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Abstract: This paper presents a numerical study of the feasibility of using vibration mode shapes
to identify material degradation in composite structures. The considered structure is a multilayer
composite cylinder, while the material degradation zone is, for simplicity, considered a square section
of the lateral surface of the cylinder. The material degradation zone size and location along the
cylinder axis are identified using a deep learning approach (convolutional neural networks, CNNs,
are applied) on the basis of previously identified vibration mode shapes. The different numbers and
combinations of identified mode shapes used to assess the damaged zone size and location were
analyzed in detail. The final selection of mode shapes considered in the identification procedure
yielded high accuracy in the identification of the degradation zone.

Keywords: shell; layered composites; mode shapes; non-destructive tests; machine learning

1. Introduction

Composite structures are increasingly used in various applications, including respon-
sible and distinct fields such as aviation [1–3], or mechanical and civil engineering [4,5].
Therefore, any damage or degradation of material properties may lead to very dangerous
situations, not only threatening the significant financial losses but also primarily endanger-
ing the lives and health of passengers of aircraft in which composite structures are used or
users of composite building structures.

Regular inspections of the condition of such responsible structures are necessary
by the regulations of relevant institutions (e.g., in Poland, the Civil Aviation
Authority [6] for aviation or the General Directorate for National Roads and Motorways [7]
for motorways and bridges). The process of “in situ, nondestructive sensing and analysis
of structural characteristics, including the structural response, to estimate the severity of
damage/deterioration and evaluate the consequences thereof on the structure in terms
of response, capacity, and service-life” (see [8]) is called Structural Health Monitoring
(SHM). A group of so-called Non-Destructive Techniques (NDTs) used in SHM gathers
methods that “examine materials and structures without impairment of serviceability and
reveals hidden properties and discontinuities, or differences in characteristics without
destroying the serviceability of the part or system” (see [9]); in the case that no failures
or defects are identified, the tested item can be used again for service. Non-destructive
techniques are broadly applied in composite structures testing; some examples of NDTs
are provided below:

• Visual inspection is the oldest and the most popular method of structure testing. In its
classic version it does not require any specialized equipment; only the naked eye of
a trained and experienced specialist is necessary [3,10]. Nowadays, it is sometimes
allied not as a standalone method but as an aid to other kinds of instrumented
NDTs [11], often supported by advanced optical equipment and modern image-
processing methods (e.g., deep learning [12]);
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• Ultrasonic testing: this method uses ultrasonic waves mechanically induced by a
transducer converting an electric signal into mechanical one; through the analysis
of the wave transmission or reflection, it is able to detect, e.g., delamination or in-
clusions [1,11]; ultrasonic testing is described as “the most versatile of the testing
techniques available to industry” [13];

• Thermography: this method is based on the observation of heat distribution over
the tested sample’s surface and the search for hot spots that may indicate a defect
in the component/object under examination; the test object may be heated by me-
chanical force, by illumination with a very strong light, by a laser, or by any other
method [10,14–16];

• Radiographic testing: this technique is similar to well-known medical radiography;
it uses X-radiation (electromagnetic radiation with energy within 10–50 kV); X-rays
passing through the specimen are recorded on an X-ray-sensitive medium, and the
analysis of the recorded radiographic image makes it possible “to examine composites
for flaws and compliance to manufacturing standards” [17–19].

There are, of course, several other widely recognized methods (e.g., liquid penetrant
testing, electromagnetic tests, acoustic emission tests, guided waves, penetrating tests,
eddy current tests, terahertz spectroscopy, vibrotermography, or shearography); there are
also some new tests being developed (e.g., guided waves with contactless excitation [20] or
self-heating-based vibrothermography [21]).

Each of the listed methods has its advantages and disadvantages; some are useful for
testing the entire structure (e.g., vibration tests); others are designed for local testing (e.g.,
ultrasonic testing). With the development of measurement techniques, new opportunities
arise and new techniques for nondestructive structural testing and damage detection
are developed.

This paper focuses on vibration-based structural damage identification. The idea
behind vibration-based methods is that any structure’s change (including damage) affects
its mass, stiffness, and damping. That, in turn, causes changes of such dynamic parameters
as natural frequencies, mode shapes, and modal damping. The analysis of the dynamic
parameters can be carried out in three different domains: time, frequency, and time-
frequency domains, where the majority of approaches recently fall into the frequency
domain (see [22]).

The natural frequencies-based methods analyze the changes of natural frequencies.
The natural frequencies are easy to measure using a limited number of sensors, but their
changes due to occurring damage are usually small [23]. Moreover, the problem of identify-
ing structural changes based on natural frequencies changes is often ill-posed [23]. Natural
frequencies-based methods are also insensitive to local damage [22]. Like frequency-based
methods, methods based on modal damping are not widely used today, mainly due to
the complexity of the problem and the necessity of selecting an appropriate damping
model [24].

Among the vibration-based damage identification approaches, the most commonly
used are those based on mode shapes. The application of mode shapes is justified by the
great sensitivity of the mode shapes to local damage and lesser sensitivity to environmental
effects such as temperature change [25]. The analyzed quantities may be modal shapes
changes caused by the appearance of damage. The assumption that the modal vectors vary
near damage leads to detection of damage presence and its identification. However, the
accuracy of damage identification improves dramatically when instead of direct model
shape changes, the curvature or strain mode shapes are analyzed [26–28]. Some modern
signal processing methods are also applied, especially on experimental data when the mea-
surements of the original structure (before damage appears) are not available [23]. Among
these methods are, e.g., fractal dimension method [29], wavelet transform method [30]
or Hilbert-Huang transform [31]. However, the mode shape-based approach lacks atten-
tion to the problem noted and analyzed in optimization problems: mode shapes crossing
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and mode shape identification, that is, the designation of the natural frequency and the
corresponding vibration mode shape with a suitable “mode shape identifier” (see [32–36]).

This paper is a proposal of a non-destructive technique using a modern full-field mea-
suring approach (e.g., Digital Image Correlation (DIC) [37,38] or scanning laser Doppler
vibrometry [39]) in monitoring composite structures through the measurement and analysis
of vibration mode shapes. The mode shapes, after identification, are used as input data to
the procedure of material degradation zone identification. The identification of the material
degradation is performed by artificial neural networks following the principle of deep learn-
ing, namely, convolutional neural networks (CNNs) [40–42]. The convolutional network is
a specialized kind of neural network designed for advanced data processing [43], widely
applied in computer vision and pattern-recognition problems, object detection, speech
recognition, biomedical systems, and natural language processing. The popularity and
wide range of applications of CNNs are due to the following advantages: (i) CNNs combine
feature extraction and feature classification processes into a single learning procedure; they
can learn features of the model in the training phase directly from input data; (ii) because
CNNs’ neurons are weakly connected with associated weights, CNNs can process large
input data with high computational efficiency compared to conventional Multi-Layer
Perceptron (MLP) networks; (iii) CNNs are robust to small input data transformations,
including translation, scaling, skewing, and distortion; (iv) CNNs can adapt to different
input data sizes. Due to these advantages, convolutional neural networks are now widely
used with great success in numerous practical applications for their strong local feature
extraction capability and flexible architectures and have thus become the standard for
recognition systems and image or video processing [44]. In recent years, CNNs have also
been readily used in SHM systems, mainly for vibration analysis [45–48].

The main difference between a classical neural network (now called a shallow neural
network) and a convolutional network is the fact that a shallow network uses—as the main
operator—general multiplication, whereas a CNN uses convolution (i.e., an operation on
two functions that produces a third function); the convolution operation is conducted on
the local receptive field to extract local features. In convolutional network terminology,
arguments to the convolution are often referred to as the input and the kernel, whereas the
output is referred to as the feature map. Unlike classical neural networks built from flat
layers, a CNN is built from 3D sections, where neurons are ordered in three dimensions,
which allows for feature detection in the image as well as in time series [49,50]. CNN
processing capabilities have been used repeatedly in applications related to computational
mechanics [51], vibration analysis [44], and SHM [45,46,48].

As shown in [52], CNNs have better generalization and recognition abilities than
shallow networks trained using back-propagation (BP) principle but need more compu-
tational power for learning. At this time, however, this drawback of CNNs is not crucial.
The advantages of CNNs are even more obvious when image analysis is necessary, as
shown, e.g., in [53–55], the performance of a CNN is superior to both shallow networks
and support vector machines (SVMs).

In this paper, a new, successfully developed approach for the identification of the
material degradation zone of multilayer composite structures is discussed. To overcome
the limitations of the traditional approaches (2D analysis, high spatial resolution of mode
shapes description), CNNs are applied to create a tool to analyze the mode shapes of
vibrations and to draw conclusions about the appearance, location, and size of the material
degradation zone in the analyzed structure. This paper is a continuation of the research
of the same authors (see [36]), where the CNN-based identification of mode shapes is pre-
sented. Herein, on the basis of identified mode shapes, the location and size of the material
degradation zone are assessed. The CNN-based procedure is accurate and effective.

The presented work is the first attempt, known to the authors of this paper, to use
previously identified vibration mode shapes as an exclusive source of information during
the identification of damage in a composite structure.
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The paper is organized as follows: Section 2 contains the formulation of the problem.
Section 3, the main section of the article, discusses the CNN-based identification of a
material degradation zone. Section 4 contains the discussion of the results. The conclusions
and future research directions are reported in Section 5.

2. Formulation of the Problem
2.1. Solution of the Vibration Problem

The equation of motion for linear dynamic is governed by the generalized equation of
dynamic equilibrium [56]:

Mẍ + Cẋ + Kx = P , (1)

where the matrices M, C, and K represent the mass, damping, and stiffness of the structure,
respectively. The vector x represents nodal displacements, and P represents time-dependent
external forces. Dot notation is used to denote the derivatives, namely, ẋ and ẍ are the first
and the second derivatives of x with respect to time t, respectively.

When P and C are neglected (this means that external forces are constant over time or
can be ignored and damping is treated as negligibly small), Equation (1) is simplified to:

Mẍ + Kx = 0 . (2)

This approach leads to the generalized eigenproblem [57]:

KΦ = MΦΩ2, (3)

where the Φ matrix gathers the eigenvectors φi, and each of them describes one mode
shape corresponding to subsequent angular frequency contained in the diagonal matrix Ω.
The angular frequencies divided by 2π give the natural frequencies fi:

fi =
ωi
2π

. (4)

Each of the φi eigenvectors (mode shapes) describes the maximal deformation of the
structure when it vibrates harmonically with a corresponding fi resonant frequency.

2.2. Investigated Structure and Its Finite Element Model

The structure analyzed in this paper is a thin-walled composite cylinder, fixed at one
end (displacement degrees of freedom fully locked) and free at the other end. The total
length of the cylinder is 6.0 m; the radius of the shell middle surface is 0.6103 m. The
thickness of the shell is 0.016 m; the number of layers of composite material is 4, 8, 16, or
32. Material parameters are as follows: Young’s moduli E1 = 141.9 GPa, E2 = 9.78 GPa,
Poisson’s ratio ν12 = 0.42, shear modulus G12 = 6.13 GPa, and density ρ = 1445 kg/m3;
they correspond to the graphite–epoxy composite material often referred to as a benchmark
material in numerical simulations; see, e.g., [58].

The FEM model used a regular FE mesh (see Figure 1a), the number of columns of
elements parallel to the cylinder symmetry axis was fixed at 80, and the number of layers
was also fixed at 120. The FE model had a total of 9680 nodes and 58,000 degrees of freedom.
The multilayer finite element applied in the model (called MITC4 in Adina FE code, [59])
was a four-node element, following first-order shear theory assumptions.

All the calculation have been performed using Adina FE code; the choice of finite
element and FE mesh density was based on the experience gained by the authors in
previous research (see [34,35,60,61]), where FE convergence was verified and the results
from different FEM codes were compared. Neither higher FE mesh density nor the change
of an FE element to a higher order one caused a significant changes in the analyzed
quantities, and in particular, do not affect the mode shapes investigated in this paper.
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(a) (b) (c)

Figure 1. The finite element (FE) model (a) and two examples of vibration mode shapes: (b) B11, (c) C21.

2.3. Convolutional Neural Networks

A CNN is a hierarchical structure, stacking multiple layers, such as the convolution
layers (for feature extraction), batch normalization layers (regularization effect: the training
of network is much faster), pooling layers (down-sampled feature map for dimension
reduction), and activation layers (activate nonlinear mapping—rectified linear units, ReLU).

In the paper, a novel CNN is constructed to automatically learn features from the input
data (mode shapes). The CNN is used as a regression network applied to identify a location
and size of a zone of local degradation of material properties using one or more mode
shapes (three-dimensional matrix of nodal displacements) as a source of input data. CNNs
are trained using the RMSProp algorithm [43]. A learning set consisted of 3000 patterns;
2400 were selected randomly and moved to the teaching set, the remaining 600 patterns
created the validation set. The number of learning epochs depended on continuously
analyzed results obtained for validation patterns: an increase in the validation error during
a certain number of epochs marked the end of learning. The architecture of CNNs applied
here is summarized in Table 1 and shown in Figure 2, where Figure 2d shows the main part
of the networks called herein the convolution segment.

Table 1. Convolution segment architecture.

Layer Input Kernel Kernel Dimension Activation
Number Type Number Size of Data Function

1 Convolution 33 {2,5} 33 × 2 × 16
2 Batch normalization 33 × 2 × 16
3 Activation 33 × 2 × 16 ReLU
4 Convolution 66 {2,5} 66 × 1 × 12
5 Batch normalization 66 × 1 × 12
6 Activation 66 × 1 × 12 ReLU
7 Convolution 33 {1,3} 33 × 1 × 10
8 Batch normalization 33 × 1 × 10
9 Activation 33 × 1 × 10 ReLU
10 Pooling {1,2} 33 × 1 × 5
11 Flatten 165



Materials 2021, 14, 6686 6 of 17

Selected mode shape φi
R

Convolution segment
Location and size of 
material degradation 

zone
Multi Layer PerceptronSelected mode shape φi

R

Convolutional  Neural  Network

Convolution segment
Location and size of 
material degradation 

zone
Multi Layer PerceptronSelected mode shape φi

R

Convolutional  Neural  Network

Convolution segment

Selected mode shape φi
R

Convolution segment
Location and size of 
material degradation 

zone
Multi Layer PerceptronSelected mode shape φi

R

Convolutional  Neural  Network

Convolution segment

Selected mode shape φi
R Convolution segment

Selected mode shape φi
R Convolution segment

(a)

(b)

(c)

(d)

BN

C
o
n
v
o
lu

ti
o
n

B
a
tc

h
 

n
o
rm

a
liz

a
ti

o
n

A
ct

iv
a
ti

o
n

BN

C
o
n
v
o
lu

ti
o
n

B
a
tc

h
 

n
o
rm

a
liz

a
ti

o
n

A
ct

iv
a
ti

o
n

BN

C
o
n
v
o
lu

ti
o
n

B
a
tc

h
 

n
o
rm

a
liz

a
ti

o
n

A
ct

iv
a
ti

o
n

Po
o
lin

g
F

1110987654321

Convolution  Segment

Fl
a
tt

e
n

Figure 2. The scheme of CNN applied for the identification of material degradation zone: (a) one
mode shape as input, (b) two mode shapes, (c) four mode shapes, and (d) convolution segment.

All simulations using CNNs were performed in the commercial code Mathematica
(V12.0, Wolfram Research Inc., Champaign, IL, USA) environment [62].

3. Identification of Material Degradation Size and Location
3.1. Material Degradation Zone

In a randomly selected “square” area (see Figure 3a), the material constants of half
of the shell layers are significantly reduced, namely, Young’s moduli have values of
E1 = 14.18 GPa and E2 = 0.978 GPa in these layers, instead of original values
E1 = 141.8 GPa, E2 = 9.78 GPa. This area is in what is called the material degradation
zone. Figure 3a shows an example of a material degradation zone location; Figure 3b shows
the unrolled lateral surface of the cylinder, with eight examples of different degradation
zones (all cases appear separately; cases with the appearance of several degradation zones
simultaneously were not considered).

The considered locations of the degradation zone along the circumferential direction
of the cylinder have the left border aligned to the same column of finite elements in the
FE model; the right border is calculated according to the randomly selected size s of the
degradation zone. The location in the axial direction depends on the random h parameter
(describing the row of finite elements calculated from the built-in end of the cylinder).
The considered values of s are 2, 4, 6, 8, 10, and 12 (in terms of finite elements’ rows and
columns); for h, the considered values change from 2 to 119 with the step of 1; to analyze
the accuracy of the h identification, depending on the distance from the built-in end of
the cylinder, the values of h are—where necessary—divided into 10 classes, each with
the size of 12 elements and centers in elements 12(c− 1) + 6 (where c is the number of
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the class). Although the parameters s and h are originally described by the number of
finite elements, in what follows they are expressed in meters (m). The length of the finite
element side along the cylinder’s axial direction equals 50 mm and along circumferential
direction 47.9 mm; therefore, for the calculation of h in meters, the element size 50 mm
is considered, for s—47.9 mm. The parameter values expressed in meters are as follows:
s = {0.0959, 0.1917, 0.2876, 0.3835, 0.4793, 0.5751} m, h ∈ {0.1, 5.95} m with the step of
0.05 m.

s

s

h

h=6, s=4

h=18, s=8

h=34, s=2

h=44, s=12

h=64, s=6

h=78, s=10

h=118, s=2

h=96, s=12

(a) (b)

Figure 3. The cylinder (a) and its lateral surface unrolled (b), with some examples of material
degradation zones and the corresponding values of parameters h (location) and s (size).

Some examples of the location h and size s conversion from the number of elements
(NbFE, see Figure 3) to length units (here in millimeters) are shown in Table 2.

Table 2. The parameters h and s expressed in number of elements and in length units.

h s
NbFE mm NbFE mm

Zone 1 6 300 4 191.6
Zone 2 18 900 8 383.2
Zone 3 34 1700 2 95.8
Zone 4 44 2200 12 574.8
Zone 5 64 3200 6 287.4
Zone 6 78 3900 10 479.0
Zone 7 96 4800 12 574.8
Zone 8 118 5900 2 95.8

3.2. The Degradation Zone Identification Procedure

The identification of material degradation bases on the previous identification of
vibration mode shapes performed using CNN. The already-identified mode shapes are
further investigated, which leads to the identification of the occurrence of the material
degradation in the tested structure. If no degradation of the material is detected, the
procedure ends. Otherwise, the identification of the degradation zone location and size is
performed [36,63]. The whole procedure is shown in Figure 4 and can be described using
three major steps:

1. Identification of mode shapes of the structure under the study.
2. Detection of the appearance of material degradation.
3. Identification of the size and location of material degradation zone.

This paper focuses on step 3, marked in Figure 4 with a yellow background.
Steps 1 and 2 have been addressed in the previous paper by the same authors (see [36]);
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the accuracy of detection of the appearance of material degradation exceeding 99.8% (see
Table 3) allows treating this step as practically error-free.

One should notice that the mode shapes are reduced before feeding them into the
network. The original mode shape has a dimension of 6× 80× 121, which means that there
are 6 degrees of freedom at each of the 80 nodes on each of the 121 rings distributed evenly
along the length of the cylinder. The reduced mode shape has a dimension of 3× 20× 4:
3 displacements (rotational degrees of freedom are discarded) in 20 nodes (every fourth of
the original 80) on four rings (see Figure 1a for rings A, B, C, and D in every fourth of the
cylinder length).

FE model
for identification

of possible material
degradation

Mode shapes
identification

Degradation
detected?

YesNo

D
Degradation

ND
No Degradation

Reduced mode shape

 φ1       →   φ1
R

6x80x121      3x20x4

Degradation zone
parameters:

location and size

Reduced mode shape

 φ2       →   φ2
R

6x80x121      3x20x4

Reduced mode shape

 φi       →   φi
R

6x80x121      3x20x4

CNN

Figure 4. The scheme of the material degradation zone identification procedure.

Table 3. CNN accuracy of the identification of the material degradation occurence (for details,
see [36]).

Degradation No Degradation
Found Found

Degradation exists in the model 1992 8 2000
No degradation exists 0 4000 4000

1992 4008

3.3. Identification of the Zone of Material Degradation

Figure 4 shows the scheme of the material degradation zone identification procedure.
The number of involved mode shapes creating the CNN input matrix is denoted by i. The
values of i change from i = 1 to i = 6 in what follows, which means that from among all
available mode shapes, at most, six are selected to form the CNN input matrix. The overall
number of identified mode shapes equals 22; among them, the majority of mode shapes
appear twice, with the same or almost the same natural frequency fi value. Those mode
shapes are called double ones, and the others are called single ones. The following mode
shapes are identified: A01 (axial mode), B111, B112 and B121, B122 (bending modes), C211,
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C212, C221, C222, C231, C232, C311, C312, C321, C322, C331, C332, C411, C412 and C421,
C422 (circumferential modes), and T01 (torsional mode). Among the identified modes,
the only single modes are axial and torsional (A01 and T01); from each pair of double
modes, only the first mode is taken into account, and the second one is neglected; this leads
to 12 modes under consideration: A01, B111, B121, C211, C221, C231, C311, C321, C331,
C411, C421, and T01. In what follows, the superscript ·1 is omitted for the simplicity of
the description. The following error measures are used to present the results and discuss
their accuracy:

• Mean Absolute Error (MAE):

MAE =
1
n

n

∑
i=1
|εi| , (5)

where n is the number of identification cases and εi = yi − ŷi is the i-th error of identi-
fication, yi is the obtained, and ŷi is the real value of the parameter being identified,

• Root Mean Squared Error (RMSE), defined by the following formula:

RMSE =

√
1
n

n

∑
i=1

ε2
i . (6)

During the performed analyses, FE models with the number of composite layers equal
to 4, 8, 16, and 32 were considered. For each number of layers, 1000 models were generated
with a random location and size of degradation zone. The cases where the number of layers
equaled 4, 8, and 32 were used for CNN learning; the case with 16 layers was a test one.
The following results will only present the data from testing; the results from learning had
so little error that they can be treated as error-free.

In the first approach, each of the 12 mode shapes is separately taken in turn as a
source of data in the procedure of the identification of the material degradation zone (see
Figure 2a). The obtained results of the degradation zone location and size identification are
shown in Table 4.

Table 4. The results of the identification of {h, s} on the basis of single mode shape.

Network Name Mode Shape
h—Location s—Size
MAE RMSE MAE RMSE

(m) (m) (m) (m)

N11 (A01) 1.4440 1.6800 0.1265 0.1492
N12 (B11) 0.1364 0.2947 0.0489 0.0718
N13 (B12) 0.3984 0.7122 0.0741 0.1015
N14 (C21) 0.3238 0.4930 0.0304 0.0480
N15 (C22) 0.3371 0.6896 0.0561 0.0831
N16 (C23) 0.4642 0.7736 0.0753 0.1006
N17 (C31) 0.5603 0.8180 0.0651 0.0931
N18 (C32) 0.4024 0.7429 0.0634 0.0938
N19 (C33) 0.4828 0.8146 0.0667 0.0972
N110 (C41) 0.7011 1.0966 0.1044 0.1408
N111 (C42) 0.8544 1.3096 0.1066 0.1402
N112 (T01) 0.4244 0.7306 0.0844 0.1114

The name of the network, following the Nab scheme, represents the number a of the
mode shapes in the network input matrix and the number of the variant b with a different
combination of the same number of a mode shapes in the network input matrix.

It is visible that some mode shapes carry much more information about the dam-
aged zone than others. The first bending and circumferential modes (B11 and C21; see
Figure 1b,c) seem to be the most important ones from the point of view of the accuracy
of the identification. To improve the accuracy of the identification, extended CNN input
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definitions have been tested, with two or more mode shapes simultaneously creating the
network input matrix (see Figure 2). The above-mentioned modes B11 and C21 are applied
together and in different configurations with some other mode shapes.

The results of the approach with two mode shapes involved are gathered in Table 5.

Table 5. The results of the identification of {h, s} on the basis of two mode shapes.

Network Name Mode Shapes
h—Location s—Size
MAE RMSE MAE RMSE

(m) (m) (m) (m)

N21 (B11,T01) 0.1195 0.2059 0.0468 0.0694
N22 (B11,B12) 0.1315 0.2211 0.0478 0.0693
N23 (B11,C21) 0.0709 0.1320 0.0192 0.0303
N24 (B11,C22) 0.1578 0.2829 0.0411 0.0591
N25 (B11,C31) 0.1126 0.1932 0.0331 0.0501
N26 (B12,C21) 0.2298 0.4051 0.0271 0.0438
N27 (C21,C31) 0.3018 0.4790 0.0253 0.0371

Table 6 shows the accuracy of the identification obtained with three mode shapes as
input. The results are significantly worse when no bending mode B11 or no circumferential
modes Cxx are applied.

Table 6. The results of the identification of {h, s} on the basis of three mode shapes.

Network Name Mode Shapes
h—Location s—Size
MAE RMSE MAE RMSE

(m) (m) (m) (m)

N31 (B11,B12,T01) 0.1503 0.2575 0.0521 0.0754
N32 (B11,B12,C21) 0.0831 0.1517 0.0212 0.0393
N33 (B11,C21,C22) 0.0703 0.1273 0.0190 0.0322
N34 (B11,C21,C31) 0.1242 0.2242 0.0222 0.0384
N35 (C21,C31,C41) 0.4245 0.6697 0.0267 0.0371
N36 (B11,C21,T01) 0.0955 0.1748 0.0204 0.0385

Tables 7 and 8 present the results obtained on the basis of four, five, and six mode
shapes as input.

Table 7. The results of the identification of {h, s} on the basis of four mode shapes.

Network Name Mode Shapes
h—Location s—Size
MAE RMSE MAE RMSE

(m) (m) (m) (m)

N41 (B11,B12,C21,C22) 0.0605 0.1052 0.0189 0.0306
N42 (B11,C21,C22,C32) 0.1131 0.2175 0.0219 0.0414
N43 (B11,C21,C31,C41) 0.1642 0.2744 0.0229 0.0367
N44 (B11,C21,C31,T01) 0.1290 0.2239 0.0196 0.0324

Table 8. The results of the identification of {h, s} on the basis of five or six mode shapes.

Network Name Mode Shapes
h—Location s—Size
MAE RMSE MAE RMSE

(m) (m) (m) (m)

N51 (B11,B12,C21,C22,T01) 0.0863 0.1478 0.0211 0.0373
N52 (B11,C21,C31,C41,T01) 0.1043 0.1651 0.0226 0.0384
N61 (B11,B12,C21,C22,C31,C32) 0.1001 0.1599 0.0206 0.0306
N62 (B11,B12,C21,C22,C31,T01) 0.1004 0.1789 0.0201 0.0338
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4. Discussion of Results

To see the overall picture, the best results are summarized in Table 9. All the data
presented in the table are also shown in Figure 5, where the error measures are normalized
to their minimal values (1 means the highest accuracy among the obtained results of
previous steps).

Table 9. The best results of the identification of {h, s}.

Network Name Mode Shape
h—Location s—Size

MAE RMSE MAE RMSE
(m) (m) (m) (m)

N12 (B11) 0.1364 0.2947 0.0489 0.0718
N23 (B11,C21) 0.0709 0.1320 0.0192 0.0303
N33 (B11,C21,C22) 0.0703 0.1273 0.0190 0.0322
N41 (B11,B12,C21,C22) 0.0605 0.1052 0.0189 0.0306
N51 (B11,B12,C21,C22,T01) 0.0863 0.1478 0.0211 0.0373
N61 (B11,B12,C21,C22,C31,C32) 0.1001 0.1599 0.0206 0.0306

N12 N23 N33 N41 N51 N61
1,0

1,5

2,0
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h – RMSE
s – MAE
s – RMSE

Network
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Figure 5. The results of the identification of location h and size s using different numbers of
mode shapes.

The approach with four mode shapes on input, namely, two bending modes (B11,
B12) and two circumferential modes (C21, C22), seems to give the most accurate results.
The details of this approach are shown in Figure 6a,b in a form usually applied in the
neural networks community (the horizontal axis presents the values identified by the
network while the vertical axis shows the real, desired values). The closer the results
are gathered around the diagonal x = y the better. However, this kind of diagram
may be misleading in terms of the distribution of the results around the desired values;
Figure 6c–d show the same data in the form of histograms together with the estimate of the
error distribution. It is visible that the errors are concentrated around zero; in the case of
the identification of the location of the degradation zone, the errors in the vast majority of
cases do not exceed 0.30 m (note the vertical red lines in Figure 6d).

The identification efficiency is also evaluated by the Success Ratio (SR); see [64]:

SR =
NbRe

n
× 100% (7)

where NbRe is the number of cases with the relative error not exceeding a particular
restrained error Re (threshold) value |εi/ŷi × 100%| ≤ Re, and n is the number of all
considered cases. The success ratio curve corresponds to the cumulative curve used
in statistics.

Figure 7a,b show the SR curves for location and size identification, respectively. In
the case of the identification of the size of the degradation zone, the number of cases with
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an error lower than 2% exceeds 98% of all the considered cases; notice the horizontal red
line in Figure 7 (N41 network). In the case of the identification of the location, the same
level of confidence (98% of all the considered cases) is reached with the relative error not
exceeding 5% (N41 network).

The data presented in the histogram in Figure 6d are also presented in a different
form in Figure 7d; the difference is that all the errors presented collectively in Figure 6d
are in Figure 7d divided into six subsets according to the real value of s (the size of the
zone of material degradation). Each of these six sets is presented as a separate histogram,
with its center placed on the horizontal axis at the location corresponding to the actual size
of the identified zone. The areas where adjacent histograms overlap correspond to those
cases where the error in size identification is large enough to cause the identified zone to
be erroneously included in the adjacent set. The overlapping of the histograms has a very
limited range; in the vast majority of cases, the classification (e.g., by choosing the closest
possible answer) would give the correct value of parameter s.

Figure 7c shows similar histograms for the identification of the degradation zone
location h. However, there is one major difference between Figure 7c and Figure 7d: the
real values of h are almost continuous (h ∈ {0.1, 5.95}m with the step of 0.05 m), and the
ten set division is imposed when interpreting the results. The width of each set equals the
length of twelve finite elements (0.6 m); the errors are calculated as a difference between
the real and the identified value of h, even when the real value is different than the middle
point of the particular set.
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Figure 6. The results of identification of degradated zone: (a,c)—location; (b,d)—size.
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Figure 7. The histograms of errors of identification of degradated zone: (a,c)—location; (b,d)—size.

The approach presented in this paper—allowing to identify only one parameter
describing the size of the material degradation zone (namely, the length of the side of the
square degradation zone)—is a simplification of a real problem. In practice, the degradation
zone may have different shapes and comprise a different number of composite material
layers; a precise description of such damage obviously requires more parameters than one.
However, the main problem analyzed in this paper was the usefulness of the method based
on the identified vibration mode shapes for the localization of small damages of a size
not exceeding 1.5% of the lateral surface of the analyzed structure. High accuracy of the
approach proposed in the paper allows us to assume that it will also be possible to identify
a larger number of parameters describing the damage, especially in the case of damage of
larger sizes.

Experimental verification of the described method, for which the authors are prepar-
ing, would require vibration measurements (using, e.g., fast-camera image measurements
with the DIC approach or laser vibrometer measurements) of the analyzed structure with
the introduced damage and the application of modal analysis to determine the free vibra-
tion mode shapes. In the next step, the determined mode shapes should be identified (as
described by the same authors in [36]), and finally, damage identification should be carried
out using the procedure described in this article. It will require solving new problems,
absent in the analysis of numerical data, including testing the resistance of the method to
phenomena such as measurement noise and inaccuracies, or material non-homogeneity.

The accuracy of the damage zone identification should be assessed in the test equip-
ment applied to precisely verify the identification results. In this paper, the accuracy of
identification is evaluated in the context of using the measurement equipment at the
authors’ disposal, namely, a mobile inspection system called C-CheckIR by Automa-
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tion Technology®. The system may be applied for the detection of delaminations, water
inclusions, debondings, etc., in composite materials. The area that can be examined in one
position of the system is not smaller than about 30 × 30 cm, so the error in identifying a
damaged zone location not exceeding 30 cm (5% of the highest possible value of h) enables
the precise location of the damaged zone to be found at the first location of C-CheckIR
measurement system.

5. Conclusions

The research results presented in this paper prove that it is possible to identify the
location and size of a zone with degradation of the material properties solely based on
carefully selected vibration mode shapes. The herein-established procedure only uses the
mode shapes (displacements), does not use the natural frequencies or changes of these
frequencies, and does not require information about the original (undamaged) state of the
structure. The application of four mode shapes, the first two bending modes and the first
two circumferential modes, are enough to obtain very high identification accuracy. The
errors in identifying the degradation zone location h in 98% of considered cases does not
exceed 5% of the length of the whole structure (for the cylinder with a length of 6 m, the
errors are below 30 cm); in case of the size s, in 98% of cases the errors are lower than 3%
(less than 2.8 cm). The reduction in the number of mode shapes (only the first bending
mode shape and the first circumferential mode) results in a reduction in accuracy, but the
identification errors are still very small.

It is of great importance that the accuracy does not depend on the location, i.e., the
degradation zones located close to the fixed end of the cylinder are identified with similar
accuracy to the ones located close to the free end of the cylinder.
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