 353 557 (36) 2 2 (1) 6 4 0 2

s38 11 8 0 0 194 119 (29) 53 29 (10) 17 11 11 11

s39 21 32 2 0 111 55 (22) 0 37 (11) 1 3 2 6

s40 1 2 1 0 145 206 (33) 11 56 (16) 31 26 3 7

s41 0 2 4 9 107 101 (28) 137 265 (31) 5 6 2 2

s42 0 0 9 10 121 191 (31) 35 62 (19) 10 15 10 2

s43 0 0 9 7 148 290 (35) 11 13 (7) 2 13 0 0

s44 3 7 3 13 293 392 (35) 32 76 (25) 10 7 7 0

s45 27 13 0 0 160 270 (34) 19 52 (19) 1 4 1 0

s46 0 1 6 11 226 307 (35) 52 175 (34) 1 4 2 4

s47 3 5 2 1 261 438 (36) 159 319 (36) 7 6 1 5

s48 6 1 0 2 25 52 (18) 41 35 (13) 2 5 20 12

(Continued)
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TABLE 1 | Continued

Subject MI ERP SSVEP

Session 1 Session 2 Session 1 Session 2 Session 1 Session 2

Train Test Train Test Train Test Train Test Train Test Train Test

s49 3 10 6 8 104 54 (15) 54 22 (7) 14 8 1 1

s50 23 48 4 9 48 229 (24) 2 0 (0) 0 0 5 6

s51 9 9 3 1 354 170 (31) 136 173 (29) 0 3 3 1

s52 0 0 2 1 20 74 (23) 57 139 (31) 3 8 0 2

s53 2 2 0 2 370 176 (30) 16 25 (8) 3 3 1 4

s54 3 14 1 0 149 107 (18) 66 51 (17) 7 6 7 4

Mean 6.11 9.33 3.43 3.81 152 178 (25.8) 87.0 116 (21.1) 5.82 7.31 4.54 5.30

Std 9.27 13.2 3.54 4.63 115 136 (8.99) 79.6 104 (10.1) 6.97 8.55 5.39 5.86

The total number of epochs in training and testing phases of the MI and SSVEP BCI paradigms is 100, respectively. The total number of epochs in training or testing phases of the ERP

paradigm is 1,980 or 2,160. Numbers in parentheses indicate that the number of target 36 characters including spaces in “PATTERN_RECOGNITION_MACHINE_LEARNING” have

been affected by artifact-contaminated epochs. When the number is 36, all copying processes contained the effect of artifacts.

identification method can not find artifact-contaminated epochs.
In Table 1, there was an outlier: subject 5 in the session 1
of ERP paradigm had no artifact-contaminated epoch. This
phenomenon might be caused by the above-mentioned reason.

Through the epoch identification process, artifact-
contaminated epochs in both the training and the testing
phases were detected. In the training phase, we also assumed
that artifact-reduced epochs contribute to the construction of an
effective classifier if the artifact reduction technique effectively
reduced artifactual effects from the artifact-contaminated
epochs. Therefore, the demixing matrix W was first trained by
using all epochs in the training phase, and artifactual ICs were
then removed from the artifact-contaminated epochs using the
artifact reduction process described in sections 2.2, 2.3, and 2.4.
After artifact reduction, the clean and artifact-reduced epochs in
the training phase were applied to the baseline analysis methods
described in section 3. For performance evaluation, the artifact-
contaminated epochs in the testing phase were used to compute
the classification accuracy of the artifact-reduced epochs:

Acc =
Ncorrect

Ntotal
× 100%, (31)

where Ncorrect is the number of correct predictions, and Ntotal is
the total number of artifact-contaminated epochs in the testing
phase, as listed in Table 1, when the BCI paradigm was MI or
SSVEP. Note that ERP data requires an averaging process for
finding obvious feature waveforms (e.g., N200 and P300), and the
averaged waveform relates to the classification performance. In
other words, we cannot calculate the classification accuracy for
each artifact-contaminated epoch in the paradigm. The numbers
in parentheses in Table 1 indicate the number of characters
affected by artifacts (Ntotal), which is directly related to the
assessment results. Figure 2 shows the block diagram of the
assessment procedure used in this study.

A three-way repeated measures analysis of variances
(ANOVAs) was applied to the classification accuracy to explore
the effect of the two sessions, three BCI paradigms, and

three artifact reduction methods. In addition, artifact-reduced
signals obtained using ICA, IVA, and ILRMA and that were
reconstructed from muscular or ocular artifact-contaminated
signals were visualized to qualitatively investigate the artifact
reduction performances.

5. RESULTS

5.1. BCI Performance Before/After
Applying Artifact Reduction Technique
Table 2 lists the classification accuracies for all subjects, sessions,
paradigms, and artifact reduction methods. In addition, Figure 3
shows the averaged classification accuracies over all subjects. A
three-way repeated measures ANOVA using the classification
accuracies of all subjects showed the significant main effects of
the BCI paradigms [F(2,829) = 113.09, p < 0.001] and artifact
reduction methods [F(2,829) = 3.05, p = 0.048]; however, it did
not show any significant main effect of the sessions [F(1,829) =
1.29, p = 0.256]. There were no interaction effects among them.
post-hoc analysis using Tukey test revealed that the ICA and
ILRMA results had a significant difference (p = 0.039).

The classification accuracies obtained using ILRMA in all
cases were always equal to or higher than the higher accuracy of
using ICA or IVA (see Table 2). In particular, ILRMA improved
the discriminability of artifact-reduced data for 31 subjects in
session 1 and 24 subjects in session 2. When there was a
difference in the artifact reduction performance, we highlighted
the superior results in bold in the table. The averaged accuracy
of using ILRMA in all BCI paradigms was also equal to or
higher than that of using ICA and IVA (Figure 3). Interestingly,
in some cases, artifact-contaminated data showed higher BCI
performance than ICA and IVA. However, ILRMA always
showed equal or higher performance compared to artifact-
contaminated situations. For these results, ILRMA salvaged
effective components for solving the classification problem from
artifact-contaminated signals in the MI and SSVEP paradigms.
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FIGURE 2 | Block diagram of assessment procedure.

Conversely, in the ERP paradigm, ICA was sufficient to remove
the artifactual components and achieved almost 100% accuracy.

5.2. Representation of Original and
Artifact-Reduced Signals
Figures 4, 5 show artifact-contaminated EEG epochs and
artifact-reduced EEG epochs obtained using ICA, IVA, and
ILRMA in the MI, ERP, and SSVEP paradigms. They were

qualitatively indicated that ILRMA could better remove artifact
effects compared to ICA and IVA. In addition, the task-
independent components were removed by ILRMA to leave
characteristic features in each paradigm (e.g., event-related
desynchronization caused by motor imagery and evoked
potential by steady-state visual stimulus) instead of the
attenuating power of all frequency components. This resulted in
improvements in these BCI performances.
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TABLE 2 | Classification accuracies for all subjects, sessions, paradigms, and artifact reduction methods.

Subject ICA IVA ILRMA

MI ERP SSVEP MI ERP SSVEP MI ERP SSVEP

Se1 Se2 Se1 Se2 Se1 Se2 Se1 Se2 Se1 Se2 Se1 Se2 Se1 Se2 Se1 Se2 Se1 Se2

s1 0 33.3 55.6 90.9 100 100 0 16.7 61.1 81.8 50.0 100 0 66.7 61.1 90.9 100 100

s2 – 0 100 100 – – – 100 100 100 – – – 100 100 100 – –

s3 – 100 100 100 80.0 50.0 – 100 100 100 90.0 100 – 100 100 100 90.0 100

s4 – – 85.7 100 100 – – – 85.7 100 100 – – – 85.7 100 100 –

s5 100 80.0 – 56.0 90.9 100 100 80.0 – 56.0 72.7 100 100 80.0 – 56.0 90.9 100

s6 100 66.7 100 100 92.3 100 100 66.7 100 100 92.3 100 100 66.7 100 100 96.2 100

s7 50.0 62.5 100 100 85.7 100 46.7 62.5 100 100 85.7 100 50.0 62.5 100 100 85.7 100

s8 – 100 81.3 100 50.0 40.0 – 100 87.5 95.5 50.0 20.0 – 100 87.5 100 50.0 40.0

s9 – 100 100 100 55.6 0 – 100 100 100 55.6 0 – 100 100 100 55.6 0

s10 0 – 100 100 – 100 50.0 – 100 100 – 100 50.0 – 100 100 – 100

s11 75.0 – 100 100 – – 100 – 100 100 – – 100 – 100 100 – –

s12 37.5 50.0 100 96.8 0 100 43.8 50.0 100 96.8 0 100 50.0 50.0 100 96.8 100 100

s13 – 0 100 100 100 0 – 0 100 100 100 0 – 0 100 100 100 0

s14 – 0 100 96.9 83.3 81.8 – 0 100 96.9 83.3 81.8 – 0 100 96.9 83.3 90.9

s15 70.0 0 100 100 100 87.5 70.0 0 100 100 100 87.5 70.0 0 100 100 100 93.8

s16 0 70.0 100 100 – 100 100 90.0 100 100 – 100 100 90.0 100 100 – 100

s17 86.1 50.0 93.3 91.2 0 81.0 86.1 33.3 90.0 91.2 100 81.0 86.1 50.0 93.3 94.1 100 85.7

s18 81.8 88.9 100 100 100 100 72.7 88.9 100 100 100 100 81.8 88.9 100 100 100 100

s19 100 71.4 100 100 73.3 100 100 85.7 100 100 73.3 100 100 85.7 100 100 80.0 100

s20 71.4 0 100 100 100 100 57.1 0 100 100 100 100 71.4 0 100 100 100 100

s21 86.7 – 100 100 100 100 93.3 – 100 100 88.9 100 96.7 – 100 100 100 100

s22 75.0 – 93.8 88.9 100 0 87.5 – 93.8 88.9 100 0 87.5 – 93.8 88.9 100 0

s23 – – 86.2 69.2 47.2 0 – – 72.4 73.1 52.8 0 – – 86.2 73.1 55.6 0

s24 0 25.0 100 90.3 0 80.0 0 75.0 100 93.6 0 80.0 0 75.0 100 93.6 100 80.0

s25 27.3 50.0 100 93.3 100 75.0 45.5 0 100 93.3 100 100 45.5 50.0 100 93.3 100 100

s26 100 – 83.3 87.5 90.9 100 100 – 80.6 87.5 90.9 100 100 – 83.3 90.6 90.9 100

s27 41.7 0 100 100 100 85.7 50.0 0 100 100 100 92.9 58.3 100 100 100 100 100

s28 83.3 – 100 94.7 100 100 100 – 100 94.7 100 100 100 – 100 94.7 100 100

s29 65.0 50.0 88.0 100 75.0 100 85.0 75.0 96.0 100 75.0 100 100 100 96.0 100 75.0 100

s30 55.6 – 82.4 92.9 100 – 55.6 – 82.4 92.9 100 – 55.6 – 85.3 92.9 100 –

s31 100 0 100 100 – – 100 0 100 100 – – 100 0 100 100 – –

s32 43.3 100 100 100 88.2 95.2 44.8 100 100 100 91.2 95.2 52.2 100 100 100 91.2 95.2

s33 100 – 100 93.3 100 0 100 – 100 93.3 100 0 100 – 100 93.3 100 0

s34 55.6 42.1 87.8 91.4 76.2 81.3 55.6 47.4 90.9 97.1 76.2 81.3 55.6 47.4 90.9 97.1 90.5 81.3

s35 50.0 66.7 100 95.5 – 83.3 0 66.7 100 95.5 – 83.3 50.0 66.7 100 95.5 – 83.3

s36 50.0 94.1 100 87.5 100 100 50.0 94.1 100 87.5 100 100 50.0 94.1 100 87.5 100 100

s37 86.7 100 69.4 100 100 100 100 100 72.2 100 100 100 100 100 75.0 100 100 100

s38 75.0 – 96.6 100 100 72.7 62.5 – 96.6 100 100 72.7 75.0 – 96.6 100 100 72.7

s39 62.5 – 86.4 100 100 83.3 62.5 – 86.4 100 100 50.0 62.5 – 86.4 100 100 83.3

s40 0 – 97.0 100 57.7 85.7 0 – 90.9 100 46.2 85.7 0 – 97.0 100 57.7 85.7

s41 50.0 66.7 100 100 83.3 100 50.0 66.7 100 100 66.7 100 50.0 66.7 100 100 83.3 100

s42 – 80.0 100 94.7 66.7 100 – 80.0 100 94.7 73.3 100 – 80.0 100 94.7 73.3 100

s43 – 85.7 100 100 100 – – 85.7 100 100 100 – – 85.7 100 100 100 –

s44 100 100 100 100 0 – 100 100 100 100 100 – 100 100 100 100 100 –

s45 76.9 – 91.2 94.7 100 – 92.3 – 91.2 94.7 100 – 92.3 – 91.2 94.7 100 –

s46 100 63.6 100 94.1 100 100 100 63.6 100 94.1 100 100 100 63.6 100 94.1 100 100

s47 80.0 100 100 100 33.3 80.0 80.0 100 100 97.2 33.3 80.0 80.0 100 100 100 33.3 80.0

s48 100 0 100 100 100 100 100 0 100 100 100 100 100 0 100 100 100 100

(Continued)

Frontiers in Human Neuroscience | www.frontiersin.org 11 June 2020 | Volume 14 | Article 173

https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/human-neuroscience#articles


Kanoga et al. ILRMA-Based Automatic Artifact Reduction

TABLE 2 | Continued

Subject ICA IVA ILRMA

MI ERP SSVEP MI ERP SSVEP MI ERP SSVEP

Se1 Se2 Se1 Se2 Se1 Se2 Se1 Se2 Se1 Se2 Se1 Se2 Se1 Se2 Se1 Se2 Se1 Se2

s49 50.0 50.0 100 100 100 100 60.0 50.0 100 100 87.5 100 70.0 50.0 100 100 100 100

s50 60.4 55.6 87.5 – – 83.3 62.5 44.4 87.5 – – 83.3 68.8 66.7 91.7 – – 83.3

s51 44.4 0 87.1 89.7 66.7 100 44.4 100 90.3 89.7 66.7 100 44.4 100 90.3 89.7 66.7 100

s52 – 100 100 100 75.0 100 – 100 100 100 100 100 – 100 100 100 100 100

s53 0 100 96.7 100 100 100 0 100 96.7 100 100 75.0 0 100 96.7 100 100 100

s54 57.1 – 100 100 83.3 100 42.9 – 100 100 100 100 57.1 – 100 100 100 100

Mean 61.6 59.4 95.3 96.0 82.0 81.4 66.3 62.1 95.3 96.0 83.0 81.5 70.0 67.3 96.0 96.4 90.4 83.8

SE 4.91 5.98 1.22 1.08 4.01 4.66 4.93 6.09 1.17 1.06 3.70 4.78 4.65 5.80 1.04 1.03 2.40 4.65

Hyphens indicate that no artifact-contaminated epochs existed in the testing phase on the session. Bold values indicate that the accuracies over the three artifact reduction methods

have different values and the results were higher than the other ones.

FIGURE 3 | Averaged classification accuracies over all subjects for sessions, paradigms, and artifact reduction methods. Original indicates the results of using all data

without artifact reduction method.

6. DISCUSSION

6.1. Automatic Processing Architecture
ICA-based artifact reduction techniques have been widely used
in the field of EEG signal processing because of their powerful
signal separation accuracy, simplicity (low computational cost),
and ease of use (Delorme et al., 2007; Dimigen, 2019; Jiang
et al., 2019). The techniques for limiting ocular and muscular
artifacts (Chen et al., 2019; Tian et al., 2020) other than the
ICA family are useful if they are integrated in a cascade-
type processing module, which can automatically identify the
type of artifact contained in the EEG observation. A simple
filtering (linear combination) approach such as ICA, which
multiplies the demixing matrix W as a filter, is faster and user-
friendly. IVA and ILRMA use this property and can sufficiently
cope with online processing as long as they can learn the
demixing matrix. In addition, these algorithms can benefit
from the ICLabel classifier (Pion-Tonachini et al., 2019) for IC
identification to realize an automatic artifact reduction method.

Thus, the ILRMA-based artifact reduction technique (1) has
higher accuracy than ICA, (2) has low computational cost
(equivalent to ICA) in an online process, (3) is a changeable
module for the ICA decomposition function, and (4) can
simultaneously remove multiple types of artifacts. Note that the
ICLabel classifier is expected to be updated frequently in the
future. Although the EEGLAB toolbox keeps track of updates in
the run_ICL function, the label assignment results may change
depending on the updates. In this study, we selected the “default”
version for IC identification.

6.2. Efficacy of Artifact Reduction for BCIs
Researchers who propose original artifact reduction techniques
for BCIs should describe not only the signal quality but also
the discriminative performance of the extracted components
to demonstrate their efficacy in BCIs. The performances of
proposed artifact reduction techniques in most previous studies
were evaluated and ranked based on ametric (e.g., signal-to-noise
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FIGURE 4 | Artifact-contaminated EEG epoch and artifact-reduced EEG epochs estimated by ICA, IVA, and ILRMA in the (A) MI paradigm and (B) SSVEP paradigm.

ratio and correlation) that indicates how the signal quality of
the estimated neuronal sources was preserved (Islam et al.,
2016). We do not know the original (true) neuronal sources
of EEG observations; thus, synthetic data whose pseudo-
neuronal/pseudo-artifactual sources and mixing process are
known were usually used to calculate the metric (Chen et al.,
2019; Mucarquer et al., 2019). After the quantified evaluation

of signal quality in the estimated sources through the proposed
artifact reduction technique, the separation ability for real data
is qualitatively shown (Blum et al., 2019; Kanoga et al., 2019a).
However, the evaluation of the discriminative performance
of the remaining sources (extracted components) is not a
major/standard quantitative one in this field. To implement an
artifact reduction technique into the BCI framework, it is more
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FIGURE 5 | Artifact-contaminated EEG epoch and artifact-reduced EEG epochs estimated by ICA, IVA, and ILRMA in the ERP paradigm.

important to know which aspect of the technique is the most
crucial to the classification/identification performance. In this
study, we demonstrated improved MI- and SSVEP-based BCI
performances using our proposed technique, which represents
common and recurrent properties of artifactual waveforms into
trials over all classes in low-rank bases and automatically removes
them. Except for session 2 in the MI-based BCI performance,
our proposed method showed over 70% averaged accuracies
(Table 2), which is required for satisfactory BCI control (Sellers
et al., 2006). When we consider the time latency during an
MI period and change the starting time point of MI features
from fixed to flexible by using time window selection algorithm
such as correlation-based time window selection (Feng et al.,
2018), the average performance of the MI-based BCI might be
improved. Furthermore, using other kind of feature extraction
method such as sparse FBCSP (Zhang et al., 2015) is one of

good solution to improve theMI-based BCI performance because
the method automatically chose the filter bands with superior

accuracies compared with FBCSP. In the case of the ERP-based
BCI, ICA was already effective enough. Therefore, the superiority

of ILRMA could not be confirmed; however, its performance
is equivalent to that of ICA. Although this paper did not
present the quantitative signal quality of the estimated neuronal

sources because we did not prepare synthetic data to avoid the
artificial bias of neuronal characteristics (all EEG observations
have unclear individual differences such as amplitudes and
latencies, so we could not easily predict the features and generate
pseudo/synthetic data), the classification/identification results
obtained with three well-known BCI paradigms should be helpful
information for practitioners and implementers.

6.3. Limitations
The results obtained using the DETECT toolbox were treated
as the grand truth. However, the muscular label reflected
the characteristics of “clenching” and “flexing both arms.”
Other types of muscular artifacts, such as “changing head
direction,” may not be extracted as artifactual epochs. In
addition, the “100% accuracy” was sometimes calculated
using only one testing epoch although other accuracies were
calculated using more epochs (e.g., 20). The comparison of
artifact reduction techniques was fair because the number
of artifact-contaminated epochs was the same over the
factor. However, the comparisons of BCI paradigms and
multiday effects were not fair: each factor has different
numbers of artifact-contaminated epochs. Evaluating the
techniques as fairly as possible by using the DETECT
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toolbox is very difficult. For solving this problem, an
artifact-contaminated EEG dataset with multiple types of
intensity-manipulated artifacts is required in this research field
to enable rapid developments in artifact reduction techniques
for BCIs.

6.4. Future Works
Further improvement of ILRMA-based artifact reduction
techniques is expected through the introduction of an
identification algorithm for decomposed frequency components
and a soft-threshold-like wavelet-enhanced ICA (Castellanos
and Makarov, 2006). Despite the fact that ILRMA decomposes
the STFT of the original signals up to each frequency bin, our
automatic processing architecture reconstructs artifact-reduced
signals by replacing artifactual source(s) with zeros (replacing
entire frequency bins with zeros) to adapt the ICLabel classifier,
which needs time-series ICs. In other words, a lot of neural
information is lost in the reduction step. Signal reconstruction
should be made more sophisticated by considering the effective
frequency band adjusted to the BCI paradigm.

Moreover, we need further investigations of artifact reduction
methods in practical situations such as using wearable devices
that have small number of channels (in an extreme case, the
number of channels is only one) for EEG measurements. In
such situation, the performance of artifact reduction techniques
will change and might be decreased. Recent studies attempt
to propose a generic artifact removal algorithm (Chen et al.,
2019). Unlike the time-domain algorithm, frequency-domain
methods (i.e., IVA and ILRMA) can separate single-channel data
if the differences in data-driven spectral basis functions can be
learned well (Kanoga and Mitsukura, 2014; Kanoga et al., 2019a).
Thus, we will investigate our proposed algorithm in practical

situations and extend it as a generic and user-friendly algorithm
for reducing artifacts from EEG data.

The ICA family, including IVA and ILRMA, represents
EEG observations through linear combinations of sources
based on a time-invariant demixing matrix; the trained
demixing matrix may sometimes cause instability through inter-
/intrasubject variabilities. By integrating with a transfer learning
algorithm (Pan and Yang, 2009; Tan et al., 2018), relearning from
the general filter (demixing matrix) to the user-specific filter
according to the data while performing online processing could
potentially reduce the variability and provide more convenient
and practical BCIs.
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