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Abstract: An efficient access to the novel 5-(het)arylamino-1,2,3-triazole derivatives has been devel-
oped. The method is based on Buchwald–Hartwig cross-coupling reaction of 5-Amino or 5-Halo-
1,2,3-triazoles with (het)aryl halides and amines, respectively. As result, it was found that palladium
complex [(THP-Dipp)Pd(cinn)Cl] bearing expanded-ring N-heterocyclic carbene ligand is the most
active catalyst for the process to afford the target molecules in high yields.
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1. Introduction

Nitrogen containing heterocycles, in particular five-membered azole systems, are
common structural elements of many natural and synthetic biological active compounds.
They serve as universal scaffolds for creating new organic molecules with set properties
especially for the needs of biomolecular and medicinal chemistry as well as for materi-
als science [1–6]. In the last few decades fully substituted and variously functionalized
1,2,3-triazoles, whose structure fragment is not found in nature, became one of the most
interesting and widely used class of compounds due to their unique physicochemical
properties and synthetic accessibility [7,8]. These compounds possess remarkable thermal
and metabolic stability, large dipole moment, and capability for H-bond formation mak-
ing them effective peptide bond isosteres [9–11] that result in a variety of applications in
diverse fields of chemistry [12–20]. Among fully substituted 1,2,3-triazoles special atten-
tion is focused on 5-amino-1,2,3-triazoles and their 5-arylamino derivatives, which exhibit
very promising biological properties such as antiviral, antifungal, antiproliferative and
antimetastatic activities. They also serve as activators of potassium channel andchelating
agents and have a potential for treating inflammatory kidney diseases (Figure 1) [21–26].

Since the pioneering Dimroth works published in the beginning of the 20th cen-
tury [27,28], keteniminate-mediated 1,3-dipolar cycloaddition (DCR) of organic azides with
nitriles bearing an active methylene group provide one of the most efficient and straightfor-
ward methods to access to the 5-amino-1,2,3-triazole synthesis up to date (Scheme 1) [29–32].

Unfortunately this approach is not applicable to 5-amino substituted 1,2,3-triazoles
including 5-arylamino derivatives. The scope of the existing methods for the synthesis
of these compounds is limited to a few examples and has a number of disadvantages.
Thus, previously described methods for the preparation of 5-arylamino-1,2,3-triazoles
include: (1) interaction between hard accessible carbodiimides and diazo compounds [21];
(2) three-component amine/enolizible ketone/azide reaction leading to low yields of the
target products [33]; (3) high temperature thermolysis of the 5-triazenyl-1,2,3-triazoles to
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give a large amount of 2H-1,2,3-triazole as a by-product [34]; (4) base-mediated hydrolysis
of 1,2,3-triazolo[1,5-a]quinazolin-5(4H)-ones [35] as well as Rh-catalyzed azide-alkyne
cycloaddition of internal ynamides to afford N,N-disubstituted amino-1,2,3-triazoles [26].
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Scheme 1. 1,3-Dipolar cycloaddition reaction (DCR) between aryl azides and monosubstituted
acetonitriles.

On the other hand, in the past 30 years, palladium-catalyzed cross-coupling reac-
tions leading to the formation of new C-N bonds have become a widely used tool both
in academia and in industry [36,37]. This Buchwald–Hartwig amination is the most pop-
ular cross-coupling reaction [38–40] (Figure 2) to access a wide range of N-mono- and
N,N-disubstituted arylamines [41]. Despite impressive advances in the field, coupling of
heteroaromatic amines with (het)aryl halides still remains problematic, often requiring
long reaction times and time-consuming searches for optimal conditions and catalytic
systems [3,42–45]. tThere are no examples of Buchwald–Hartwig cross-coupling of 5-halo-
and 5-amino-1,2,3-triazoles with (het)aryl amines and halides, respectively, to afford N-aryl
amino derivatives except a report on synthesis of related 4-amino-1,2,3-triazoles (with just
3 examples) [46].

Therefore, taking into account the growing popularity of 5-amino-1,2,3-triazole deriva-
tives in medical chemistry, the development of new efficient and robust approaches to their
synthesis remains of great interest.
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We have recently developed effective methods for obtaining 5-amino- [47] and 5-
halo-1,2,3-triazoles [48] via one pot azide-nitrile cycloaddition/Dimroth rearrangement
(Scheme 2a) and Cu(I)-catalyzed [3+2] cycloaddition reaction of Cu(I)-acetylide and aryl
azides with subsequent Cu-triazolide halogenation (Scheme 2b). Based on our experience
in Pd-catalyzed cross-couplings of hetaryl halides [49–52] and halo-1,2,3-triazoles [53,54]
we would like to provide details of an efficient route to N-arylamino-1,2,3- triazoles using
the Buchwald–Hartwig reaction of 5-amino or 5-halo-1,2,3-triazoles (Scheme 2c).
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2. Results and Discussion

We commenced our investigation with the reaction between 1-benzyl-4-phenyl-1,2,3-
triazole-5-amine and 1-bromo-4-methylbenzene to screen for optimal conditions for the
cross-coupling (Table 1). A series of palladium complexes with expanded-ring NHC ligands
(Figure 3) were initially tested as they proved to be competent catalysts for Buchwald–
Hartwig amination of (het)aryl halides with primary aryl amines [50,51]. We found that the
reaction performed in the presence of 1.0 mol% (THP-Dipp)Pd(cinn)Cl and 1.2 equiv. of
sodium tert-butoxide in 1,4-dioxane at 120 ◦C for 24 h yielded the desired 5-(p-tolyl)amino-
1,2,3-triazole 2a in 53% yield (Table 1, entry 1). The reaction did not reveal the full conver-
sion of the starting materials (TLC and 1H NMR analysis). The prolonged reaction time
did not result in a better yield of the product. The increase of the Pd-catalyst loading up to
2 mol% and the base up to 3.0 equiv. almost led to quantitative formation of 2a (entry 3).
Other NHC-Pd complexes with allyl and metallyl ligands exhibited slightly less activity
under tested conditions (entries 4, 5). The traditional Pd(OAc)2/phosphine-based catalytic
systems [55] were also tested, exhibiting insufficient activity for the process (entries 6–9).

Table 1. Screening of catalytic systems in the BHA reaction 1.
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With these optimized conditions in hand, different 5-amino-1,2,3-triazoles were in-
volved in the Buchwald–Hartwig cross-coupling reactions with a wide range of aromatic
and heteroaromatic halides bearing various substituents in their structures. As a result, we
found that in all studied cases the nature and location of the substituent in the (het)aryl core
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of both triazole and halide substrates doesn’t not significantly influence the reaction leading
to the formation of the corresponding 5-amino-1,2,3-triazoles derivatives 2a–p including
sterically hindered ortho-Me aryl derivatives 2b, 2f, 2j in good and excellent yields. It is
noteworthy that the reaction works perfectly for both (het)aryl bromides and chlorides
(Scheme 3).
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Scheme 3. Buchwald–Hartwig cross-coupling of 5-amino-1,2,3-triazoles 1. 1 Conditions: 5-amino-
1,2,3-triazole (0.5 mmol); (het)aryl-Hal (1 equiv.); (THP-Dipp)Pd(cinn)Cl (2 mol %); t-BuONa (3 equiv.);
1,4-dioxane (2.5 mL); 120 ◦C under argon 24 h; 2 4,6-Dichloropyrimidine (0.25 mmol); 5-aminotriazole
(2.0 equiv.); (THP-Dipp)Pd(cinn)Cl (4 mol %), t-BuONa (6 equiv.).

Then, we studied the reversed variant of the Buchwald–Hartwig cross-coupling re-
action, namely the interaction of 5-halo-1,2,3-triazoles with aryl amines. Fortunately, we
found that the conditions for aminotriazole—aryl halide coupling proved to also be suit-
able for the combination of halotriazole—aryl amine. Thus, corresponding derivatives of
5-arylamino-1,2,3-triazole such as N-(p-tolylamino) (2a, 2q) and N-(2,4-dimethylamino) (2r)
triazoles were obtained in good to excellent yields. Arylamines with electron-withdrawing
CF3 group(s) in aromatic ring (2s and 2t) can also be successfully used for this reaction.
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Example 2u demonstrates that the method is also applicable for the preparation of 4-
(N-arylamino)-1,2,3-triazoles from the corresponding 4-halo-1,2,3-triazoles, while their
synthesis was previously described via coupling of 4-amino-1,2,3-triazoles [46] (Scheme 4).
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4- or 5-halo-1,2,3-triazole (0.5 mmol); aryl-NH2 (1 equiv.); (THP-Dipp)Pd(cinn)Cl (2 mol %); t-BuONa
(3 equiv.); 1,4-dioxane (2.5 mL); 120 ◦C under argon, 24 h.

3. Materials and Methods
3.1. General Information

All the reactions were carried out under argon atmosphere, and the solvents were dis-
tilled from appropriate drying agents prior to use. All reagents were used as
purchased from Sigma-Aldrich (Munich, Germany). In the study, 1,4-disubstituted-5-
chloro- [48] and 5-amino-1,2,3-triazoles [47] and 1-benzyl-4-bromo-5-methyl-1H-1,2,3-
triazole [56] were synthesized according to published procedures. (THP-Dipp)Pd(cinn)
Cl [57], (THP-Dipp)Pd(allyl)Cl [58] and (THP-Dipp)Pd(metallyl)Cl were synthesized ac-
cording to published procedure [57] from corresponding NHC-silver (I) complexes. Ana-
lytical data was in accordance with the literature data. Analytical TLC was performed with
Merck silica gel 60 F 254 plates (Darmstadt, Germany); visualization was accomplished
with UV light or iodine vapors. Chromatography was carried out using Merck silica gel
(Kieselgel 60, 0.063–0.200 mm, Darmstadt, Germany) and petroleum ether/ethyl acetate
as an eluent. The NMR spectra were obtained with Bruker AV-400, Karlsruhe, Germany)
(400 MHz 1H, 101 MHz 13C, 376 MHz 19F) using TMS and CCl3F as references for 1H
and 19F NMR spectra. respectively. Chemical shifts for 1H and 13C were reported as δ

values (ppm).
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3.2. General Procedure for Preparation of N-arylamino-1,2,3-triazoles via BHA Reaction of
5-Amino or 4(5)-halo-1,2,3-triazoles

Under argon in a Schlenk tube with magnetic stirring bar, corresponding amino- or
halo-1,2,3-triazole (0. 5 mmol), (het)arylhalide or primary amine (1.0 equiv.) were dissolved
in dry 1,4-dioxane (2.5 mL) at room temperature. The solution was degassed with three
freeze-pump-thaw cycles. Then 6.6 mg (0.01 mmol, 2 mol%) of (THP-Dipp)Pd(cinn)Cl and
sodium tert-butoxide (3.0 equiv.) were added to the reaction mixture, and the reaction
mixture was stirred at 120 ◦C (oil bath temperature) for 18 h. After cooling to room tem-
perature, the reaction mixture was poured into water and extracted with dichloromethane
(3 × 10 mL). The combined organic phases were washed with brine, dried over MgSO4,
filtered and concentrated under reduced pressure. Purification by chromatography
(eluent—hexane: ethyl acetate 4:1) gave analytically pure corresponding N-arylamino-
1,2,3-triazole as a white solid.

3.3. Preparation and Characterization of Novel Compounds

(THP-Dipp)Pd(methallyl)Cl
The title compound was synthesized according to literature procedure [58] from

(6-Dipp)AgBr and (2-Methylallyl)palladium(II) chloride dimer as a white powder (88%
yield). 1H NMR (400 MHz, Acetone-d6) δ 7.40–7.11 (m, 6H), 3.85–3.56 (m, 7H), 3.33–3.18
(m, 2H), 2.88 (s, 1H), 2.67–2.59 (m, 2H), 2.53–2.37 (m, 2H), 1.51–1.15 (m, 24H), 1.02 (s, 2H).
13C DEPTQ-135 NMR (Acetone, 101 MHz): δ 214.8, 146.6, 143.8, 130.0, 129.1, 128.2, 125.5,
70.3, 50.3, 49.2, 47.0, 47.0, 29.1, 27.1, 25.2, 24.9, 22.9, 22.1, 21.2, 21.0. HRMS (ESI): calcd for
C32H47N2Pd [(THP-Dipp)Pd(methallyl)]+: 563.2775, 564.2788, 565.2781, 566.2808, 567.2777;
found: 563.2776, 564.2795, 565.2788, 566.2810, 567.2780.

1-benzyl-5-(p-tolylamino)-4-phenyl-1H-1,2,3-triazole (2a)
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From 1-benzyl-4-phenyl-1H-1,2,3-triazol-5-amine and 1-bromo-4-methylbenzene
(165 mg, 97% yield) or from 1-benzyl-5-chloro-4-phenyl-1H-1,2,3-triazole and p-toluidine
(163 mg, 96% yield), following general procedure, 2a was obtained as a white solid, m.p.
181–182 ◦C. 1H NMR (400 MHz, Chloroform-d) δ 7.82 (d, J = 7.0 Hz, 2H), 7.34–7.26 (m, 6H),
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calcd for C22H21N4 [M+H]+: 341.1761; found: 341.1769.

1-benzyl-5-(o-tolylamino)-4-phenyl-1H-1,2,3-triazole (2b)
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193–195 °C. 1H NMR (400 MHz, Chloroform-d) δ 7.76 (d, J = 7.0 Hz, 2H), 7.33–7.25 (m, 6H), 
7.18–7.12 (m, 3H), 6.98 (t, J = 7.5 Hz, 1H), 6.83 (t, J = 7.4 Hz, 1H), 6.25 (d, J = 8.1 Hz, 1H), 
5.33 (s, 2H), 4.82 (s, 1H), 2.12 (s, 3H). 13C{1H} NMR (101 MHz, Chloroform-d) δ 141.5, 141.0, 
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1-benzyl-5-(phenylamino)-4-phenyl-1H-1,2,3-triazole (2c) 

From 1-benzyl-4-phenyl-1H-1,2,3-triazol-5-amine and 1-bromo-2-methylbenzene, fol-
lowing general procedure, 2b (165 mg, 97% yield) was obtained as a white solid, m.p.
193–195 ◦C. 1H NMR (400 MHz, Chloroform-d) δ 7.76 (d, J = 7.0 Hz, 2H), 7.33–7.25 (m, 6H),
7.18–7.12 (m, 3H), 6.98 (t, J = 7.5 Hz, 1H), 6.83 (t, J = 7.4 Hz, 1H), 6.25 (d, J = 8.1 Hz, 1H),
5.33 (s, 2H), 4.82 (s, 1H), 2.12 (s, 3H). 13C{1H} NMR (101 MHz, Chloroform-d) δ 141.5, 141.0,
134.7, 131.9, 131.1, 130.4, 129.0, 128.8, 128.5, 128.1, 127.8, 127.6, 125.9, 123.3, 120.7, 112.7, 51.8,
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17.5. IR (υ/cm−1): 3271 (W), 1606 (S), 1586 (S), 1571 (S), 1514 (S), 1496 (S), 1448 (S), 1411 (S),
1362 (S), 1294 (S), 1251 (S), 1159 (S), 1110 (S), 1073 (S), 1006 (S), 769 (VS), 747 (VS), 734 (VS),
717 (VS). HRMS (ESI): calcd for C22H21N4 [M+H]+: 341.1761; found: 341.1764.

1-benzyl-5-(phenylamino)-4-phenyl-1H-1,2,3-triazole (2c)
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1-benzyl-5-((4-fluoro-2-methylphenyl)amino)-4-phenyl-1H-1,2,3-triazole (2f) 

 
From 1-benzyl-4-phenyl-1H-1,2,3-triazol-5-amine and 1-bromo-4-fluoro- 2-

methylbenzene, following general procedure, 2f (177 mg, >99% yield) was obtained as a 
white solid, m.p. 216–217 °C. 1H NMR (400 MHz, Chloroform-d) δ 7.74 (dd, J = 8.2, 1.2 Hz, 
2H), 7.33 (t, J = 7.3 Hz, 2H), 7.31–7.27 (m, 4H), 7.16–7.12 (m, 2H), 6.90 (dd, J = 9.1, 2.7 Hz, 
1H), 6.70–6.60 (m, 1H), 6.15 (dd, J = 8.7, 4.8 Hz, 1H), 5.35 (s, 2H), 4.74 (s, 1H), 2.12 (s, 3H). 
13C{1H} NMR (101 MHz, Chloroform-d) δ 157.4 (d, J = 239.0 Hz), 140.7, 137.5 (d, J = 2.0 Hz), 
134.6, 132.1, 130.4, 129.0, 128.9, 128.6, 128.2, 127.8, 125.9, 125.4 (d, J = 7.6 Hz), 117.8 (d, J = 
22.8 Hz), 114.1 (d, J = 8.2 Hz), 113.6 (d, J = 22.3 Hz), 51.8, 17.6. 19F NMR (376 MHz, Chloro-
form-d) δ -123.92. IR (υ/cm−1): 3241 (W), 1610 (S), 1588 (S), 1516 (S), 1498 (S), 1446 (S), 1411 
(S), 1362 (S), 1268 (S), 1239 (S), 1199 (S), 1007 (S), 953 (S), 856 (VS), 800 (VS), 771 (VS), 737 
(VS), 714 (VS), 697 (VS). HRMS (ESI): calcd for C22H20FN4 [M+H]+: 359.1667; found: 
359.1670. 

1-tert-butyl-5-(phenylamino)-4-phenyl-1H-1,2,3-triazole (2g) 

 
From 1-tert-butyl-4-phenyl-1H-1,2,3-triazol-5-amine and bromobenzene, following 

general procedure, 2g (136 mg, 93% yield) was obtained as a white solid, m.p. 228–229 °C. 
1H NMR (400 MHz, Chloroform-d) δ 7.76 (d, J = 7.3 Hz, 2H), 7.25–7.19 (m, 3H), 7.16 (t, J = 
7.1 Hz, 2H), 6.81 (t, J = 7.3 Hz, 1H), 6.55 (d, J = 7.6 Hz, 2H), 5.58 (s, 1H), 1.68 (s, 9H). 13C{1H} 
NMR (101 MHz, Chloroform-d) δ 144.6, 142.5, 131.6, 130.2, 129.7, 128.6, 127.9, 126.2, 120.1, 
114.1, 61.5, 29.8. IR (υ/cm−1): 3346 (W), 3056 (W), 2980 (W), 2931 (W), 1604 (S), 1566 (S), 1498 
(S), 1423 (S), 1370 (S), 1309 (S), 1233 (S), 1183 (S), 990 (VS), 768 (VS), 746 (VS), 717 (VS), 690 
(VS). HRMS (ESI): calcd for C18H21N4 [M+H]+: 293.1761; found: 293.1766. 

1-benzyl-5-((pyridine-2-yl)amino)-4-phenyl-1H-1,2,3-triazole (2h) 

 
From 1-benzyl-4-phenyl-1H-1,2,3-triazol-5-amine and 2-bromopyridine, following 

general procedure, (2h) (127 mg, 77% yield) was obtained as a white solid, m.p. 173–174 
°C. 1H NMR (400 MHz, DMSO-d6) δ 8.93 (s, 1H), 7.99–7.96 (m, 1H), 7.77 (d, J = 7.0 Hz, 2H), 
7.57–7.52 (m, 1H), 7.37 (t, J = 7.5 Hz, 2H), 7.32–7.25 (m, 4H), 7.19 (dd, J = 7.6, 1.8 Hz, 2H), 
6.76–6.72 (m, 1H), 6.62 (d, J = 8.5 Hz, 1H), 5.40 (s, 2H). 13C{1H} NMR (101 MHz, Chloroform-
d) δ 156.1, 148.0, 141.2, 138.6, 134.6, 130.4, 130.2, 128.8, 128.7, 128.4, 128.2, 128.1, 125.9, 115.9, 
107.1, 51.6. IR (υ/cm−1): 3140 (W), 3082 (W), 3062 (W), 2914 (M), 2856 (M), 1588 (S), 1522 (S), 
1500 (S), 1436 (S), 1361 (S), 1319 (S), 1233 (S), 1213 (S), 1153 (VS), 1101 (S), 1074 (S), 996 (VS), 
783 (VS), 772 (VS), 738 (VS). HRMS (ESI): calcd for C20H18N5 [M+H]+: 328.1557; found: 
328.1561. 

  

From 1-benzyl-4-phenyl-1H-1,2,3-triazol-5-amine and 2-bromopyridine, following
general procedure, (2h) (127 mg, 77% yield) was obtained as a white solid, m.p. 173–174 ◦C.
1H NMR (400 MHz, DMSO-d6) δ 8.93 (s, 1H), 7.99–7.96 (m, 1H), 7.77 (d, J = 7.0 Hz, 2H),
7.57–7.52 (m, 1H), 7.37 (t, J = 7.5 Hz, 2H), 7.32–7.25 (m, 4H), 7.19 (dd, J = 7.6, 1.8 Hz, 2H),
6.76–6.72 (m, 1H), 6.62 (d, J = 8.5 Hz, 1H), 5.40 (s, 2H). 13C{1H} NMR (101 MHz, Chloroform-
d) δ 156.1, 148.0, 141.2, 138.6, 134.6, 130.4, 130.2, 128.8, 128.7, 128.4, 128.2, 128.1, 125.9, 115.9,
107.1, 51.6. IR (υ/cm−1): 3140 (W), 3082 (W), 3062 (W), 2914 (M), 2856 (M), 1588 (S), 1522
(S), 1500 (S), 1436 (S), 1361 (S), 1319 (S), 1233 (S), 1213 (S), 1153 (VS), 1101 (S), 1074 (S),
996 (VS), 783 (VS), 772 (VS), 738 (VS). HRMS (ESI): calcd for C20H18N5 [M+H]+: 328.1557;
found: 328.1561.
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1-benzyl-5-((4-tert-butylphenyl))amino)-4-phenyl-1H-1,2,3-triazole (2i)
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1-benzyl-5-((4-tert-butylphenyl))amino)-4-phenyl-1H-1,2,3-triazole (2i) 

 
From 1-benzyl-4-phenyl-1H-1,2,3-triazol-5-amine and 1-bromo-4-tert-butylbenzene, 

following general procedure, 2i (172 mg, 90% yield) was obtained as a white solid, m.p. 
169–171 °C. 1H NMR (400 MHz, Chloroform-d) δ 7.81 (d, J = 7.0 Hz, 2H), 7.31–7.24 (m, 6H), 
7.19–7.14 (m, 4H), 6.46 (d, J = 8.7 Hz, 2H), 5.33 (s, 2H), 5.07 (s, 1H), 1.27 (s, 9H). 13C{1H} 
NMR (101 MHz, Chloroform-d) δ 143.6, 141.0, 141.0, 134.8, 132.1, 130.4, 128.9, 128.8, 128.4, 
128.0, 127.9, 126.6, 126.0, 114.1, 51.4, 34.2, 31.6. IR (υ/cm−1): 3253 (M), 3054 (M), 3034 (M), 
2956 (M), 2900 (M), 2857 (M), 1607 (S), 1587 (S), 1568 (S), 1515 (VS), 1400 (S), 1360 (S), 1252 
(S), 1190 (S), 922 (S), 814 (S), 770 (VS), 737 (VS), 719 (VS), 695 (VS). HRMS (ESI): calcd for 
C25H27N4 [M+H]+: 383.2230; found: 383.2241. 

1-benzyl-5-(mesitylamino)-4-phenyl-1H-1,2,3-triazole (2j) 

 
From 1-benzyl-4-phenyl-1H-1,2,3-triazol-5-amine and 2-bromo- 1,3,5-trimethylben-

zene, following general procedure, 2j (146 mg, 79% yield) was obtained as a white solid, 
m.p. 132–133 °C. 1H NMR (400 MHz, Chloroform-d) δ 7.71 (d, J = 7.3 Hz, 2H), 7.31–7.20 
(m, 6H), 6.89 (dd, J = 7.2, 2.2 Hz, 2H), 6.72 (s, 2H), 5.15 (s, 2H), 4.93 (s, 1H), 2.23 (s, 3H), 1.75 
(s, 6H). 13C{1H} NMR (101 MHz, Chloroform-d) δ 135.8, 135.1, 134.9, 134.9, 133.6, 131.2, 
130.1, 129.8, 128.8, 128.4, 128.2, 127.2, 127.1, 126.2, 51.6, 20.7, 18.2. IR (υ/cm−1): 3339 (M), 
3060 (W), 3032 (M), 2913 (M), 2853 (W), 1606 (S), 1586 (S), 1571 (S), 1485 (S), 1445 (S), 1421 
(S), 1361 (S), 1317 (S), 1250 (S), 1073 (S), 1029 (S), 994 (S), 840 (S), 769 (VS), 724 (VS), 694 
(VS). HRMS (ESI): calcd for C24H25N4 [M+H]+: 369.2074; found: 369.2074. 

1-tert-butyl-5-((pyridine-3-yl)amino)-4-phenyl-1H-1,2,3-triazole (2k) 

 
From 1-tert-butyl-4-phenyl-1H-1,2,3-triazol-5-amine and 3-chloropyridine, following 

general procedure, 2k (110 mg, 75% yield) was obtained as a white solid, m.p. 233–234 °C. 
1H NMR (400 MHz, DMSO-d6) δ 8.27 (s, 1H), 7.94 (s, 1H), 7.90 (d, J = 4.7 Hz, 1H), 7.73 (d, J 
= 7.9 Hz, 2H), 7.32 (t, J = 7.6 Hz, 2H), 7.24 (t, J = 7.6 Hz, 1H), 7.08 (dd, J = 8.3, 4.6 Hz, 1H), 
6.73 (d, J = 8.0 Hz, 1H), 1.65 (s, 9H). 13C{1H} NMR (101 MHz, DMSO-d6) δ 141.6, 140.9, 139.9, 
136.0, 131.1, 130.3, 128.6, 127.8, 125.4, 124.0, 119.5, 60.7, 29.1. IR (υ/cm−1): 3252 (W), 3002 
(W), 2974 (W), 1589 (S), 1580 (S), 1508 (S), 1477 (S), 1449 (S), 1370 (S), 1299 (S), 1239 (S), 990 
(VS), 800 (VS), 772 (VS), 709 (VS). HRMS (ESI) calcd for C17H20N5 [M+H]+: 294.1719; found: 
294.1718. 

  

From 1-benzyl-4-phenyl-1H-1,2,3-triazol-5-amine and 1-bromo-4-tert-butylbenzene,
following general procedure, 2i (172 mg, 90% yield) was obtained as a white solid, m.p.
169–171 ◦C. 1H NMR (400 MHz, Chloroform-d) δ 7.81 (d, J = 7.0 Hz, 2H), 7.31–7.24 (m, 6H),
7.19–7.14 (m, 4H), 6.46 (d, J = 8.7 Hz, 2H), 5.33 (s, 2H), 5.07 (s, 1H), 1.27 (s, 9H). 13C{1H}
NMR (101 MHz, Chloroform-d) δ 143.6, 141.0, 141.0, 134.8, 132.1, 130.4, 128.9, 128.8, 128.4,
128.0, 127.9, 126.6, 126.0, 114.1, 51.4, 34.2, 31.6. IR (υ/cm−1): 3253 (M), 3054 (M), 3034 (M),
2956 (M), 2900 (M), 2857 (M), 1607 (S), 1587 (S), 1568 (S), 1515 (VS), 1400 (S), 1360 (S), 1252
(S), 1190 (S), 922 (S), 814 (S), 770 (VS), 737 (VS), 719 (VS), 695 (VS). HRMS (ESI): calcd for
C25H27N4 [M+H]+: 383.2230; found: 383.2241.

1-benzyl-5-(mesitylamino)-4-phenyl-1H-1,2,3-triazole (2j)
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1-benzyl-5-((4-tert-butylphenyl))amino)-4-phenyl-1H-1,2,3-triazole (2i) 

 
From 1-benzyl-4-phenyl-1H-1,2,3-triazol-5-amine and 1-bromo-4-tert-butylbenzene, 

following general procedure, 2i (172 mg, 90% yield) was obtained as a white solid, m.p. 
169–171 °C. 1H NMR (400 MHz, Chloroform-d) δ 7.81 (d, J = 7.0 Hz, 2H), 7.31–7.24 (m, 6H), 
7.19–7.14 (m, 4H), 6.46 (d, J = 8.7 Hz, 2H), 5.33 (s, 2H), 5.07 (s, 1H), 1.27 (s, 9H). 13C{1H} 
NMR (101 MHz, Chloroform-d) δ 143.6, 141.0, 141.0, 134.8, 132.1, 130.4, 128.9, 128.8, 128.4, 
128.0, 127.9, 126.6, 126.0, 114.1, 51.4, 34.2, 31.6. IR (υ/cm−1): 3253 (M), 3054 (M), 3034 (M), 
2956 (M), 2900 (M), 2857 (M), 1607 (S), 1587 (S), 1568 (S), 1515 (VS), 1400 (S), 1360 (S), 1252 
(S), 1190 (S), 922 (S), 814 (S), 770 (VS), 737 (VS), 719 (VS), 695 (VS). HRMS (ESI): calcd for 
C25H27N4 [M+H]+: 383.2230; found: 383.2241. 

1-benzyl-5-(mesitylamino)-4-phenyl-1H-1,2,3-triazole (2j) 

 
From 1-benzyl-4-phenyl-1H-1,2,3-triazol-5-amine and 2-bromo- 1,3,5-trimethylben-

zene, following general procedure, 2j (146 mg, 79% yield) was obtained as a white solid, 
m.p. 132–133 °C. 1H NMR (400 MHz, Chloroform-d) δ 7.71 (d, J = 7.3 Hz, 2H), 7.31–7.20 
(m, 6H), 6.89 (dd, J = 7.2, 2.2 Hz, 2H), 6.72 (s, 2H), 5.15 (s, 2H), 4.93 (s, 1H), 2.23 (s, 3H), 1.75 
(s, 6H). 13C{1H} NMR (101 MHz, Chloroform-d) δ 135.8, 135.1, 134.9, 134.9, 133.6, 131.2, 
130.1, 129.8, 128.8, 128.4, 128.2, 127.2, 127.1, 126.2, 51.6, 20.7, 18.2. IR (υ/cm−1): 3339 (M), 
3060 (W), 3032 (M), 2913 (M), 2853 (W), 1606 (S), 1586 (S), 1571 (S), 1485 (S), 1445 (S), 1421 
(S), 1361 (S), 1317 (S), 1250 (S), 1073 (S), 1029 (S), 994 (S), 840 (S), 769 (VS), 724 (VS), 694 
(VS). HRMS (ESI): calcd for C24H25N4 [M+H]+: 369.2074; found: 369.2074. 

1-tert-butyl-5-((pyridine-3-yl)amino)-4-phenyl-1H-1,2,3-triazole (2k) 

 
From 1-tert-butyl-4-phenyl-1H-1,2,3-triazol-5-amine and 3-chloropyridine, following 

general procedure, 2k (110 mg, 75% yield) was obtained as a white solid, m.p. 233–234 °C. 
1H NMR (400 MHz, DMSO-d6) δ 8.27 (s, 1H), 7.94 (s, 1H), 7.90 (d, J = 4.7 Hz, 1H), 7.73 (d, J 
= 7.9 Hz, 2H), 7.32 (t, J = 7.6 Hz, 2H), 7.24 (t, J = 7.6 Hz, 1H), 7.08 (dd, J = 8.3, 4.6 Hz, 1H), 
6.73 (d, J = 8.0 Hz, 1H), 1.65 (s, 9H). 13C{1H} NMR (101 MHz, DMSO-d6) δ 141.6, 140.9, 139.9, 
136.0, 131.1, 130.3, 128.6, 127.8, 125.4, 124.0, 119.5, 60.7, 29.1. IR (υ/cm−1): 3252 (W), 3002 
(W), 2974 (W), 1589 (S), 1580 (S), 1508 (S), 1477 (S), 1449 (S), 1370 (S), 1299 (S), 1239 (S), 990 
(VS), 800 (VS), 772 (VS), 709 (VS). HRMS (ESI) calcd for C17H20N5 [M+H]+: 294.1719; found: 
294.1718. 

  

From 1-benzyl-4-phenyl-1H-1,2,3-triazol-5-amine and 2-bromo- 1,3,5-trimethylbenzene,
following general procedure, 2j (146 mg, 79% yield) was obtained as a white solid, m.p.
132–133 ◦C. 1H NMR (400 MHz, Chloroform-d) δ 7.71 (d, J = 7.3 Hz, 2H), 7.31–7.20 (m, 6H),
6.89 (dd, J = 7.2, 2.2 Hz, 2H), 6.72 (s, 2H), 5.15 (s, 2H), 4.93 (s, 1H), 2.23 (s, 3H), 1.75 (s, 6H).
13C{1H} NMR (101 MHz, Chloroform-d) δ 135.8, 135.1, 134.9, 134.9, 133.6, 131.2, 130.1, 129.8,
128.8, 128.4, 128.2, 127.2, 127.1, 126.2, 51.6, 20.7, 18.2. IR (υ/cm−1): 3339 (M), 3060 (W), 3032
(M), 2913 (M), 2853 (W), 1606 (S), 1586 (S), 1571 (S), 1485 (S), 1445 (S), 1421 (S), 1361 (S), 1317
(S), 1250 (S), 1073 (S), 1029 (S), 994 (S), 840 (S), 769 (VS), 724 (VS), 694 (VS). HRMS (ESI):
calcd for C24H25N4 [M+H]+: 369.2074; found: 369.2074.

1-tert-butyl-5-((pyridine-3-yl)amino)-4-phenyl-1H-1,2,3-triazole (2k)
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From 1-benzyl-4-phenyl-1H-1,2,3-triazol-5-amine and 1-bromo-4-tert-butylbenzene, 

following general procedure, 2i (172 mg, 90% yield) was obtained as a white solid, m.p. 
169–171 °C. 1H NMR (400 MHz, Chloroform-d) δ 7.81 (d, J = 7.0 Hz, 2H), 7.31–7.24 (m, 6H), 
7.19–7.14 (m, 4H), 6.46 (d, J = 8.7 Hz, 2H), 5.33 (s, 2H), 5.07 (s, 1H), 1.27 (s, 9H). 13C{1H} 
NMR (101 MHz, Chloroform-d) δ 143.6, 141.0, 141.0, 134.8, 132.1, 130.4, 128.9, 128.8, 128.4, 
128.0, 127.9, 126.6, 126.0, 114.1, 51.4, 34.2, 31.6. IR (υ/cm−1): 3253 (M), 3054 (M), 3034 (M), 
2956 (M), 2900 (M), 2857 (M), 1607 (S), 1587 (S), 1568 (S), 1515 (VS), 1400 (S), 1360 (S), 1252 
(S), 1190 (S), 922 (S), 814 (S), 770 (VS), 737 (VS), 719 (VS), 695 (VS). HRMS (ESI): calcd for 
C25H27N4 [M+H]+: 383.2230; found: 383.2241. 

1-benzyl-5-(mesitylamino)-4-phenyl-1H-1,2,3-triazole (2j) 

 
From 1-benzyl-4-phenyl-1H-1,2,3-triazol-5-amine and 2-bromo- 1,3,5-trimethylben-

zene, following general procedure, 2j (146 mg, 79% yield) was obtained as a white solid, 
m.p. 132–133 °C. 1H NMR (400 MHz, Chloroform-d) δ 7.71 (d, J = 7.3 Hz, 2H), 7.31–7.20 
(m, 6H), 6.89 (dd, J = 7.2, 2.2 Hz, 2H), 6.72 (s, 2H), 5.15 (s, 2H), 4.93 (s, 1H), 2.23 (s, 3H), 1.75 
(s, 6H). 13C{1H} NMR (101 MHz, Chloroform-d) δ 135.8, 135.1, 134.9, 134.9, 133.6, 131.2, 
130.1, 129.8, 128.8, 128.4, 128.2, 127.2, 127.1, 126.2, 51.6, 20.7, 18.2. IR (υ/cm−1): 3339 (M), 
3060 (W), 3032 (M), 2913 (M), 2853 (W), 1606 (S), 1586 (S), 1571 (S), 1485 (S), 1445 (S), 1421 
(S), 1361 (S), 1317 (S), 1250 (S), 1073 (S), 1029 (S), 994 (S), 840 (S), 769 (VS), 724 (VS), 694 
(VS). HRMS (ESI): calcd for C24H25N4 [M+H]+: 369.2074; found: 369.2074. 

1-tert-butyl-5-((pyridine-3-yl)amino)-4-phenyl-1H-1,2,3-triazole (2k) 

 
From 1-tert-butyl-4-phenyl-1H-1,2,3-triazol-5-amine and 3-chloropyridine, following 

general procedure, 2k (110 mg, 75% yield) was obtained as a white solid, m.p. 233–234 °C. 
1H NMR (400 MHz, DMSO-d6) δ 8.27 (s, 1H), 7.94 (s, 1H), 7.90 (d, J = 4.7 Hz, 1H), 7.73 (d, J 
= 7.9 Hz, 2H), 7.32 (t, J = 7.6 Hz, 2H), 7.24 (t, J = 7.6 Hz, 1H), 7.08 (dd, J = 8.3, 4.6 Hz, 1H), 
6.73 (d, J = 8.0 Hz, 1H), 1.65 (s, 9H). 13C{1H} NMR (101 MHz, DMSO-d6) δ 141.6, 140.9, 139.9, 
136.0, 131.1, 130.3, 128.6, 127.8, 125.4, 124.0, 119.5, 60.7, 29.1. IR (υ/cm−1): 3252 (W), 3002 
(W), 2974 (W), 1589 (S), 1580 (S), 1508 (S), 1477 (S), 1449 (S), 1370 (S), 1299 (S), 1239 (S), 990 
(VS), 800 (VS), 772 (VS), 709 (VS). HRMS (ESI) calcd for C17H20N5 [M+H]+: 294.1719; found: 
294.1718. 

  

From 1-tert-butyl-4-phenyl-1H-1,2,3-triazol-5-amine and 3-chloropyridine, following
general procedure, 2k (110 mg, 75% yield) was obtained as a white solid, m.p. 233–234 ◦C.
1H NMR (400 MHz, DMSO-d6) δ 8.27 (s, 1H), 7.94 (s, 1H), 7.90 (d, J = 4.7 Hz, 1H), 7.73 (d,
J = 7.9 Hz, 2H), 7.32 (t, J = 7.6 Hz, 2H), 7.24 (t, J = 7.6 Hz, 1H), 7.08 (dd, J = 8.3, 4.6 Hz, 1H),
6.73 (d, J = 8.0 Hz, 1H), 1.65 (s, 9H). 13C{1H} NMR (101 MHz, DMSO-d6) δ 141.6, 140.9,
139.9, 136.0, 131.1, 130.3, 128.6, 127.8, 125.4, 124.0, 119.5, 60.7, 29.1. IR (υ/cm−1): 3252 (W),
3002 (W), 2974 (W), 1589 (S), 1580 (S), 1508 (S), 1477 (S), 1449 (S), 1370 (S), 1299 (S), 1239 (S),
990 (VS), 800 (VS), 772 (VS), 709 (VS). HRMS (ESI) calcd for C17H20N5 [M+H]+: 294.1719;
found: 294.1718.

1-phenethyl-5-((pyridine-3-yl)amino)-4-phenyl-1H-1,2,3-triazole (2l)
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1-phenethyl-5-((pyridine-3-yl)amino)-4-phenyl-1H-1,2,3-triazole (2l) 

 
From 1-phenethyl-4-phenyl-1H-1,2,3-triazol-5-amine and 3-chloropyridine, follow-

ing general procedure, 2l (142 mg, 83% yield) was obtained as a white solid, m.p. 199–200 
°C. 1H NMR (400 MHz, DMSO-d6) δ 8.46 (s, 1H), 8.01–7.92 (m, 2H), 7.72 (d, J = 7.3 Hz, 2H), 
7.35 (t, J = 7.4 Hz, 2H), 7.29–7.16 (m, 4H), 7.12 (d, J = 7.2 Hz, 2H), 7.07 (dd, J = 8.0, 4.6 Hz, 
1H), 6.65 (dd, J = 8.5, 1.3 Hz, 1H), 4.44 (t, J = 7.3 Hz, 2H), 3.13 (t, J = 7.6 Hz, 2H). 13C{1H} 
NMR (101 MHz, DMSO-d6) δ 140.6, 140.3, 138.3, 137.5, 136.4, 131.5, 130.3, 128.7, 128.6, 
128.5, 127.7, 126.6, 125.2, 124.0, 119.7, 47.7, 35.0. IR (υ/cm−1): 3203 (W), 3162 (W), 3083 (W), 
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329.1515; found: 329.1514. 
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From 1-phenethyl-4-phenyl-1H-1,2,3-triazol-5-amine and 3-chloropyridine, following
general procedure, 2l (142 mg, 83% yield) was obtained as a white solid, m.p. 199–200 ◦C.
1H NMR (400 MHz, DMSO-d6) δ 8.46 (s, 1H), 8.01–7.92 (m, 2H), 7.72 (d, J = 7.3 Hz, 2H),
7.35 (t, J = 7.4 Hz, 2H), 7.29–7.16 (m, 4H), 7.12 (d, J = 7.2 Hz, 2H), 7.07 (dd, J = 8.0, 4.6 Hz,
1H), 6.65 (dd, J = 8.5, 1.3 Hz, 1H), 4.44 (t, J = 7.3 Hz, 2H), 3.13 (t, J = 7.6 Hz, 2H). 13C{1H}
NMR (101 MHz, DMSO-d6) δ 140.6, 140.3, 138.3, 137.5, 136.4, 131.5, 130.3, 128.7, 128.6, 128.5,
127.7, 126.6, 125.2, 124.0, 119.7, 47.7, 35.0. IR (υ/cm−1): 3203 (W), 3162 (W), 3083 (W), 3025
(W), 2969 (W), 1582 (S), 1569 (S), 1480 (S), 1455 (S), 1402 (S), 1361 (S), 1312 (S), 1278 (S), 1232
(S), 990 (S), 799 VS, 763 (VS), 743 (VS), 701 (VS). HRMS (ESI): calcd for C21H20N5 [M+H]+:
342.1719; found: 342.1717.

1-benzyl-5-((3,5-dimethylphenyl)amino)-4-phenyl-1H-1,2,3-triazole (2m)
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From 1-benzyl-4-phenyl-1H-1,2,3-triazol-5-amine and 1-bromo- 3,5-dimethylbenzene,
following general procedure, 2m (149 mg, 84% yield) was obtained as a white solid, m.p.
154–155 ◦C. 1H NMR (400 MHz, Chloroform-d) δ 7.82 (d, J = 7.0 Hz, 2H), 7.35–7.26 (m, 6H),
7.23–7.19 (m, 2H), 6.54 (s, 1H), 6.15 (s, 2H), 5.34 (s, 2H), 5.06 (s, 1H), 2.18 (s, 6H). 13C{1H}
NMR (101 MHz, Chloroform-d) δ 143.7, 141.1, 139.7, 134.8, 131.9, 130.4, 128.9, 128.8, 128.4,
128.1, 128.0, 126.0, 122.7, 112.2, 51.4, 21.5. IR (υ/cm−1): 3266 (W), 2919 (W), 1601 (S), 1585
(S), 1495 (S), 1444 (S), 1353 (S), 1324 (S), 1233 (S), 1170 (S), 1004 (VS), 993 (VS), 837 (VS),
774 (VS), 739 (VS), 727 (VS), 691 (VS). HRMS (ESI): calcd for C23H23N4 [M+H]+: 355.1917;
found: 355.1920.
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From 1-benzyl-4-phenyl-1H-1,2,3-triazol-5-amine and 4-chloropyrimidine, following
general procedure, 2n (161 mg, 98% yield) was obtained as a white solid, m.p. 156–157 ◦C.
1H NMR (400 MHz, DMSO-d6) δ 9.40 (s, 1H), 8.10 (s, 1H), 7.93 (d, J = 5.6 Hz, 2H), 7.75 (d,
J = 7.7 Hz, 2H), 7.38 (t, J = 7.6 Hz, 2H), 7.27 (q, J = 7.7, 6.7 Hz, 4H), 7.18 (d, J = 7.7 Hz, 2H),
5.44 (s, 2H). 13C{1H} NMR (101 MHz, DMSO-d6) δ 152.5, 141.8, 139.4, 135.3, 135.0, 133.0,
130.5, 130.4, 128.7, 128.5, 127.8, 127.8, 127.8, 125.3, 50.5. IR (υ/cm−1): 3189 (W), 3067 (W),
2953 (W), 1593 (S), 1497 (S), 1472 (S), 1446 (S), 1360 (S), 1318 (S), 1278 (S), 1231 (S), 1150 (S),
996 (S), 825 (VS), 767 (VS), 734 (VS), 694 (VS). HRMS (ESI) calcd for C19H17N6 [M+H]+:
329.1515; found: 329.1514.

1-benzyl-5-((pyridine-3-yl)amino)-4-phenyl-1H-1,2,3-triazole (2o)
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From 1-benzyl-4-phenyl-1H-1,2,3-triazol-5-amine and 3-chloropyridine (159 mg, 97%
yield) or 3-bromopyridine (163 mg, >99% yield), following general procedure, 2o was
obtained as a white solid, m.p. 169–170 ◦C. 1H NMR (400 MHz, Chloroform-d) δ 8.02–7.97
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(m, 2H), 7.73 (dd, J = 7.9, 1.6 Hz, 2H), 7.27–7.22 (m, 3H), 7.21–7.17 (m, 3H), 7.15–7.11 (m,
2H), 6.92 (dd, J = 8.3, 4.7 Hz, 1H), 6.52 (ddd, J = 8.3, 2.7, 1.2 Hz, 1H), 6.30 (s, 1H), 5.36 (s,
2H). 13C{1H} NMR (101 MHz, Chloroform-d) δ 141.3, 141.3, 140.3, 136.9, 134.3, 130.6, 129.9,
129.0, 128.8, 128.6, 128.4, 127.9, 125.9, 124.1, 120.3, 51.6. IR (υ/cm−1): 3221 (W), 3173 (M),
3090 (W), 3043 (M), 3027 (M), 2962 (M), 2904 (M), 2780 (M), 1608 (S), 1583 (S), 1570 (S), 1538
(S), 1480 (S), 1427 (S), 1409 (S), 1364 (S), 1321 (S), 1246 (S), 1234 (S), 1048 (S), 1006 (S), 994 (S).
HRMS (ESI): calcd for C20H18N5 [M+H]+: 328.1557; found: 328.1561.

N4,N6-bis(1-benzyl-4-phenyl-1H-1,2,3-triazol-5-yl)pyrimidine-4,6-diamine (2p)
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ing general procedure, 2p (88 mg, 61% yield) was obtained as a white solid, m.p. 263–264 ◦C.
1H NMR (400 MHz, DMSO-d6) δ 9.28 (s, 2H), 7.98 (s, 1H), 7.73 (s, 4H), 7.40 (s, 4H), 7.37–7.29
(m, 3H), 7.28–7.10 (m, 10H), 5.38 (s, 4H). 13C{1H} NMR (101 MHz, DMSO-d6) δ 161.3, 158.2,
139.4, 135.2, 130.2, 130.1, 128.7, 128.5, 127.9, 127.8, 125.3, 50.5. IR (υ/cm−1): 3064 (M), 3032
(M), 2927 (M), 1601 (S), 1587 (S), 1496 (S), 1356 (S), 1288 (S), 1237 (S), 1188 (S), 1073 (S),
991 (S), 822 (VS), 769 (VS), 734 (VS), 720 (VS), 692 (VS). HRMS (ESI): calcd for C34H29N10
[M+H]+: 577.2571; found: 577.2574.
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From 5-chloro-1-phenethyl-4-phenyl-1H-1,2,3-triazole and p-toluidine, following gen-
eral procedure, 2q (147 mg, 83% yield) was obtained as a white solid, m.p. 152–153 ◦C. 1H
NMR (400 MHz, Chloroform-d) δ 7.74 (d, J = 7.9 Hz, 2H), 7.30–7.23 (m, 6H), 7.04–6.99 (m,
2H), 6.93 (d, J = 8.0 Hz, 2H), 6.29 (d, J = 7.5 Hz, 2H), 4.77 (s, 1H), 4.37 (t, J = 8.3 Hz, 2H),
3.14 (t, J = 8.4 Hz, 2H), 2.21 (s, 3H). 13C{1H} NMR (101 MHz, Chloroform-d) δ 140.8, 139.5,
137.6, 132.9, 130.2, 129.9, 129.1, 129.0, 128.7, 128.4, 127.3, 126.2, 125.9, 114.2, 49.2, 36.4, 20.6.
IR (υ/cm−1): 3205 (M), 3176 (M), 3085 (M), 3027 (M), 2950 (M), 2931 (M), 1878 (M), 1610 (S),
1585 (S), 1572 (S), 1520 (S), 1498 (S), 1451 (S), 1364 (S), 1258 (S), 1011 (S), 807 (VS), 762 (VS),
748 (VS), 699 (VS). HRMS (ESI): calcd for C23H23N4 [M+H]+: 355.1917; found: 355.1920.

1-benzyl-5-((2,4-dimethylphenyl)amino)-4-phenyl-1H-1,2,3-triazole (2r)
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From 1-benzyl-5-chloro-4-phenyl-1H-1,2,3-triazole and 2,4-dimethylaniline, follow-

ing general procedure, 2r (169 mg, 95% yield) was obtained as a white solid, m.p. 194–195 
°C. 1H NMR (400 MHz, Chloroform-d) δ 7.77 (d, J = 7.5 Hz, 2H), 7.33–7.24 (m, 6H), 7.16–
7.11 (m, 2H), 6.99 (s, 1H), 6.78 (d, J = 8.2 Hz, 1H), 6.16 (d, J = 8.1 Hz, 1H), 5.31 (s, 2H), 4.84 
(s, 1H), 2.25 (s, 3H), 2.11 (s, 3H). 13C{1H} NMR (101 MHz, Chloroform-d) δ 140.5, 139.0, 
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following general procedure, 2s (159 mg, 81% yield) was obtained as a white solid, m.p. 
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(m, 9H), 7.05 (d, J = 7.7 Hz, 1H), 6.81 (s, 1H), 6.55 (d, J = 8.0 Hz, 1H), 6.41 (m, 1H), 5.32 (s, 
2H). 13C{1H} NMR (101 MHz, Chloroform-d) δ 144.3, 141.3, 134.2, 131.9 (q, J = 32.3 Hz), 
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395.1482. 
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From 1-benzyl-5-chloro-4-phenyl-1H-1,2,3-triazole and 3,5-bis(trifluoromethyl) ani-

line, following general procedure, 2t (136 mg, 59% yield) was obtained as a white solid, 
m.p. 110–111 °C. 1H NMR (400 MHz, Chloroform-d) δ 7.70 (dd, J = 7.7, 1.9 Hz, 2H), 7.35–
7.26 (m, 4H), 7.24–7.22 (m, 3H), 7.16–7.11 (m, 2H), 6.75 (s, 2H), 5.52 (s, 1H), 5.42 (s, 2H). 
13C{1H} NMR (101 MHz, Chloroform-d) δ 144.8, 141.9, 133.8, 133.0 (q, J = 33.5 Hz), 129.8, 
129.5, 129.2, 129.0, 128.8, 128.7, 127.9, 126.0, 125.8, 123.1 (q, J = 272.6 Hz), 113.8 (p, J = 3.8 
Hz), 113.7, 113.6, 52.0. 19F NMR (376 MHz, Chloroform-d) δ -63.19. IR (υ/cm−1): 3457 (W), 
3204 (W), 3074 (W), 2930 (W), 1616 (S), 1590 (S), 1498 (S), 1471 (S), 1387 (S), 1276 (S), 1182 

From 1-benzyl-5-chloro-4-phenyl-1H-1,2,3-triazole and 2,4-dimethylaniline, following
general procedure, 2r (169 mg, 95% yield) was obtained as a white solid, m.p. 194–195 ◦C.
1H NMR (400 MHz, Chloroform-d) δ 7.77 (d, J = 7.5 Hz, 2H), 7.33–7.24 (m, 6H), 7.16–7.11
(m, 2H), 6.99 (s, 1H), 6.78 (d, J = 8.2 Hz, 1H), 6.16 (d, J = 8.1 Hz, 1H), 5.31 (s, 2H), 4.84 (s,
1H), 2.25 (s, 3H), 2.11 (s, 3H). 13C{1H} NMR (101 MHz, Chloroform-d) δ 140.5, 139.0, 134.7,
132.5, 131.8, 130.2, 130.1, 129.0, 128.8, 128.5, 128.1, 127.9, 127.9, 126.0, 123.5, 113.0, 51.8, 20.6,
17.5. IR (υ/cm−1): 3260 (W), 2962 (W), 2924 (W), 2857 (W), 1608 (S), 1587 (S), 1571 (S), 1517
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(S), 1446 (S), 1360 (S), 1237 (S), 1156 (S), 804 (VS), 766 (VS), 736 (VS), 694 (VS). HRMS (ESI):
calcd for C23H23N4 [M+H]+: 355.1917; found: 355.1918.
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line, following general procedure, 2t (136 mg, 59% yield) was obtained as a white solid, 
m.p. 110–111 °C. 1H NMR (400 MHz, Chloroform-d) δ 7.70 (dd, J = 7.7, 1.9 Hz, 2H), 7.35–
7.26 (m, 4H), 7.24–7.22 (m, 3H), 7.16–7.11 (m, 2H), 6.75 (s, 2H), 5.52 (s, 1H), 5.42 (s, 2H). 
13C{1H} NMR (101 MHz, Chloroform-d) δ 144.8, 141.9, 133.8, 133.0 (q, J = 33.5 Hz), 129.8, 
129.5, 129.2, 129.0, 128.8, 128.7, 127.9, 126.0, 125.8, 123.1 (q, J = 272.6 Hz), 113.8 (p, J = 3.8 
Hz), 113.7, 113.6, 52.0. 19F NMR (376 MHz, Chloroform-d) δ -63.19. IR (υ/cm−1): 3457 (W), 
3204 (W), 3074 (W), 2930 (W), 1616 (S), 1590 (S), 1498 (S), 1471 (S), 1387 (S), 1276 (S), 1182 

From 1-benzyl-5-chloro-4-phenyl-1H-1,2,3-triazole and 3-(trifluoromethyl)aniline, fol-
lowing general procedure, 2s (159 mg, 81% yield) was obtained as a white solid, m.p.
115–117 ◦C. 1H NMR (400 MHz, Chloroform-d) δ 7.72 (dd, J = 6.4, 2.9 Hz, 2H), 7.23–7.11
(m, 9H), 7.05 (d, J = 7.7 Hz, 1H), 6.81 (s, 1H), 6.55 (d, J = 8.0 Hz, 1H), 6.41 (m, 1H), 5.32 (s,
2H). 13C{1H} NMR (101 MHz, Chloroform-d) δ 144.3, 141.3, 134.2, 131.9 (q, J = 32.3 Hz),
131.1, 130.2, 129.8, 128.9, 128.8, 128.5, 128.3, 128.0, 125.9, 124.0 (q, J = 272.8 Hz), 116.9, 110.9
(q, J = 3.6 Hz), 51.5. 19F NMR (376 MHz, Chloroform-d) δ -62.8. IR (υ/cm−1): 3195 (M),
3038 (M), 2927 (M), 1619 (S), 1586 (S), 1571 (S), 1495 (S), 1486 (S), 1444 (S), 1425 (S), 1336
(VS), 1231 (S), 1163 (VS), 1118 (VS), 1099 (S), 1067 (VS), 1006 (S), 996 (S), 916 (S), 871 (S),
791 (S), 769 (VS), 736 (VS), 692 (VS). HRMS (ESI): calcd for C22H18F3N4 [M+H]+: 395.1478;
found: 395.1482.

1-benzyl-5-((3,5-bis(trifluoromethyl)phenyl)amino)-4-phenyl-1H-1,2,3-triazole (2t)
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From 1-benzyl-4-bromo-5-methyl-1H-1,2,3-triazole and p-toluidine, following general
procedure, 2u (97 mg, 69% yield) was obtained as a white solid, m.p. 133–134 ◦C. 1H NMR
(400 MHz, Chloroform-d) δ 7.38–7.32 (m, 3H), 7.19 (d, J = 6.7 Hz, 2H), 6.98 (d, J = 8.3 Hz,
2H), 6.63 (d, J = 8.1 Hz, 2H), 5.61 (s, 1H), 5.48 (s, 2H), 2.24 (s, 3H), 2.02 (s, 3H). 13C{1H} NMR
(101 MHz, Chloroform-d) δ 144.7, 142.4, 134.6, 129.8, 129.2, 129.1, 128.5, 127.3, 125.1, 114.8,
52.9, 29.8, 20.6. IR (υ/cm−1): 3246 (M), 3109 (W), 3034 (M), 2924 (M), 2855 (M), 1884 (M),
1602 (S), 1511 (S), 1455 (S), 1435 (S), 1390 (S), 1345 (S), 1234 (S), 1121 (S), 815 (VS), 725 (VS),
696 (VS). HRMS (ESI): calcd for C17H18N5 [M+H]+: 279.1604; found: 279.1606.
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4. Conclusions

In conclusion, we have developed an efficient and robust method for the preparation
of a series of new 5-(het)arylamino-1,2,3-triazole derivatives via Buchwald–Hartwig cross-
coupling reaction of 5-amino or 5-halo-1,2,3-triazoles with (het)aryl halides and amines
respectively. As a result of the careful screening for optimal conditions, a catalytic system
based on the palladium complex [(THP-Dipp)Pd(cinn)Cl] with expanded-ring NHC ligand
has been revealed as the most active for the process. The reaction functions perfectly in
1,4-dioxane medium at 120 ◦C in the presence of an excess of t-BuONa to afford a variety
of 5-(het)arylamino-1,2,3-triazoles with good to excellent yields. The compounds obtained
have major potential to be used in biomolecular chemistry and material science.
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