
ARTICLE

Colonic microbiota is associated with inflammation
and host epigenomic alterations in inflammatory
bowel disease
F.J. Ryan 1,2,12, A.M. Ahern1,2,12, R.S. Fitzgerald 1,2,12, E.J. Laserna-Mendieta 1,2, E.M. Power1,2,

A.G. Clooney1,2,3, K.W. O’Donoghue1,2, P.J. McMurdie 4, S. Iwai4, A. Crits-Christoph4, D. Sheehan2,5,

C. Moran2,5, B. Flemer1,2, A.L. Zomer6, A. Fanning 2, J. O’Callaghan1, J. Walton7, A. Temko 8, W. Stack9,

L. Jackson9, S.A. Joyce 2,10, S. Melgar2, T.Z. DeSantis4, J.T. Bell 11, F. Shanahan 2,5 & M.J. Claesson 1,2✉

Studies of inflammatory bowel disease (IBD) have been inconclusive in relating microbiota

with distribution of inflammation. We report microbiota, host transcriptomics, epigenomics

and genetics from matched inflamed and non-inflamed colonic mucosa [50 Crohn’s disease

(CD); 80 ulcerative colitis (UC); 31 controls]. Changes in community-wide and within-patient

microbiota are linked with inflammation, but we find no evidence for a distinct microbial

diagnostic signature, probably due to heterogeneous host-microbe interactions, and show

only marginal microbiota associations with habitual diet. Epithelial DNA methylation

improves disease classification and is associated with both inflammation and microbiota

composition. Microbiota sub-groups are driven by dominant Enterbacteriaceae and Bacteroides

species, representative strains of which are pro-inflammatory in vitro, are also associated

with immune-related epigenetic markers. In conclusion, inflamed and non-inflamed colonic

segments in both CD and UC differ in microbiota composition and epigenetic profiles.
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The chronic inflammatory bowel diseases (IBD), Crohn’s
disease (CD), and ulcerative colitis (UC), are hetero-
geneous disorders with distinct and overlapping features

that represent the outcome of abnormal host-microbe interac-
tions, in genetically susceptible individuals. While the pathogen-
esis of IBD in experimental models highlight the role of host-
microbe interactions, human studies are less clear and incon-
sistent, without a definitive cause-effect relationship. Small study
populations and protocol variations have confounded inter-
pretation and comparative analyses of human studies. Studies of
the mucosa-associated microbiota are likely to be more infor-
mative than those of fecal microbiota in relation to host-microbe
interactions. Moreover, although habitual diet is known to be an
important determinant of the composition and metabolic activity
of the gut microbiota, dietary analysis has been lacking
from several studies of the microbiota in IBD. Furthermore, the
relationship between mucosal inflammation, the microbiota
and the epigenome has received little attention1. For these rea-
sons, we here investigated mucosa-associated microbiota using
endoscopically-targeted biopsies from paired inflamed and non-
inflamed segments of the colon in patients with Crohn’s disease
and ulcerative colitis. The results show that the microbiota in
both forms of IBD exhibit reduced diversity and increased
variability compared with the microbiota of controls, and host
fewer bacteria from Clostridium cluster XIVa, Anaerostipes
hadrus and an unclassified species of the Lachnospiraceae family.
While there is substantial overlap in these features for CD and
UC microbiota, they are most evident in CD. We observe
community-wide and within-patient changes in microbiota
composition between inflamed and non-inflamed colonic
mucosa, but these are not attributed to specific taxa. As expected,
host mucosal gene expression is most discriminatory of inflam-
mation, but is followed by host DNA methylation and microbiota
composition. While microbiota composition alone cannot
robustly classify disease, it stratifies the subjects into sub-groups
with different epigenetic profiles.

Results
Microbiota is associated with disease and inflammation. We
studied paired biopsies from inflamed and non-inflamed mucosa
of 80 adult patients with ulcerative colitis and 50 with Crohn’s
disease, along with paired biopsies of 31 non-IBD (here: healthy)
controls (Table 1; Supplementary Table 1), all recruited in Ire-
land. Microbiota composition of 346 colonic biopsies were ana-
lyzed from a total of 8,443,723 quality-filtered Illumina MiSeq

reads of the amplified 16S rRNA V3-V4 gene region, with a mean
of 24,466 ± 1272 (95% CI) reads per biopsy. From these ampli-
cons, 3222 unique, error-corrected and chimera-free ribosomal
sequence variants (RSVs) were generated. We carried out an
unsupervised principal coordinate analysis (PCoA) of
Bray–Curtis distances from the 257 RSVs that were present in
≥5% of the samples (Fig. 1a). The PCoA showed greater variation
(spread) for CD compared with UC, which in turn had higher
variation than healthy microbiota. While 50% of the CD and UC
samples were found within the 80% confidence region of the
healthy cohort, the remaining IBD samples displayed a shift away
from the healthy microbiota as demonstrated by significantly
lower PC1 values (p-value ≤0.05). An observable and significant
gradient of increasing diversity in the direction of healthy samples
was nearly parallel with the PC1 axis (Fig. 1a). Abundances of
a number of specific bacterial taxa also correlated with the
principal coordinates (Fig. 1a; Supplementary Table 2). An
Escherichia/Shigella/Klebsiella RSV was decreasing in abundance
with PC1, whereas Faecalibacterium prausnitzii, on the other
hand, had seven RSV that were increasing along this axis, sup-
porting previously reported lower diversity of such sub-species in
IBD mucosa2. Bacteroides dorei were more common for samples
with higher PC2 values, while B. vulgatus abundances were higher
for samples with lower PC2 values. These anti-correlated within-
genera differences emphasize the importance of species-level
classification of 16S rRNA gene sequences. A small number of
these RSVs were also found to have significantly different abun-
dances between disease statuses. Neither disease duration, age nor
gender were correlated with these PCs. Overall, we found only
two RSVs that were differentially abundant with false discovery
rates (FDR) lower than 5% (Fig. 2; Supplementary Table 3). An
RSV from the Lachnospiraceae family [labeled 1 in Fig. 2] was
less abundant in UC or CD mucosa than in healthy controls.
Another RSV belonging to the Lachnospiraceae family, butyrate-
producing Anaerostipes hadrus [labeled 2] was also less abundant
in UC or CD mucosa than in healthy controls. These observations
were more evident in CD than in UC, and in inflamed mucosa
compared with non-inflamed. A B. fragilis RSV [labeled 3] was
more abundant in inflamed CD mucosa than in healthy mucosa
(FDR= 0.137), while Gemmiger formicilis [labeled 4] was less
abundant in inflamed UC compared with controls (FDR= 0.101).

Even though patients with CD and UC had lower microbiota
diversities than healthy individuals, inflammatory status per se
did not appear to affect diversity levels (Fig. 1b). For most
patients, biopsies from the same colon had similar microbiota
composition regardless of inflammatory status, as illustrated by

Table 1 Subject characteristics across the three cohorts.

Crohn’s disease Ulcerative colitis Healthy controls

Number of biopsy pairs 50 80 31
Total number of biopsiesa 108 174 63
Mean age (range) 43.1 (21–79) yrs 47.6 (20–76) yrs 56.9 (29–74) yrs
Gender (M/F) 28/26 46/41 18/14
Mean time since diagnosis (range) 11.4 (0–40) yrs 10.4 (0–30) yrs N/A
% relapsing patients within 24 months of biopsy 32.7% 37.9% N/A
% smokers (ex-smokers) 18.5% (1.9%) 4.9% (2.5%) 3.4 (3.4%)
No. of patients on medication
5-aminosalicylic acid 8 59 N/A
Corticosteroids 5 22 N/A
Anti-TNF 7 8 N/A
Mercaptopurine 14 11 N/A
Antibioticsb 2 0 0

aIncludes additional unpaired biopsies where matching biopsies had been excluded for technical reasons.
bAntibiotics taken at the time of sampling.
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paired samples being only a short distance away (Fig. 1a).
However, the overall compositional profiles for inflamed biopsies
were directed away from their non-inflamed counterparts, along a
gradient that deviated from healthy microbiota. To examine
whether these overall shifts were also present within subjects, we
subtracted non-inflamed from inflamed PC1 values for each
subject, as the observed inflammation gradient was present for
both CD and UC samples along this principal coordinate.
Figure 1c shows these subtractive values being significantly higher
than zero for both IBD cohorts, while not for the healthy cohort.
No such change was observed for the subsequent 20 principle
coordinates. In spite of these community-wide and subject-
specific compositional differences, no individual taxa were found
to be significantly abundant in inflamed relative to non-inflamed
mucosa in either disease (Fig. 2).

Similarly to taxonomic composition, we did not find any
differences in terms of inferred encoded function3 between
inflamed and non-inflamed microbiota. We did, however, find 28
and 30 differentially abundant KEGG Orthologs for CD and UC,
respectively, compared with controls (Supplementary Table 4).
Among these, NADH dehydrogenase genes (oxidative phosphor-
ylation pathway) are more common in UC and CD, as inflamed
environments produce endogenous molecules, including oxygen,
to be used as terminal electron acceptors by facultative or obligate
aerobic bacteria like Enterobacteriaceae4,5.

Microbiota clusters are driven by dominant species. Hier-
archical clustering and dynamic tree cutting of microbiota com-
positions based on 257 RSVs resulted in 10 sub-clusters that by

visual inspection also corresponded well to relative family
abundances (Fig. 3). Each of these clusters had different pro-
portions of subject cohorts, and for the majority (≥95%) of the
paired samples, were directly adjacent and within the same
cluster. No cluster consisted entirely of one subject cohort, with
healthy individuals present in all, as expected from the dispersed
and heterogenous cohort distribution in Fig. 1a. Adjacent clusters
9 and 10 had disproportionally more healthy subjects than other
clusters, whereas clusters 1, 2, and 5–7 had disproportionally
more subjects with CD or UC. Notwithstanding the significant
inter-individual variability of family abundances, there was an
overall increase in Firmicutes:Bacteroidetes ratio in the direction
of cluster 1–10, which correlated with both Shannon diversity
(R2= 0.37; p-value= 3.2e−12) and increasing PC 1 values (R2=
0.44; p-value= 2.2e−16) with the exception of clusters 6 and 9.
Particular taxonomic families dominated a number of outlier
samples, some of which associated to treatment. The two patients
with CD who were on antibiotics (Augmentin/Metronidazole and
Azithromycin) at the time of sampling belonged to cluster 2 (left
and middle), with unusually high levels of Enterobacteriaceae
(89.8% and 32.1%, respectively). Of the 15 patients on biologics
(anti-TNFs: Adalimumab and Infliximab), one CD and one UC
patient in clusters 3 and 6 had very low-Firmicutes abundance,
7.1% and 2.5%, respectively. The low-Firmicutes (11.6%) UC
patient in cluster 4 was on corticosteroids and diarrhea medica-
tion. No other subjects on similar medications showed outlier
behavior in terms of relative taxa abundance.

Strikingly, seven RSVs were consistently in high abundances
in five clusters (Fig. 3 and Supplementary Fig. 1): B. fragilis was
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enriched in cluster 1, B. vulgatus in cluster 3 and B. dorei in
cluster 4. Their correlations with PC1 and PC2 (Fig. 1a) also
explain their cluster separation. Similarly, taxa known to be
associated with IBD, Escherichia/Shigella/Klebsiella6 and Rumi-
nococcus gnavus7, were highly abundant in all cluster 2 and
9 samples, respectively, which all had relatively low PC1 values.
Statistical testing indicated that no experimental batch effects
were causative of these taxa enrichments (Supplementary
Table 14). To investigate the effect of these cluster-dominant
species on the overall microbiota composition we re-drew the
PCoAs in Figs. 1 and 3 after the seven RSVs were removed one-
by-one (Supplementary Fig. 2). We only observed notable
changes to the five confidence regions in Fig. 1a when the
Escherichia/Shigella/Klebsiella RSV was removed, which in
effect canceled out the inflammation-associated gradient for
UC. The effect of the sequential removal of these RSVs was,
however, larger for some of the 10 clusters mapped on the
PCoA, clearly emphasizing how single RSVs can drive
microbiota-based subject stratification. Here, removing B.
fragilis (enriched in cluster 1) caused a bigger overlap with
clusters 1 and 2. Removal of the Escherichia/Shigella/Klebsiella
RSV (cluster 2) significantly reduced the separation of that
cluster with most other clusters. Bacteroides RSVs B. vulgatus
(cluster 3) and B. dorei (cluster 4) were already anti-correlated
with the PC2 axis (Fig. 1a), and their subsequent removal either
reversed, or drastically changed, the clusters’ positions along
that axis. We further investigated whether the four more
pronounced clusters 1–4 were supported by host-related
molecular data.

Microbiota is associated with host epigenome. To explore
underlying host-microbe interactions, we assessed host epige-
nomics (genome-wide DNA methylation) analysis on a subset of
100 biopsies from controls (23 unpaired samples) and patients
with CD (77 samples, whereof 72 paired) with matching micro-
biota and host epigenome. Of these, we also had matching host
transcriptome data from 71 samples. Overall, the inflammation-
associated epigenomes had lower PC1 values compared with both
the non-inflamed and control samples (ANOVA p-value < 3.27e
−04; Supplementary Fig. 4), indicating a stronger inflammation-
related gradient compared with the microbiota (Fig. 1a). There
was also a strong correlation (R2= 0.87; ANOVA p-value < 4.4e
−16; Supplementary Fig. 4) between the transcriptome and epi-
genome PC1 values for the same samples. This observation was
supported by 221 genes differentially expressed between inflamed
and non-inflamed tissue and associated with hyper/hypo-
methylated CpG sites within or immediately adjacent to the gene
(p-values < 0.05 in both datasets; Supplementary Table 5). Of
these, the endothelial leukocyte adhesion gene Selectin E, was
overexpressed and exhibited promoter hypo-methylation speci-
fically in inflamed tissue, and has previously been implicated in
inflammatory responses8 (Fig. 4a). While the first epigenomic
principal component captured inflammation well (18.4% of total
variation), the 6th epigenomics principal component (3.7% of
total variation) showed significant overall methylation differences
between CD (irrespective of inflammation) and healthy controls
(p-value < 2.7e−08; Fig. 4c). There were, however, no significantly
methylated sites corresponding to this observation after adjust-
ment for multiple testing.
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The biopsies were randomly selected prior to microbiota
clustering (Fig. 3), and since approximately half of them were
from microbiota clusters 1–4, methylation in these samples were
sequentially compared with all the other clusters combined, due
to fewer samples with methylation and gene expression data in
clusters 5–10. To reduce the effect of different cell type
compositions associated with inflamed tissue, we analyzed each

set of significant epigenetic signals reported for the clusters,
incorporating the first 10 PCs as covariates in the linear model
which together explain 52% of methylation capturing a large
extent of cell heterogeneity (see Methods). Of the 734 sites (523 of
which were associated with annotated (498 unique) genes,
whereof the top 12 in Supplementary Fig. 5) that were significant
after PC correction (p-value < 0.05; Supplementary Table 6), we

−3 −2 −1 0 1 2 3

Escherichia/Shigella

B.fragilis

B.vulgatus

B.dorei

CD
Healthy
UC

29 35 43 34 24 35 58 37 11 39

1 2 3 4 5 6 7 8 9 10

Shannon diversity

1

2

4

3

9

7

5

10

8
6

Blautia. sp

B.vulgatus

R. gnavus

Male
FemaleAge

AscendingCecum Descending RectumSigmoidTransverse

BSH

Vegetables
Fruit
Beans

High sugar foods
Sweetener

Tea
Coffee
Alcohol

Butter and oils
Dairy
Dressing
Eggs

White bread
Brown/Wholemeal 
Low fibre 
High fibre cereals

Red meats

Processed meats
Other fish
Oily fish

Potatoes
White rice
White pasta
Brown rice
Brown pasta

Sauces
Ready-made meals

Poultry

Veg/Fruit/
Beans

Sugars

Drinks

Dairy/Fats

Cereal/
Breads

Meat/Fish/
Poultry

Pasta/Rice/
potatoes

Other

5ASA
Biologics
Corticosteroids
Mercaptopurine

CUH

345

Total distribution

Family

Lachnospiraceae

Ruminococcaceae

Erysipelotrichaceae

Clostridiaceae

Bacteroidaceae

Prevotellaceae

Porphyromonadaceae

Enterobacteriaceae

Sutterellaceae

Other

Unclassified

Bifidobacteriaceae

Cl. 1 Cl. 2 Cl. 3 Cl. 4 Cl. 5 Cl. 6 Cl. 7 Cl. 8 Cl. 9 Cl. 10

Cluster

Epigenome/transcriptome data

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-020-15342-5 ARTICLE

NATURE COMMUNICATIONS |         (2020) 11:1512 | https://doi.org/10.1038/s41467-020-15342-5 | www.nature.com/naturecommunications 5

www.nature.com/naturecommunications
www.nature.com/naturecommunications


observed 33 and 19 significantly hyper-methylated or hypo-
methylated sites in cluster 1, respectively, including hyper-
methylated signals in the gene body of NOTCH4 within which
mutations have been associated with IBD9 (Supplementary
Table 6, Fig. 4b). Cluster 2 exhibited a much larger number of
differentially methylated CpG sites (131 hyper- and 475 hypo-
methylated), including hypo-methylation in CCDC88B (recently
correlated with risk of CD10) and TAP2 (involved in genetic
heterogeneity of CD11). Possible interaction of methylation and
gene expression was exemplified with TRIM27, which was
simultaneously overexpressed (prior to FDR-adjustment) and
hypo-methylated (Supplementary Table 6, Fig. 4b). This gene
negatively regulates the NOD2 gene, which if mutated can
promote IBD12, and has been shown to promote tumor growth in
DSS-induced mice if overexpressed13. Of the 23 hyper- and 18
hypo-methylated sites in cluster 3, significant hyper-methylation
was observed in the gene body of DRAM1, also involved in
NOD2 signaling12. Taken together, these findings identify a large
number of CpG sites that are differentially methylated across the
microbiota-defined clusters, whereof many in proximity to genes
known to play a role in IBD.

Based on the mucosal DNA of all subjects, we investigated
whether the 264 reported gene loci associated with IBD14–28 in
the present study. While the sample size was insufficient for a
Genome-Wide Association Study, a principal component analysis
on nominal categorical data of the known IBD loci indicated a
significant overlap of the three cohorts, albeit with a slight shift
along the second component for UC (Supplementary Fig. 3a).

Inflammation-related host expression and in vitro validation.
We further analyzed the host mucosal transcriptome using a
polyadenylated capture and RNA-Seq approach resulting in
13,237,135 ± 1,578,996 (95% CI) mRNA reads per biopsy. Like the
epigenome, the transcriptome displayed clearly noticeable differ-
ences between inflamed and non-inflamed mucosa for both dis-
eases, with a shift away from healthy transcriptomes along PC1
(Supplementary Fig. 4). These overall differences were translated
to 2171 (out of 17,461 in total) transcripts with significantly dif-
ferent expression levels between inflammation statuses for the CD
patients (Supplementary Table 7) and 4154 for the UC patients
(Supplementary Table 8), with an overlap of 1146 transcripts. An
enrichment analysis of Gene Ontology biological processes
showed that genes overexpressed in inflamed UC and CD relative
to non-inflamed mucosa were consistent with positive regulation
of a general innate and adaptive immune response toward
microbes, mediated by increased cytokine production and a cor-
responding inflammatory response. (Supplementary Tables 9–10).
In particular, 136 (UC) and 246 (CD) transcripts known to be
involved in positive regulation of cytokine production were
overexpressed in inflamed mucosa, including pathways for the
production of IL-1, IL-2, IL-4, IL-6, IL-8/CXCL8, IL-10, IFNγ, and
TNF, which were also upregulated in other IBD studies29,30.
Furthermore, 118 (UC) and 118 (CD) transcripts were enriched
for the defense response to other organisms, 51 (UC) and 108
(CD) transcripts were involved in the response to lipopoly-
saccharide, and 113 (UC) and 46 (CD) transcripts for the response
to molecules of bacterial origin, all indicating a pathogenesis

Fig. 3 Sample clustering, diversity and relative abundance of mucosal microbiota from 346 biopsies (CD, UC and healthy), based on 257 ribosomal
sequence variants (RSVs) that were present in ≥5% of the samples. From the top: pie charts with total numbers and proportions of the three subject
cohorts for each cluster; hierarchical Ward linkage clustering based on Bray–Curtis distances; cohort belongingness. Ten individually colored clusters
obtained through the DynamicTreeCut algorithm; heatmap with RSV abundance values to the right of vertical clustering of RSVs using Ward linkage based
on Spearman correlation coefficients (heatmap shows z-scores, i.e., number of standard deviations from the mean value of each row); Shannon diversity for
each sample; and bar plot of relative abundances at taxonomic family levels with red families belonging to the Firmicutes phylum, blue Bacteroidetes, green
Proteobacteria, and yellow Actinobacteria; age and gender for each sample, major food categories, hospital, medication, and biopsy location; clusters
mapped back onto the Bray–Curtis PCoA from Fig. 1a. The right-most margin shows species classifications for RSVs consistently abundant for certain
clusters.
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Fig. 4 Differences in host DNA methylation and gene expression across subject groups with regards to inflammation and microbiota clustering.
Significant differential host DNA methylation [beta values; significance determined using mixed linear models from lme4 library, adjusted with FDR] with
corresponding gene expression [log2(fragments per kilobase of transcript per million mapped reads)] of examples of immune-related genes in a inflamed/
non-inflamed CD tissue, b microbiota clusters 1–3 (expression, using stattest from the ballgown library, was significant before adjustment for multiple
testing with FDR, and for a subset of 71 matching samples; extreme outliers removed to improve clarity; gene body methylation in NOTCH4, DRAM1, and
TRIM27 (b), promoter methylation in SELE (a) and CCDC88B (b)) (box plot lower and upper sides show 25th and 75th percentiles, respectively. The
whiskers are 1.5 of the interquartile range). c Epigenome principal component analysis outlining the inflammation- (PC1) and disease- (PC6) associated
epigenetic trends.
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consistent with excessive anti-microbial immunological activity.
Several pathways indicating an active immune response, including
positive regulation of neutrophil migration, positive regulation of
leukocyte migration, and T cell migration, were also upregulated
in UC and CD inflamed mucosa. Over 90% of the GO biological
processes enriched in inflamed CD mucosa were also enriched in
inflamed UC mucosa. Biological processes found enriched exclu-
sively in inflamed CD transcripts were mostly involved in positive
regulation of blood circulation and the vascular system (Supple-
mentary Tables 11). The 53 gene transcripts significantly under-
expressed in inflamed compared with non-inflamed UC mucosa
were primarily involved with cellular respiration, mitochondrial
electron transport chain activity, and ATP synthesis (Supple-
mentary Tables 12). A recent study also indicated suppressed
mitochondrial gene expressions in active UC in a pediatric
cohort31. Of the 28 underexpressed transcripts involved in ATP
synthesis coupled electron transport are genes encoding subunits
of Cytochrome c oxidase, which suggests a role for mitochondrial
dysfunction in the pathogenesis of active UC inflammation
(Supplementary Tables 12). Thus, epithelial cells that have com-
paratively high mitochondrial content may significantly contribute
to transcriptomic fold-changes in non-inflamed material, con-
sistent with their relative dilution by other cells and/or loss in
IBD-related inflammation. No evidence for mitochondrial dys-
function was found in the CD differential gene set.

To corroborate epigenome-host-microbiota findings, intestinal
epithelial cells (IECs) were co-cultured with type strains
representing dominant bacteria species from the identified
microbiota clusters with differential epigenome profiles (cluster
1: B. fragilis ATCC25285; cluster 2: E. coli AIEC-HM605; cluster
3: B. vulgatus ATCC8482). The well-known gastrointestinal
pathogen S. typhimurium (ATCC) and the non-inflammatory
Lactobacillus rhamnosus (LGG) was included as positive and
negative controls, respectively. We observed a significantly higher
secretion of IL-8/CXCL8 (Supplementary Fig. 6), a neutrophil
chemokine commonly correlated with active disease in IBD32 and
higher CCL20/MIP3A (Supplementary Fig 6), a chemokine
strongly chemotactic for lymphocytes and enhanced in active
IBD33, for B. vulgatus, AIEC-HM605 and S. typhimurium when
compared with untreated and LGG-treated cells.

Multi-omics integration and classification. The impact of diet
on the microbiota composition was assessed using a semi-
quantitative food frequency questionnaire34,35. No major corre-
lations were noted, as shown in the Supplementary Data. Simi-
larly, we found no medication to be significantly more common
across any of the 10 microbiota clusters (Supplementary Fig. 3).

We finally tested whether various data type combinations
could improve classification of disease and inflammation status,
using the Machine Learning technique Extreme Gradient
Boosting36. Microbiota combined with diet and host genotype
were better at classifying between CD, UC, and healthy status
(AUC= 0.75; p-value ≤ 0.001) than any other combination of
these data types (Supplementary Fig. 8 and Supplementary
Table 13). Interestingly, adding epigenomes improved AUCs even
further, up to 0.87 (p-value ≤ 0.001) together with microbiota
only. The highest classification weight is carried by CpG sites of
the PTPRO/TRIM31 genes and A. hadrus as indicated above.
Similarly, epigenome data adds classification power to distin-
guishing CD inflamed from non-inflamed tissue (AUC range:
0.72–0.86), and more so than transcriptome data (AUC range:
0.63–0.75). In terms of classifying inflammation in UC, adding
host transcriptome data for only 12 UC samples allows for a
markedly increased AUC to 0.83 (p-value ≤ 0.01) over “micro-
biota+ genotype+ diet”.

Discussion
The results confirm changes in the microbiota of patients with
IBD in terms of reduced diversity and increased variability of
colonic microbiota37–39, particularly in Crohn’s disease and to a
lesser degree in ulcerative colitis. However, differences between
these two forms of IBD and between inflamed and non-inflamed
segments of the colon were not attributable to specific taxa. We
also observed significant disease-associated reductions of A.
hadrus and an unclassified species of the Lachnospiraceae family.
The study extends the observations of earlier reports40–44 not
only in the relatively large number of paired (inflamed vs non-
inflamed) biopsies, but because of its inclusion of a wider array of
molecular data including microbiota, host transcriptome, epi-
genome and genotype. It also provides enhanced molecular
resolution with bacterial species classification and the usage of
error-corrected reads, as opposed to representative sequences of
operational taxonomic units45. Furthermore, to address the
confounding effects of lifestyle variations, we recorded the
potential impact of habitual diet and other potential modifiers.
Curiously, habitual diet appeared to have minimal relationship
with observed differences in microbiota composition across the
study groups, possibly due to its lesser effect on mucosa-adherent
bacteria compared with fecal microbiota34. We acknowledge that
our results apply to only colonic microbiota and cannot be
extrapolated to the small bowel; UC is a disorder confined to the
colon, and in the case of CD, all of the patients had clinically-
predominant colonic involvement. The contention that micro-
biota disturbances are greater in ileal rather than colonic CD was
not tested in the present study.

The colonic microbiota of patients with IBD exhibited exten-
sive heterogeneity and overlap with that of normal subjects,
making it unlikely that specific compositional patterns or sig-
natures alone would have diagnostic fidelity. It should be noted
that studies outlining the most pronounced microbiota differ-
ences between CD and controls have been sampled either directly
from the inflamed ileum38,39, which harbors a different ecosys-
tem, or, to an even higher degree, from stool of patients with
inflamed ileum36,37. There remains, of course, the potential to
establish microbiota patterns that identify disease subsets of
clinical relevance. Heterogeneity of microbial composition in IBD
may arise, in part, because of heterogeneity of host genotype and
of the microbiota prior to disease onset. Sub-groups of mixed
combinations of CD, UC, and controls have previously been
reported37,46,47. However, the dominance of particular dominant
species in some of the microbiota sub-groups is further testimony
to disease heterogeneity, and illustrates the potential impact that
single species can have on the community-wide microbiota. Host
DNA methylation and gene expression both displayed more
pronounced gradients of inflammation than what was observed
with the microbiota, suggesting that epigenetic factors mediate
interactions between colonic microbiota and host gene expres-
sion. Microbiota-sensitive epigenetic signatures were recently
observed for histone methylation in CD48. While the largest
difference in methylation patterns was attributed to inflamma-
tion, as expected due to disproportionate composition of
inflammatory cells49, we did observe significant epigenome-wide
differences between CD and control groups (visualized by prin-
cipal component 6 in Fig. 4). Moreover, a large number of
immune-related methylation changes were unevenly distributed
across four microbiota clusters, again, potentially affecting
microbiota disease heterogeneity. Sub-types of IBD have recently
been characterized based on host methylation and expression49,
but this study also links microbiota-derived sub-groups of IBD
with host DNA methylation and transcription.

Our combinatory machine-learning analysis also indicated that
microbiota composition together with diet and genotype (even if
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too few samples for GWAS) were better at classifying disease sub-
types than microbiota alone, and that combining microbiota with
epigenome data boosts the power even further. While our study is
based on a single time-point, longitudinal collections of biopsy
samples would likely improve the classification power and also
allow for predictive modeling.

Our species-level resolution allowed detection of anti-
correlated B. dorei and B. vulgatus (Fig. 1a), which are indica-
tive of species-specific niche colonization of colonic crypts50, and/
or competition for dietary inulin believed to reduce inflamma-
tion51. The only classifiable species significantly less common in
both forms of IBD was A. hadrus, whose butyrate-producing
capabilities52 may be protective of colonic inflammation53,54.
Ruminococcus bromii and Eubacterium rectale stimulate the
growth of A. hadrus through cross-feeding from resistant starch
breakdown products55. Interestingly, we observed the same trend
with these symbiotic species whose abundance decreased along
PC1 away from controls (Fig. 1a; Supplementary Table 2).
Anaerostipes has also been reported as one of six genera with
lower abundance in stool from patients with CD56. Contrary to
this, conventional mice gavaged with A. hadrus produced more
butyrate, but when mice were challenged with a colitis stimuli,
they presented an aggravated disease phenotype57. The relevance
of this and our findings are yet to be addressed.

The reason why the inflammation-specific differences observed
in this study (community-wide and within patients), but not in
other smaller studies40–44, did not translate to differential taxa may
be due to the ‘oxygen hypothesis’58. Here, oxygen introduced into
the gastrointestinal tract as a result of inflammation causes
microbial changes regardless of whether a particular site is
inflamed. Cross-contamination between inflamed/non-inflamed
sites (albeit forceps washed between biopsies), and/or microbiota
homogenization following pre-endoscopy bowel preparation, may
also contribute40. Another consideration is the possible impact of
the bowel prep prior to colonoscopy, which may alter fecal (not
mucosal) microbial composition59, but this was uniform for all
patients with active and inactive disease. Some of the microbiota
sub-groups were dominated by anaerobic and mutually exclusive
Bacteroides species. These can, in contrast to most
Escherichia/Shigella/Klebsiella species, exert either commensal,
mutualistic or pathogenic behaviors depending on host-microbe
interactions, bio-geographical location and nutritional availability.
As a known pathobiont in IBD, B. vulgatus (enriched in cluster
3 subjects) activates NF-kB pathways and some strains are
important for colonization and persistence in CD60. Similarly,
entero-toxigenic B. fragilis (dominant species in cluster 1) has been
shown to promote intestinal inflammation and possibly colon
carcinogenesis through activation of NF-kB61. This would result in
increased pro-inflammatory cytokine levels such as IL-8/CXCL8,
which we were able to confirm in vitro for Bacteroides vulgatus.
Such rapid changes in host DNA methylation has previously been
observed in transcriptional response to pathogenic bacteria62.

Similarly, Enterobacteriaceae species are commonly reported as
enriched in IBD (see for review ref. 63), in particular adherent-
invasive E. coli, for which we also detected increased chemokine
secretion (IL-8/CCL20 levels). A recent study showed that
antibiotic-resistant Klebsiella species, which has 100% 16S rRNA
gene sequence identity to the Escherichia/Shigella/Klebsiella RSV
dominant in cluster 2, can from the oral cavity colonize the gut
and elicit inflammation in genetically susceptible hosts64.

In conclusion, host-microbe interactions in human IBD are
far more complex and heterogeneous than those observed in
experimental, inbred, rodent models. Disturbances of the
microbiota are evident in both forms of IBD, particularly CD,
but further disease stratification is likely to require a higher
degree of resolution of microbiome analysis coupled with, and

matched for, lifestyle factors, heterogeneity of the host genotype
and epigenome.

Methods
Study population. The study subjects were all undergoing colonoscopy or sig-
moidoscopy as part of their ongoing clinically required care, and volunteered to
provide additional biopsy material for research at either Cork University Hospital
or the Bons Secours Hospital Cork. These were unselected, consecutively assessed
patients with Crohn’s disease (CD) and ulcerative colitis (UC), and were referred
for colonoscopy on the basis of standard of care, which was either for dysplasia
surveillance as the average duration of disease was ~10 years or for assessment of
colonic inflammatory disease activity. Following bowel preparation with MoviPrep
according to the manufacturer’s instructions, endoscopists were asked to take
samples from areas of active (lesions) inflammation and from normal-appearing
areas. This was a binary task (active inflammation vs non-active areas) and no
attempt was made to assess the degree of inflammation. For those with CD, colonic
biopsies were taken from areas of macroscopically active inflammation (lesional)
and from non-inflamed areas (non-lesional) (n= 50 biopsy pairs). In the case of
patients with sub-total ulcerative colitis (UC; procto-sigmoiditis or left-sided
colitis) paired biopsies were taken from the distal inflamed and proximal non-
inflamed segment; n= 80 biopsy pairs). In all cases, the endoscopic macroscopic
interpretation of lesional active inflammation was correlated with histology and in
no case was there any disagreement. However, an additional 10 subjects (6 from
patients with CD and 4 from UC) were initially enrolled but each had one of their
colon biopsy samples excluded from analysis due to inadequate or insufficient
material or sequencing reads. All patients had well-established diagnoses by con-
ventional criteria65. For both disorders this included consistent clinical features and
exclusion of other differential diagnoses in addition to the demonstration of
chronicity with relapses and remissions over time. For ulcerative colitis, evidence of
inflammation was documented in all cases by prior colonoscopy and histology. In
the case of Crohn’s disease, colonic involvement was likewise confirmed colo-
noscopically, and associated small bowel involvement, where relevant, had been
previously shown by computed tomography (CT) and/or by magnetic resonance
imaging (MRI). Only one individual refused to participate in the study.

The 32 healthy controls consisted primarily of subjects undergoing colonoscopy
for cancer screening or in whom no significant colonic or gastrointestinal disorder
was found. In particular, conditions such as irritable bowel syndrome were
excluded because of reports of their association with abnormalities of the
microbiota66. As with the patients with CD and UC, paired biopsies from different
colonic segments were taken from all but one of the controls. Long-term dietary
habits were captured using food frequency questionnaire based upon the SLAN
study35. The 147 food items were grouped into ordinal data (number of times
consumed per day) from 28 larger food categories. The clinical demographic data
on the study subjects is shown in Table 1. The study was approved by the Cork
hospital ethics committee and written informed consent was provided by all
patients.

Sample processing, sequencing, array, and in vitro experiments. Immediately
after obtainment, biopsies were introduced in 5 mL polypropylene tubes (Sarstedt,
Nümbrecht, Germany) that were previously filled with 3 mL of RNA-later (Qiagen,
Hilden, Germany). Separate disposable forceps were used in all cases. Samples were
kept at 4 °C for 24 h and afterwards stored at −80 °C until nucleic acid purification.
Biopsies in RNA-later were completely defrosted before performing DNA/RNA
purification using the AllPrep DNA/RNA Mini kit (Qiagen). Briefly, biopsies were
extracted from the RNA-later and transferred into a tube with 350 µL of RLT buffer
containing β-mercaptoethanol (Sigma-Aldrich, St Louis, MO, USA), three 3.5 mm
glass beads and 0.25 mL of 0.1 mm glass beads (Biospec, Bartlesville, OK, USA).
Disruption and homogenization was carried out in a MagNA Lyser (Roche,
Penzberg, Germany) twice for 15 s at 6500 rpm followed by DNA/RNA purification
according to the kit manufacturer’s instructions. Purified genomic DNA was finally
eluted in 100 µL of EB buffer, while RNA was eluted in 60 µL of RNase-free water.
DNA and RNA concentrations were measured using a Nano-Drop 2000 Spec-
trophotometer (Thermo Scientific, Waltham, MA, USA) and subsequently samples
stored at −80 °C.

Human intestinal epithelial cells CaCO2Bee1 were grown in high-glucose
Dulbecco’s modified Eagle’s medium (DMEM; Sigma) supplemented with 10%
heat-inactivated fetal bovine serum (FBS; Sigma), 1% penicillin/streptomycin (Pen/
Strep; Sigma), and 0.01% transferrin (Sigma). After trypsinisation, cells were seeded
into 24-well plates and incubated until ~90% confluent followed by an overnight in
serum free medium. Cells were then infected with B. vulgatus ATCC8482, B. fragilis
ATCC25285, E. coli HM605-AIEC strain, S. typhimurium (bacteria positive
control), and a non-inflammatory bacteria strain Lactobacillus rhamnosus GG
(LGG; APC Culture Collection) at 10:1 multiplicity of infection (MOI) and
cultured for 3 h, followed by three times washing with Pen/Strep solution followed
by a further 13-h culture in DMEM supplemented with 10% FBS and 1% Pen/
Strep. After incubation, supernatants were collected and levels of IL-8/CXCL8 and
CCL20/MIP3A levels were measured using an IL-8/CXCL8 ELISA Duo-Set and
CCL20/MIP-3 alpha ELISA Duo-Set from R&D Systems as per manufacturer’s
instructions.
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Library preparation for 16S rRNA gene amplicon sequencing was performed
following the Illumina (San Diego, CA, USA) recommendations with some
modifications. Briefly, aliquots of 200 ng of extracted DNA was subjected to PCR
amplification of the V3-V4 hypervariable region of the 16S rRNA gene in a total
volume of 30 µL. The primers (forward TCGTCGGCAGCGTCAGATGTGTATA
AGAGACAGCCTACGGGNGGCWGCAG; reverse GTCTCGTGGGCTCGGAGA
TGTGTATAAGAGACAGGACTACHVGGGTATCTAATCC) had Illumina
adapters with containing overhang nucleotide sequences added to the gene-specific
sequences67 and were used at a concentration of 0.2 µM. PCR amplification with
the Phusion High-Fidelity DNA polymerase (Thermo Scientific) was performed on
a 2720 Thermal Cycler (Applied Biosystems, Foster City, CA, USA) under the
following conditions: 98 °C for 30 s, followed by 30 cycles of 98 °C for 10 s, 55 °C
for 15 s, 72 °C for 20 s and a final cycle of 72 °C for 5 min. The presence of the
amplified 16S rRNA gene band was verified in agarose gels. Post-PCR products
were purified using Agencourt AMPure XP magnetic beads (Beckman-Coulter,
Brea, CA, USA) and eluted in 50 µL of EB Buffer (Qiagen). After purification, 5 µL
of DNA was amplified in a second PCR employing Nextera XT Index primer
(Illumina). This PCR was run at 98 °C for 30 s, followed by 8 cycles of 98 °C for 10
s, 55 °C for 15 s, 72 °C for 20 s and a final cycle of 72 °C for 5 min. A second
purification step with Agencourt AMPure XP magnetic beads was carried out after
the Nextera PCR. The 16S V3-V4 rRNA gene amplicons containing the Nextera
indexes were finally eluted in 25 µL of EB Buffer, and DNA concentrations were
measured using Quant-iT Picogreen dsDNA assay kit (Thermo Scientific). Total
amplicon yields ranged from 50 ng to 1 µg or ~100 billion to ~2 trillion molecules
(400 bp at 660 g/mole/bp). Pooled libraries were created by adding 50 ng of each
sample. Finally, diluted (30 nM) samples of the libraries were sent for sequencing at
Eurofins Genomics on an Illumina MiSeq for 2 × 300 bp reads.

Prior to genotyping, DNA aliquots were sent on dry ice to Macrogen (Seoul,
South Korea) to be assayed on an Infinium ImmunoArray-24 v2 BeadChip. Intact
genomic DNA was diluted to 50 ng/µL based on concentrations measured using
Quant-iT Picogreen. All samples were hybridized on the microarray according to
the manufacturer’s instructions. Briefly, whole genome amplification (×1000) was
carried out in 200 ng of DNA. Subsequently, the products were fragmented,
precipitated and re-suspended in a formamide-containing hybridization buffer.
Next, samples were denatured at 95 °C for 20 min, and then placed in humidified
containers for a minimum of 16 h at 48 °C allowing SNP loci to hybridize to the
50mer capture probes. Following hybridization, the BeadChip/Te-Flow chamber
assembly was placed on the temperature-controlled Tecan Flowthrough Rack,
where subsequent washing, extension, and staining steps were performed. After
staining, the slides were washed with a low salt wash buffer, immediately coated,
and then imaged on the Illumina iScan Reader. Image intensities were extracted
using Illumina’s GenomeStudio software.

Prior to epigenetics analysis, DNA aliquots were sent on dry ice to Hologic
(Manchester, UK) where they were assayed on Illumina Infinium
HumanMethylation450 BeadChips. Briefly, bisulfite modification was performed
using 96-well EZ DNA methylation kit (Zymo Research) with 650 ng of DNA
sample. Methylation levels were detected using the Infinium 450 K and the
intensity images captured by GenomeStudio (2011.1) Methylation module (1.9.0)
software.

Prior to RNA-Seq experiments, RNA samples were processed with DNase to
remove any DNA traces employing Turbo DNA-free kit (Ambion) following
manufacturer’s instructions. To determine RNA integrity, 1 µL of each RNA
sample obtained after DNase treatment was loaded on RNA 6000 Nano Chip
(Agilent Technologies) according to the manufacturer’s protocol. RNA integrity
number (RIN), rRNA ratio, and concentration were determined by microfluidic
capillary electrophoresis in a 2100 Bioanalyzer system (Agilent Technologies).
Quality was considered acceptable if RIN was ≥6 and rRNA ratio ≥1.5. Aliquots of
RNA samples were sent on dry ice to Macrogen (South Korea) where RNA-Seq was
carried out for host transcriptomics. First, a library was generated from 100 ng of
total RNA were used for sequencing libraries using TruSeq Stranded mRNA
Sample Prep Kit (Illumina), which included an initial step to select and purify
polyadenylated RNA (primarily mRNA) employing oligo-dT-conjugated magnetic
beads Subsequent experimental procedures were similar for both approaches.
Briefly, RNA was purified, fragmented and primed for cDNA synthesis with
random hexamers. Actinomycin D was added to suppress DNA-dependent
synthesis of the second strand. This was followed by second strand cDNA synthesis
using DNA polymerase I, RNase H and dUTP. These cDNA fragments underwent
an end repair process, the addition of a single ‘A’ base, and ligation of the adapters.
The products were subsequently purified and enriched with PCR to create the final
cDNA library. Libraries were analyzed for size distribution using Bioanalyzer
(Agilent Technologies), quantified by qPCR according to the qPCR Quantification
Protocol Guide (Illumina) and qualified using the TapeStation D1000 ScreenTape
(Agilent Technologies). Indexed libraries normalized to 2 nmol/L were sequenced
in an Illumina Hiseq 4000 for 2 × 150 bp reads.

Bioinformatic and statistical analysis. For all sequence data, the quality of the
raw reads was visualized with FastQC v0.11.3 followed by read trimming and
filtering with Trimmomatic v0.3368 to ensure at least an average quality of 25 and a
minimum length of 50 bases after adapter removal, with the reads for 16S rRNA
being further filtered following merging of forward and reverse reads. The reads

were then imported into R v3.3.0 for analysis with the DADA2 package (v1.03)69.
Quality filtering and trimming was performed on both forward and reverse reads
with reads only retained when both were of sufficient quality. DADA2 error cor-
rection was carried out on each forward and reverse reads separately and subse-
quently merged, before bimeras were removed from the retained high quality
merged reads of at least 340 nucleotides. The resulting unique (as opposed to reads
clustered into operational taxonomic units) and error-corrected ribosomal
sequence variants (RSVs) were exported and further chimera filtered using an
reference based chimera filtering implemented in USEARCH v8.1.186170 with the
Chimera-Slayer gold database v2011051971. The non-chimeric RSVs were subse-
quently classified with the RDP-Classifier72 in mothur v1.34.473 against v11.4 of the
RDP database74, and SPINGO75 to species level wherever possible. Only RSVs with
a domain classification of Bacteria or Archaea were kept for further analysis. All
statistical analysis was carried out in R v3.3.0. Alpha diversity and Bray–Curtis
distances were generated using PhyloSeq v1.16.276, where principle coordinates
analysis was generated using the R package Ape v3.5. Differential taxonomic
abundance analysis was carried out with metagenomeSeq v1.14.2 with a zero
inflated log-normal mixture model. Inferred functional capacity was carried out
using Piphillin3 Hierarchical clustering was performed on the Bray–Curtis dis-
tances using the made4 package v1.46.077, and the number of clusters was decided
using the ‘cuttreeHybrid’ function in dynamicTreeCut v1.6378. This method was
demonstrated to both outperform static height cut-offs for hierarchical clustering,
and k-means methods such as Partitioning Around Medoids (PAM) which can
favor assigning memberships to large clusters over smaller. Co-variation between
ordinal dietary data and RSV abundance profiles was assessed by Procrustes
analysis as implemented in Vegan v2.3, and Healthy Food Diversity79 was com-
pared with alpha diversity using Spearman correlation. Spearman correlations were
used for associating metadata and alpha diversity. For healthy controls, the sample
with the largest number of reads was selected. For statistical testing of the complete
cohort, one sample from each IBD patient was chosen at random, while healthy
samples were treated as above. Differences between factors and clusters were
examined using a Fishers test for binary/nominal data (metadata) and using a
Dunns test for continuous data (dietary information). Spearman correlations
between the PC axes with the metadata were also carried out with adonis. Reported
p-values throughout were subjected to Benjamini–Hochberg correction for multi-
ple testing.

The Poly-A captured RNA-Seq reads were aligned to the human genome
(GRCh38) using HiSat v2-2.0.480. Mapped reads were counted using featureCounts
v1.5.081. Transcript counts were tested for differential expression using the R
package DESeq2 v.1.10.182 using a paired-sample model for patient replicates.
Reported p-values throughout were subjected to Benjamini–Hochberg correction
for multiple testing. The PCA was created from transformed counts using
DESeq2’s ‘regularized log’ transformation. Principle Component Analysis was done
with the prcomp function on variance stabilized transformed counts as produced by
DESeq2 v1.12.4 and visualized using ggplot 2.2.1.

Genotypes were available for 139,193 SNPs (142,662 before QC) on all
individuals for use in a host genome association analyses; all individuals had a
genotype call rate of >95%. SNPs that deviated from Hardy–Weinberg equilibrium
(HWE; p < 10−5) or with a minor allele frequency (MAF) < 5% were not considered
further. Following quality control checks, genotypes on 139,193 SNPs remained.
Principal Component Analyses of all SNP genotypes revealed no obvious
population stratification when age and gender were accounted for (Supplementary
Fig. 3b, c); the lack of any population stratification was substantiated by the lack of
an association (p > 0.05) between the first three principal components and disease
status.

For the epigenome-wide association analyses (EWAS), preprocessing and
quality control was implemented using R libraries minfi and minifiData. Beta
values were extracted and filtered, using BMIQ83 for normalization between probe
types with R libraries methylumi and wateRmelon. Probes were removed if the
probe sequence mapped to multiple positions in the genome or mapped to sex
chromosomes. Probes with missing data were also excluded. Quantile
normalization was used to normalize the methylation beta values (to N(0,1)) at
each CpG site across individuals. Principal component analysis was conducted on
the normalized DNA methylation data to identify variables to be included as
covariates and potential batch effects in the DNA methylation dataset. Each
possible covariate considered was correlated with the first methylation PC, which
explains 18.4% of the variance. A linear mixed regression model was used (library
lme4) to test for association between clusters and DNA methylation levels at each
CpG site, and also inflammation and DNA methylation levels at each CpG site,
adjusting for covariates including condition, status, gender, smoking, age,
methylation chip, sample position on methylation chip, hospital, and biopsy
location as fixed effects, and patient ID as a random effect. Smoking was defined as
the regular consumption of cigarettes, cigar or pipe of any frequency was
considered to be active smoking. Total abstinence was required to qualify as a non-
smoker. There were only 6 ex-smokers defined as total abstinence for up to 1 year.
Reported p-values had been corrected for multiple testing using false discovery rate
(FDR—specifically the Benjamini–Hochberg procedure), adjusting for tests on all
466,209 sites available, for inflamed/non-inflamed and for each cluster (clusters
1–4) individually. The epigenetic association analysis was repeated at each set of
significant epigenetic signals reported for microbiome clusters 1, 2, 3, and 4,
incorporating the first 10 PCs as covariates in a linear model of epigenetic
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association, to account for cell heterogeneity. CpG methylation positions were
annotated using the Infinium HumanMethylation450 BeadChip Manifest file.

For the Machine Learning approach, XGBoost36 was used to build, tune and
validate classification models for all possible combinations of microbiota (3222
features), host transcriptome (60,675 transcripts), genotype (264 published IBD
loci), and diet data (28 food categories), resulting in 64,189 attributes when all were
combined. Leave-one-subject-out cross-validation performance assessment was
used whereby samples from all subject, but one, were used for training, whereas the
samples of the remaining subject were used for testing. At no point was a model
used to classify a sample, where another sample from the same subject has been
used to build the model. To eliminate within-subject bias (from the paired nature
of samples) in every leave-one-subject-out iteration, each sample from the tested
subject was separately used. Only one sample per subject was randomly chosen to
represent the training data, while ensuring even representation of inflammation
status. The main Xgboost parameters tuned for each model were the percentage of
attributes taken for growing each tree, the percentage of data taken for growing
each tree, the maximum depth of each tree, the learning rate and the number of
trees. Receiver operating characteristic (ROC) curves was assessed against null
using roc.test from the pROC package84.

Reporting summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.

Data availability
Sequence and array data are available at NCBI BioProject PRJNA398187 and NCBI GEO
GSE103027 and GSE105120. The corresponding metadata is available in Supplementary
Table 1, including Montreal classification85. More detailed descriptive histology will be
available upon request in accordance with ethical guidelines.

Code availability
The syntax used to carry out the analysis is available at https://github.com/
ClaessonLabUCC/Colonic-microbiota-is-associated-with-inflammation-and-host-
epigenomic-alterations-in-ibd.
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