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Objectives: Adipose-derived stem cells (ADSCs) are widely used in wound care because they release a
variety of cytokines. However, the molecular mechanism of paracrine action remains unclear. It has been
reported that basic fibroblast growth factor (bFGF) enhances the therapeutic potential of ADSCs. In this
study, we searched for cytokines whose release from ADSCs is enhanced by bFGF stimulation.
Results: Quantitative RT-PCR and ELISA analyses revealed that bFGF upregulates CXCL-1 and IL-8 mRNA
synthesis and secretion from ADSCs. Both cytokines showed the ability to promote important processes
for wound healing, including tube formation of vascular and lymphatic endothelial cells and cell
migration of fibroblasts in vitro.
Conclusions: These results suggest that bFGF stimulation increases the secretion of CXCL-1 and IL-8 from
ADSCs and that these cytokines may promote angiogenesis, lymphangiogenesis, and cell migration,
leading to enhanced efficiency of wound healing.

© 2024 The Author(s). Published by Elsevier BV on behalf of The Japanese Society for Regenerative
Medicine. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/
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1. Introduction

The field of the plastic surgery treats intractable wounds, such as
limb ischemia, lymphedema, and ulcers from venous insufficiency,
diabetes or burns. However, these diseases have limited treatment
options [1,2], and delayed healing can lead to infection and even limb
amputation. Therapy using stem cells has reported to improve
vascular and lymph vessel networks and heal compromised wounds
[3,4]. Adipose-derived stem cells (ADSCs) are recognized as one of
the most promising stem cells in cell therapy due to their ability to
differentiate in several cellular lineages and release a variety of cy-
tokines [5e10]. When compared with other stem cells, ADSCs can be
harvested easily from fat tissue with less invasion. Moreover, there
are fewer ethical concerns compared to embryonic stem (ES) cells or
induced pluripotent stem (iPS) cells. In fact, ADSCs have been already
used in several clinical trials for wound treatment, limb ischemia,
muscle regeneration, and lymphedema [6,11,12].

Interestingly, co-administration of bFGF is well-known to
enhance the therapeutic effect of ADSC transplantation [3,13,14].
However, its molecular mechanism is largely unknown, and this
has long hindered better therapeutic development.

We hypothesize that bFGF enhances the therapeutic effect of
ADSCs by promoting the secretion of cytokines from ADSCs that are
effective inwound healing. In this study, therefore, we searched for
cytokines whose secretion from ADSCs was enhanced by bFGF
stimulation, and identified CXCL-1 and IL-8 as such cytokines. We
also examined the effects of these cytokines on important pro-
cesses in wound healing in vitro, including angiogenesis, lym-
phangiogenesis and fibroblast migration.

2. Materials and methods

2.1. Cell culture and reagents

Human ADSCs were obtained from Lonza (Basel, Switzerland)
and cultured in KBM ADSC-1 medium (Kohjin Bio, Saitama, Japan).
Fig. 1. Basic FGF stimulation promotes secretion of CXCL-1 and IL-8 from ADSCs. A, The list of 18
Scientific): Human cytokine network, Human angiogenesis, and Human growth factors. Cytok
CXCL-1 and IL-8 in ADSCs of four individuals with different backgrounds. After 4-h stimulatio
bars) and IL-8 (blue bars) mRNAs in ADSCs from 45-year-old (-y/o) African male (AAM), 55-ye
year-old Asian female (AF). The ratios to unstimulated controls are shown. GAPDH was use
respectively. C, Stimulation with bFGF increases the secretion of CXCL-1 and IL-8 from ADSCs.
The amounts of CXCL-1 and IL-8 in unstimulated control cells were set to 1.0. Bars and error
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HUVECs (PromoCell, Heidelberg, Germany), TIME-GFP cells (ATCC,
Manassas, VA), and HDLECs (Takara Bio, Shiga, Japan) were
cultured in endothelial cell growth medium 2 (PromoCell),
vascular cell growth medium (ATCC), and endothelial cell growth
medium MV2 (PromoCell), respectively. TIG114 fibroblasts cells
(JCRB Cell Bank, Tokyo, Japan) were cultured in Dulbecco's
modified Eagle medium (DMEM) supplemented with 10% fetal
bovine serum (FBS). All cells were cultured at 37 �C with 5% CO2.
Recombinant human bFGF was purchased from PeproTech (Rocky
Hill, NJ), while CXCL-1 and IL-8 were obtained from R&D Systems
(Minneapolis, MN).

2.2. Cytokine screening

ADSCs were cultured until they became confluent. After one
day of starvation, ADSCs were stimulated with and without 20 ng/
mL human bFGF for 4 h. Afterward, quantitative RT-PCR was
performed using three kinds of Taqman™ Fast 96 wells (Thermo
Fisher Scientific, Waltham, MA): Human cytokine network, Hu-
man angiogenesis, and Human growth factors, which carry 181
different genes in total (Fig. 1A). Out of 181 genes, we selected the
genes of cytokines that consistently exhibited a 1.5-fold increase
or more and an average of 2-fold increase or more in the
expression level after stimulation with bFGF compared to unsti-
mulated controls.

2.3. Quantitative RT-PCR (qRT-PCR) and ELISA analysis

Total RNA underwent reverse transcription reaction with
ReverTra Ace (Toyobo, Osaka, Japan). Real-time PCR was per-
formed with TaqMan probes for human IL-8, CXCL-1, and glyc-
eraldehyde-3-phosphate dehydrogenase (GAPDH) (Thermo
Fisher Scientific) using 7500 Fast or QuantStudio 3 Real-Time PCR
system (Thermo Fisher Scientific). ELISA analysis of conditioned
medium was performed using Quantikine ELISA kits (R&D
Systems).
1 genes analyzed by qRT-PCR using three kinds of Taqman™ Fast 96wells (Thermo Fisher
ine genes are indicated in yellow. B, Stimulation with bFGF increases the mRNA levels of
n with bFGF, qRT-PCR was performed to examine the expression levels of CXCL-1 (violet
ar-old Caucasian male (CM), 47-year-old mixed Hispanic-African female (H-AF), and 30-
d as an internal control. Bars and error bars represent the means and standard errors,
After 1-day stimulation with bFGF, conditioned medium was subjected to ELISA analyses.
bars represent the means and standard errors, respectively (n ¼ 3).
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2.4. Tube formation assay

Five thousand HUVECs, TIME-GFP, and HDLECs were cultured in a
96-well plate on 50 ml of growth factor-reduced Matrigel basement
membrane matrix (Corning Life Sciences, Corning, NY) with or
without 20 ng/ml human CXCL-1 or IL-8. For experiments using
neutralizing antibodies (NAbs), cellswere cultured in a50-fold diluted
conditionedmediumfromADSCs, togetherwith10ng/mlanti-CXCL-1
NAb, anti-IL-8 NAb, or control mouse IgG, instead of cytokines.

After a 6-h incubation, images of each well were taken using a
BZ-X800 fluorescence microscope (Keyence, Osaka, Japan) at 4x
magnification and analyzed with Image J software in a 350� 350-
pixel square area at the center. Tube formation rate (%) was calcu-
lated by dividing the assembled tube's area (pixels) by the total
selected viewing area (pixels).

2.5. Scratch assay

TIG114 cells were cultured in 48-well dishes with 10% FBS in
DMEMuntil confluent. After scratching, cells were incubated for 6 h
in DMEM with 1% FBS, with or without 10 ng/ml CXCL-1 or IL-8.
Images were captured before and after incubation, and the
scratched area was measured using ImageJ software within a
350 � 350-pixel square area at the well center. Cell migration rate
(%) was calculated by dividing the difference in scratch area (in
pixels) before and after the 6-h incubation by 350 � 350 pixels.

2.6. Statistical analysis

All statistical analyses were performed using EZR software
(Saitama Medical Center, Jichi Medical University, Saitama, Japan)
Fig. 2. CXCL-1 and IL-8 promote blood and lymph vessels formation. Recombinant CXCL-1 a
tube formation assay using umbilical vein endothelial cells (HUVEC), microvascular endoth
incubation with CXCL-1 or IL-8, images of each sample were taken at 4x magnification an
ADSCs promote tube formation of HUVEC or TIME-GFP. HUVEC and TIME-GFP were cu
stimulated ADSCs. The tube formation rate (%) was calculated by dividing the area of form
rors, respectively (n ¼ 3). D, Neutralization of CXCL-1 and IL-8 suppresses the promoted tube
ADSCs. HUVEC and TIME-GFP were cultured in the presence of conditioned medium from AD
control mouse IgG. After 6-h incubation, entire images of each sample were taken with a m
bars represent the means and standard errors, respectively (n ¼ 3).
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[17]. Continuous data were presented as average ± standard error
(SE). For descriptive statistics, the student t-test was used to
analyze continuous data, and values of P < 0.05 were defined as
statistically significant.
3. Results

3.1. Identification of cytokines released from ADSCs upon bFGF
stimulation

First, using a combination of TaqMan array and qRT-PCR anal-
ysis, we searched for cytokines whose secretion from ADSCs is
enhanced by bFGF stimulation using 45-year-old healthy African
American male ADSCs. Out of 122 cytokines (Fig. 1A), CXCL-1
(2.24 ± 0.3, P ¼ 0.007), HB-EGF (4.155 ± 0.538, P ¼ 0.002), IL-1b
(2.733 ± 0.283, P ¼ 0.001), and IL-8 (6.072 ± 0.744, P ¼ 0.001)
showed significant and reproducible upregulation by bFGF stimu-
lation (Fig. 1B, Supplemental digital contents 1)

Whenwemeasured the amount of these cytokines secreted into
the medium by ELISA, secretions of CXCL-1 (4.283 ± 0.6-fold,
P ¼ 0.002) and IL-8 (12.326 ± 1.939-fold, P ¼ 0.002) protein from
ADSCs increased after 1-day bFGF stimulation (Fig. 1C), while those
of HB-EGF and IL-1b were undetectable. Consequently, we further
analyzed CXCL-1 and IL-8.

To investigate if CXCL-1 and IL-8 mRNA upregulation by bFGF is
specific to the African American male studied, we next analyzed
three additional individuals with different characteristics (Fig. 1B).
Compared to their control groups, bFGF stimulation of ADSCs from
a 55-year-old Caucasian male increased the expression of CXCL-1
(4.931 ± 1.238, P ¼ 0.017) and IL-8 (9.362 ± 1.873, P ¼ 0.006).
Similar upregulation of CXCL-1 and IL-8 was observed in ADSCs
nd IL-8 enhance blood and lymph vessels formation (A, B). A, Representative images of
elium cells (TIME-GFP), and dermal lymphatic endothelial cells (HDLEC). B, After 6-h
d were analyzed with Image J software. C, Condition medium from bFGF-stimulated
ltured for 6 h in the presence or absence of the conditioned medium from bFGF-
ed tube by the total area. Bars and error bars represent the means and standard er-
formation rate of HUVEC and TIME-GFP by conditioned medium from bFGF-stimulated
SCs, together with 10 ng/ml anti-CXCL-1 neutralizing antibody (NAb), anti-IL-8 NAb or

icroscope at 4x magnification and were analyzed with Image J software. Bars and error
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from a 47-year-old mixed Hispanic-African female (CXCL-1,
3.74 ± 0.93, P ¼ 0.021; IL-8, 6.326 ± 1.24, P ¼ 0.006), and a 30-year-
old Asian female (CXCL-1, 2.738 ± 0.515, P ¼ 0.014; IL-8,
4.57 ± 1.523, P ¼ 0.04). These results suggest that CXCL-1 and IL-
8 mRNA upregulation by bFGF is not specific to the African Amer-
ican male.

3.2. Tube formation assay

In wound healing, ADSCs are thought to play several roles,
including promoting angiogenesis and lymphangiogenesis. To
assess the impact of CXCL-1 and IL-8 upregulation by bFGF on blood
and lymphatic vessel formation, we conducted a tube formation
assay with two kinds of human vascular endothelial cells, umbilical
vein endothelial cell (HUVEC) and microvascular endothelium cell
Fig. 3. CXCL-1 and IL-8 promote migration of TIG114 fibroblasts. A, Representative images of
or IL-8 for 6 h. B, Cell migration rate was calculated by dividing the difference between s
standard errors, respectively (n ¼ 3).
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(TIME-GFP), and one kind of lymphatic endothelial cells, human
dermal lymphatic endothelial cell (HDLEC). CXCL-1 stimulation led
to a 2.909-, 2.401-, and 2.098-fold increase in tube formation for
HUVECs (17.076% vs. 5.871%, P ¼ 0.002), TIME-GFP (12.957% vs.
5.397%, P ¼ 0.006), and HDLECs (23.654% vs. 11.272%, P ¼ 0.001),
respectively, compared to the control. Similarly, IL-8 stimulation
resulted in a 4.047-, 2.160-, and 2.226-fold increase in tube for-
mation for HUVECs (23.759% vs. 5.871%, P ¼ 0.0002), TIME-GFP
(11.656% vs. 5.397%, P ¼ 0.0009), and HDLECs (25.093% vs.
11.272%, P ¼ 0.002), respectively (Fig. 2A and B).

Next, to examine the requirement of CXCL-1 and IL-8 for the
promotion of angiogenesis by ADSCs, we investigated the effect of
neutralizing CXCL-1 and IL-8 on tube formation. Incubation with
conditioned medium from bFGF-stimulated ADSCs increased tube
formation rates by 1.774-fold for HUVECs (P¼ 0.033) and 1.880-fold
scratch assay after scratch. TIG114 were incubated in the presence or absence of CXCL-1
cratch area before and after incubation. Bars and error bars represent the means and
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for TIME-GFP (P ¼ 0.009) (Fig. 2C), suggesting the presence of ac-
tivity that promotes angiogenesis in the conditioned medium from
ADSCs. When neutralizing antibodies (NAbs) were added to inhibit
CXCL-1 and/or IL-8 function in the conditioned medium, the tube
formation rate of HUVECs decreased by 1.820-fold with anti-CXCL-
1 NAb (12.222%, P ¼ 0.056), 1.884-fold with anti-IL-8 NAb (11.810%,
P ¼ 0.047), and 3.457-fold with both NAbs (6.436%, P ¼ 0.011)
(Fig. 2D). Similarly, the tube formation rate of TIME-GFP incubated
with the conditioned mediumwas decreased by 1.812-fold by anti-
CXCL-1 NAb (9.132%, P ¼ 0.096), 1.598-fold by anti-IL-8 NAb
(10.352%, P ¼ 0.150), and 3.056-fold by both NAbs (5.413%,
P ¼ 0.025). These results suggest that CXCL-1 and IL-8 are active
factors promoting angiogenesis in the conditioned medium.

3.3. Scratch assay

In wound healing, fibroblasts migrate and gather at the wound
site. We therefore examined the effect of CXCL-1 and IL-8 on the
migration of TIG114 fibroblast cells using scratch assay (Fig. 3A and
B). TIG114 cells showed 3.499% migration rate after 6 h in the
absence of cytokines. Themigration ratewas significantly increased
by the presence of CXCL-1 (8.830%, P ¼ 0.001) and IL-8 (9.304%,
P¼ 0.007), suggesting that both CXCL-1 and IL-8 promote fibroblast
migration.

4. Discussion

In this study, to understand the molecular mechanism of the
cooperative effect between ADSCs and bFGF on wound healing, we
searched for cytokines released from ADSCs upon bFGF stimulation
using human ADSCs. We found that bFGF stimulation upregulated
IL-8 and CXCL-1 mRNA synthesis, and increased the secretion of
these cytokines from ADSCs. We also found that these cytokines
promote important processes for wound healing, such as angio-
genesis, lymphangiogenesis, and cell migration. The present results
may provide very useful information for the use of ADSCs inwound
healing therapy.

Although we found that CXCL-1, IL-8, IL-1b, and HB-EGF mRNA
expression was increased by bFGF stimulation, only CXCL-1 and IL-
8 proteins were accumulated in the culture medium, while IL-1b
and HB-EGF were undetectable. IL-1b exists intracellularly as a
precursor, and is cleaved by caspase-1 for extracellular secretion
[15]. Similarly, HB-EGF is released from a membrane-anchored
protein by cleavage at the membrane junction by ADAM family.
Lack of protein secretion for IL-1b and HB-EGF may be due to
absence of these cleavage enzymes in ADSCs [16].

Previous studies have shown that ADSCs have potential for
angiogenic cell-based therapy in ischemic disease treatment.
Transplantation of ADSCs into ischemic mouse hindlimb models
has successfully induced neovascularization and vasculogenesis
[3,17e19]. In our study, we demonstrated that CXCL-1 and IL-8
promoted capillary tube formation in human vascular endothelial
cells using in vitromodels of angiogenesis. Similar results have been
reported by other groups [20]. Additionally, neutralizing antibodies
against CXCL-1 and IL-8 hindered the tube formation promoted by
the conditioned medium of ADSCs, indicating that these cytokines
play a significant role in ADSC-mediated angiogenesis.

The lymphatic system's role in wound healing is significant, and
lymph vessel tube formation enhances wound edema reduction,
regulates tissue pressure, and boosts immune response to prevent
infection [21]. ADSCs have a strong paracrine effect that promotes
lymphangiogenesis [4,8]. Our study shows that CXCL-1 and IL-8
promote lymph vessel tube formation using HDLECs as a model
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for lymphangiogenesis, suggesting that these cytokines may play
an important role in ADSC-mediated promotion of lymphatic tube
formation.

In wound healing, ADSCs play several roles, besides promoting
angiogenesis and lymphangiogenesis. For example, due to its great
migration ability, ADSC is rapidly recruited into wounded sites,
where they possibly undergo differentiation towards dermal fi-
broblasts, endothelial cells, and keratinocytes. Additionally, ADSCs
are the major sources of extracellular matrix proteins involved in
maintaining skin structure and function [22]. In this study, a scratch
assay using normal skin fibroblasts showed that CXCL-1 and IL-8
promote fibroblast migration, which is necessary for wound heal-
ing. Since this study demonstrated that bFGF stimulation induces
secretion of these cytokines from ADSCs, these results suggest that
promoting fibroblast migration may be another role of ADSCs in
wound healing.

5. Conclusions

This study showed that bFGF stimulation promotes the release
of CXCL-1 and IL-8 from ADSCs, and suggested that these cytokines
may promote angiogenesis, lymphangiogenesis and fibroblast cell
migration. Taken together, these results suggest that CXCL-1 and IL-
8, whose secretion is enhanced when ADSCs are stimulated with
bFGF, may promote ADSC-mediated wound healing, transplant fat
engraftment, and lymphangiogenesis of lymphedema. The results
could provide clues for the effective use of ADSCs in clinical
treatment.
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