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Abstract: Human skin microbiota plays a crucial role in the defense against pathogens, and is
associated with various skin diseases. High elevation is positively correlated with various extreme
environmental conditions (i.e., high ultraviolet radiation), which may exert selection pressure on skin
microbiota, and therefore influence human health. Most studies regarding skin microbial communities
have focused on low-elevation hosts. Few studies have explored skin microbiota in high-elevation
humans. Here, we investigated the diversity, function, assembly, and co-occurrence patterns of skin
microbiotas from 35 health human subjects across three body sites (forehead, opisthenar, and palm)
and seven elevation gradients from 501 to 3431 m. Alpha diversity values (i.e., Shannon diversity and
observed operational taxonomic units (OTUs)) decreased with increasing elevation regardless of the
body site, while beta diversity (Jaccard and Bray–Curtis dissimilarities) showed an increasing trend
with elevation. Elevation is a significant factor that influences human skin microbiota, even after
controlling host-related factors. Skin microbiotas at high elevation with more than 3000 m on the
Qinghai–Tibet Plateau, had a significant structural or functional separation from those at low elevation
with less than 3000 m. Notably, the clustering coefficient, average degree, and network density were
all lower at high-elevation than those at low-elevation, suggesting that high-elevation skin networks
were more fragile and less connected. Phylogenetic analysis showed that human skin microbiotas
are mainly dominated by stochastic processes (58.4%–74.6%), but skin microbiotas at high-elevation
harbor a greater portion of deterministic processes than those at low-elevation, indicating that
high-elevation may be conducive to the promotion of deterministic processes. Our results reveal that
the filtering and selection of the changeable high-elevation environment on the Qinghai–Tibet Plateau
may lead to less stable skin microbial community structures.
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1. Introduction

Skin can be regarded as the largest human organ, and also as the first important line of defense
against external pathogens and toxic substances by secreting antimicrobial peptides, salts, enzymes,
lipids, and many other compounds [1]. Simultaneously, human skin harbors diverse microbial
communities, including bacteria, archaea, fungi, and viruses [2,3]. These symbiotic microorganisms
play a crucial role in host physiology, such as improving colonization resistance to transient microbes,
impacting lipid metabolism, and educating immunity [1,4,5]. In addition, skin microbiota composition
are also impacted by various environmental and host factors, such as pH, moisture, temperature,
host age, sex, body site, and species [6–11]. Some reports have demonstrated a pivotal function of
skin microbial communities in regulating the health and environmental adaptability of humans and
animals [12–14]. Most of these studies focused on low-elevation hosts. However, few studies have
explored how human skin microbiota adapts to extreme high-elevation environments.

Qinghai–Tibet Plateau (QTP) is considered the highest plateau in the world with an average
elevation of 3000–5000 m above sea level (mASL), and is also called “the roof of the world”. Human
population on the QTP has exceeded 12 million since 2006 [15], and their physiology and immunity may
be influenced by the extreme high-altitude environments. More narrowly, at the harsh high-elevation
environment, human skin derived from the QTP suffers diverse extreme environmental conditions,
including low pressure, low temperature, high ultraviolet radiation (UVR) intensity, and hypoxia [16,17].
Thus, these harsh environmental factors may exert tremendous selection forces on skin microbiotas,
and thus influence the diversity of skin microbial communities. A decrease in skin microbial diversity
is associated with several skin diseases (i.e., atopic dermatitis) in some clinical cases [18]. It is thus
important to explore the skin microbial diversity patterns along environmental gradients. Several
studies have reported the elevational diversity patterns of skin microbial communities in different host
species [9,19,20]. However, skin microbial diversity patterns of different hosts follow distinct, changing
patterns with elevation. For example, alpha diversity of salamander increased with elevation [9], while
the skin microbiotas of Coqui frogs (Eleutherodactylus coqui) showed no manifest diversity patterns
with altitude [19]. One recent study found that high-elevation humans and pigs had less skin microbial
diversity than those at low-elevation, based on two limited elevation ranges (3750–3861 mASL and
319–1421mASL) [20], and the authors obtained skin samples for only one body site from two very close
villages on the QTP. As a result, it is indispensable to explore human skin microbiota diversity patterns
across multiple body sites or more extensive elevation gradients.

In recent years, ecological networks have been popular in microbial ecology research. Network
organization is important to understand community stability and ecosystem services. For example,
the collapse of a microbial network structure is linked with seborrheic dermatitis [21]. Microbial
networks consist of nodes and edges. Nodes are generally the species or other taxonomic units, and
edges are the links (or correlations) between different species. Ecological networks can describe the
co-occurrence patterns among microbes in microbial communities. Positive links between nodes
indicates the cooperation or mutual benefit between microbial species, while negative links represent the
competition or exclusion between species [22]. Network topological features may also reveal valuable
biological information. For example, the network degree and density may reflect the complexity of
interspecific interactions [23]. High modularity values represent a high degree of niche differentiation
among species, and also weak microbial interactions [24,25]. Thus, using the network analysis can be
used to uncover system-level ecological features in microbial communities. To date, few studies have
compared the network topological characteristics of human skin microbiotas between elevations.

Previous studies mainly investigated the composition and diversity of skin microbiota across
different host species or environments. Few studies have explored the community assembly processes
of skin microbial communities. Microbial community assembly processes consist of stochastic and
deterministic processes [26,27]. Understanding community assembly processes may help to understand
whether the microbial community can be regulated or predicted by external environmental factors.
If one ecological community is primarily impacted through stochastic processes, then the variation
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trend of the community composition is unpredictable, uncertain, or non-directional [28]. In contrast,
if one community is mainly controlled by deterministic processes, then the composition and diversity
of the microbiota is predicted and directional, and can also be mediated by environmental factors [29].
In particular, the ecology theory from Vellend (2010) supposes that one community diversity is shaped
by four main processes, including dispersal, drift, speciation, and selection [30]. Generally, the
speciation is not considered at a short time or evolutionary scale. Consequently, ecologists have only
focused on the processes selection, drift, and dispersal [31]. Stegen et al. (2013) further divided these
three processes into variable selection, homogeneous selection, dispersal limitation, homogenizing
dispersal, and ecological drift. The process homogeneous selection denotes that a coincident selective
force, among local scales (i.e., the same pH among different soil samples), leads to similar community
composition. Variable selection represents differences of the selective environment among local
scales (i.e., different salinity along environmental gradients), which causes differences in community
composition. The ecological significance of homogenizing dispersal is that the broad dispersal rate
leads to similar community composition among local scales. The dispersal limitation signifies that
a limited dispersal rate causes divergence in community composition. Ecological drift is derived
from stochastic changes (i.e., birth or death) in population sizes. Selection (namely, variable selection
and homogeneous selection) belongs to deterministic processes, but dispersal (including dispersal
limitation and homogenizing dispersal) and drift belong to stochastic processes [32]. Understanding
the community assembly processes of human skin microbiotas along elevation gradients will help
us regulate and predict changes in the microbial community composition and diversity in order to
improve or maintain host health under extreme environments.

In this study, we explored the community diversity, predicted functions, network interactions,
and assembly processes of human skin (including forehead, opisthenar, and palm) microbiotas along
seven elevation gradients from 501 to 3431 mASL. We hypothesized that alpha and beta diversity
patterns at high elevations were different from those at low elevations due to the filtering and selection
of high-altitude environments. First, we tested which skin microbes could adapt well to high-elevation
environments. Second, we evaluated whether the alpha diversity decreased while beta diversity of skin
microbiotas increased with elevation. Third, we assessed whether there existed differences in network
topological features between high- and low-elevation human skin microbial communities. Last, we
want to know whether high-elevation human skin microbiotas had more deterministic processes
compared with low-elevation microbiotas.

2. Materials and Methods

2.1. Volunteer Recruitment and Sample Collection

Sample collection date was between October 22 and November 2 in the autumn of 2016.
We recruited experimental volunteers for skin microbiota research. The criteria was that volunteers
must be native adult individuals who have not left their homes for at least five years, and also have
not had any skin diseases, antibiotics, or related drug use. No bathing or washing in each participant
was done for at least 12 h before sample collection began. All participating subjects were of Han
nationality. Finally, five adult subjects participated in our study in each sampling site. A total of
105 skin samples from 35 human participants were obtained from seven different elevation sites,
including Chengdu (501 m), Xining (2298 m), Xingquan (2690 m), Guinan (3110 m), Hacheng (3150 m),
Riyuexiang (3271 m), and Zeku (3431 m). Skin samples were collected using a wet sterile cotton swab
from three different body sites, including the forehead, palm, and opisthenar. More concretely, the
sampling area was 5 × 5 cm, and the time that the cotton wiped the skin was approximately 60 s.
The cotton swaps collected were put into 2 mL sterile micro-centrifugal tubes, and stored in a –20 ◦C
portable refrigerator immediately. To estimate the UVR during the sampling sites, we measured the
UVR intensity at approximately 11:00–13:00 using an ultraviolet meter (UV-340A, spectrum range
290–390 nm, LUTRON, Taiwan). The average UVR values of all elevation sites ranged from 53
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to 3785 uW/cm2 in the current study. All samples were finally transferred to our lab within 24 h.
The information from each sample was recorded in Table S1.

All experimental procedures were performed in compliance with the Ethics Committee of the
Chinese Academy of Sciences (CAS-NWIPB-2016-137, approved on August 25, 2016). In addition,
written informed consent was obtained from all volunteers in this study and was submitted to the
related ethics committee. Notably, sample collection and experimental procedures sternly followed the
related guidelines.

2.2. DNA Extraction and High-Throughput Sequencing

We extracted skin microbiota DNA through Soil Ezup genomic DNA extraction kits (Shanghai
Sangon Biotech, China). Briefly, the detailed information of DNA extraction, polymerase chain reaction
(PCR) amplifications, and gel extraction was described in our previous study [33–35]. Finally, an
Illumina Miseq platform (Reagent Kit V2, Novogene, Beijing, China) with 2 × 300 cycles was used for
sequencing the pooled amplicons.

2.3. Bioinformatics Analysis

QIIME 1.9.0 was used to process the raw 16S rRNA gene sequencing data based on online
commands (http://qiime.org/tutorials/tutorial.html), based on the Environmental Microbiome and
Bioinfomatic Analysis Platform of the School of Public Health in Lanzhou University. Raw sequences
were demultiplexed to each sample according to unique barcodes. Two original fastq sequences for
each sample were joined through the FLASH-1.2.8 assembled software [36]. The reads that had a length
of less than 300 bp, or included ambiguous bases, or possessed an average base quality score <Q30 were
removed from the subsequent analysis. The remaining sequences were then subjected to a chimera
test according to the Uchime algorithm [37]. Thereafter, we clustered OTUs (operational taxonomic
units) at a 3% sequence dissimilarity based on Uclust [38]. Those OTUs that had the highest sequence
number were picked as representative sequences, and were classified using the RDP (Ribosomal
Database Project) classifier [39]. Those OTUs that were not identified as bacteria were removed.
In addition, those OTUs that contained only one sequence were also rejected. To analyze different
samples using the same sequencing depth, all samples were re-sampled into the same sequence number
(15,596 sequences). Taxonomic compositions of skin microbiota samples were evaluated at phylum or
genus level. The alpha diversity values (i.e., observed OTUs and Shannon diversity) were produced
in QIIME, and the rarefaction curves of observed OTUs were produced. To evaluate beta diversity
values, the two distance matrices, Jaccard and Bray–Curtis were calculated through QIIME. Notably,
Jaccard distance considered the presence/absence of each OTU [40], but the Bray–Curtis distance matrix
computed was dependent on each OTU abundance or percentage composition [41]. To understand
the difference of skin microbiome across elevations and body sites, the non-metric multidimensional
scaling (NMDS) plots of the two above matrices were visualized using Originlab 2018 (Originlab,
Northampton, USA).

2.4. Statistical Analysis

To understand the relative contributions of different factors on human skin microbiota,
we evaluated whether the skin microbiota structures were significantly distinct across elevations
based on PERMANOVA (permutational multivariate analysis of variance) [42] using the procedure
‘adonis’ in the R ‘vegan’ package. The model variables included elevation, individual, gender, age,
height, weight, and body site (forehead, palm, and opisthenar). In each body site, one-way analysis of
variance (one-way ANOVA) with a post hoc test was applied to uncover the differences of dominant
phyla or genera between elevations. Core phyla or genera were defined as those genera that were
present in all samples. Linear regression analysis was also carried out between elevation and core
phyla (mean relative abundance >1%), alpha diversity (Shannon diversity and observed OTUs), or beta
diversity (Jaccard and Bray–Curtis distance matrices). Spearman rank correlation analysis was used

http://qiime.org/tutorials/tutorial.html
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to detect the relationship between core genera (mean relative abundance >0.09%) and elevation.
We defined those microbes that had a negative correlation with elevation as “elevation-sensitive
microbes”, while those microorganisms that had a positive correlation with elevation that could be
defined as “elevation-tolerant microbes”. p values in the related analysis were corrected using the FDR
(false discovery rate) control. A partial mantel test was used to detect the effects of elevation on the
skin microbiota after controlling host-related factors (including the individual, gender, age, height,
weight, and body site) using the “mantel” procedure in the R “vegan” package.

2.5. Co-Occurrence Patterns Analysis

The skin microbiotas of low-elevation areas from 501 to 2690 m showed clear structure separation
from those from 3110 to 3431 m. Thus, we divided 105 samples into six groups, namely the group
high-elevation forehead, low-elevation forehead, high-elevation opisthenar, low-elevation opisthenar,
high-elevation palm, and low-elevation palm. Ecological network analysis was able to reveal the
co-occurrence patterns between different microorganisms. To get rid of rare OTUs, those OTUs
with a mean relative abundance less than 0.01% across all samples were removed. The Spearman
rank correlation coefficients were calculated between two OTUs. p-values of correlation analysis
were adjusted based on the Benjamini and Hochberg FDR controlling methods [43]. Based on the
correlation coefficients and FDR-adjusted p-values, the meta-community network was constructed
using the weighted correlation network analysis (WGCNA) package. The selected cutoff of p-values
(FDR-adjusted) was 0.001, and the threshold of correlation coefficients was 0.77, using the methods
that were dependent on the random matrix theory [44]. Each node in the network represents one OTU,
and each edge that connects two nodes represents the correlation between OTUs. Network topological
features were obtained with the “igraph” package. All the samples were then divided into six groups.
Sub-network images of each group were visualized using the Gephi 0.9.2 (https://gephi.org/).

To characterise the network topology, we calcualed four node-level topological features
(i.e., closness centrality, node degree, betweeness centrality, and eigencentrality) and six network-level
topological features (i.e., nodes, links, cluster number, average degree, graph density, and modularity)
for each sub-network. A Wilcoxon rank-sum test was applied to determine the differences of node-
and network-level topological features between groups. Those microbes with a higher node degree
(more than 100) and lower betweenness centrality (less than 5000) values in networks were regarded as
“keystone species” [45].

2.6. Community Assembly Processes Analysis

To test which ecological processes may govern bacterial community assembly across groups, we
used the methods of Stegen et al. (2013) to calculate the potential ecological processes, including the
variable or homogeneous selection, dispersal limitation, homogenizing dispersal, and undominated
processes (or called as “ecological drift” in [46]. To quantify community ecological processes,
phylogenetic ecological diversity of bacterial communities was computed between any two samples
in each group. The package “picante” in R was used to calculate the weighted beta nearest taxon
index (β-NTI) parameters. The integration of Bray–Curtis-based Raup–Crick (RCbray) and β-NTI was
applied to infer the relative contributions of the above processes dominating the skin microbiota. If the
values of β-NTI were >2 or <−2, then this signified that the community turnover was modulated
by the variable or homogeneous selection, respectively. In addition, if −2 < β-NTI < 2 as well as
RCbray > 0.95 or < −0.95, this indicated that the community composition was regulated by dispersal
limitation or homogenizing dispersal, respectively. Lastly, if 2 < β-NTI < 2 and −0.95 < RCbray

< 0.95, this indicated that the community diversity was influenced by undominated processes or
ecological drift [46]. Variable selection and homogeneous selection belonged to deterministic processes,
yet dispersal (namely, dispersal limitation and homogenizing dispersal) processes and drift belong
to stochastic processes [32]. Thus, the stochastic and deterministic processes of each group were
also calculated.

https://gephi.org/
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2.7. Function Prediction of Skin Microbiota

We used PICRUSTv1.0.0 [47] to predict the abundances of gene functions according to the OTU
abundances. Then, we calculated the mean relative abundance of gene functions at level 3 within each
elevation. The Bray–Curtis distance matrix was produced based on predicted gene functions using
QIIME. For each skin site, analysis of similarity (ANOSIM) was also applied to uncover the difference
between high- and low-elevation skin microbial functional profiles. The difference of gene functions at
level 3 between high- and low-elevation sampling sites was calculated using the custom QIIME script
“otu_category_significance.py”. p values were corrected using the Bonferroni methods. Only those gene
functions between two groups with p < 0.01 were shown.

3. Results

3.1. Overall Composition of Human Skin Microbiota

After removing low-quality sequences, chloroplasts, chimeras, and singleton sequences,
high-quality reads (1,945,102) were obtained from 105 human skin samples (mean 18,525 reads
per sample, max = 19,605, min = 15,596, and SD = 765). In the current study, a total of 36,539 OTUs were
identified and assigned to 58 phyla, 204 classes, 421 orders, 734 families, and 1593 genera. Human skin
microbiota was dominated by the five most dominant bacterial phyla, including Proteobacteria (mean
relative abundance = 34.87%), Firmicutes (21.99%), Bacteroidetes (20.31%), Actinobacteria (16.92%), and
Acidobacteria (1.28%), and these phyla accounted for approximately 95% of the total sequences. Other
rare phyla with a mean relative abundance <1% included Planctomycetes, Chloroflexi, Cyanobacteria,
Verrucomicrobia, Gemmatimonadetes, Fusobacteria, Thermi, and Spirochaetes. The skin community
composition of each sample is shown in Figure 1A. At the genus level, skin microbiota mainly consisted
of Chryseobacterium (10.37%), Acinetobacter (6.12%), Enhydrobacter (4.58%), Staphylococcus (3.62%), and
Streptococcus (3.35%). Other bacterial genera (mean relative abundance >1%) included Corynebacterium,
Lactobacillus, Ruminococcus, Planomicrobium, Lactococcus, Lysobacter, Cellvibrio, Prevotella, Micrococcus,
and Luteimonas.

Core phyla included Proteobacteria, Firmicutes, Bacteroidetes, Actinobacteria, Acidobacteria,
Planctomycetes, Chloroflexi, Verrucomicrobia, and Thermi, and these taxa were present in all samples.
The total relative abundance of these phyla ranged from 92.8% to 99.9%. In addition, core genera
consisted of 37 genera, such as Acinetobacter, Chryseobacterium, Planomicrobium, Corynebacterium,
Ruminococcus, and Prevotella. The total abundance of these genera accounted for 13.8%–90.4% for
each sample.
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Figure 1. Skin community composition of each sample at the phylum level across elevations and body 
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Figure 1. Skin community composition of each sample at the phylum level across elevations and body
sites (A) Only those phyla with a mean relative abundance more than 0.1% were shown. Additionally,
the relationship between dominant phyla and elevation (B) Only those phyla (mean relative abundance
>1%) that were significantly correlated with elevation were shown.
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3.2. Elevation-Sensitive and Elevation-Tolerant Microbes

We detected the correlation between major core taxa phyla (mean relative abundance >1%) or
genera (mean relative abundance >0.09%) and elevation. Those microbes that had a positive correlation
with elevation were defined as “elevation-tolerant” microbes, while those microorganisms that had a
negative correlation with elevation were defined as “elevation-sensitive” microbes. Linear regression
analysis showed that the total abundance of core phyla had no significant associations with elevation
(all p > 0.05). Proteobacteria and Acidobacteria decreased with increasing elevation regardless of the
body site (Figure 1B), indicating that members of these two phyla were elevation-sensitive microbes.
However, Firmicutes, Bacteroidetes, and Actinobacteria of the forehead, opisthenar, or palm had
no significant correlations with elevation (all p > 0.05). At the genus level, the total abundance
of core genera was positively correlated with elevation (Figure S1). Elevation-tolerant microbes of
forehead, opisthenar, and palm consisted of 8, 9, and 11 genera, respectively (Figure 2). Among
these microbes, the shared elevation-tolerant genera in the three body sites included Acinetobacter,
Chryseobacterium, Planomicrobium, Ruminococcus, Clostridium, Lactobacillus, and Bacillales (one unknown
genus). In contrast, elevation-sensitive microbes of the forehead, opisthenar, and palm consisted of
seven, nine, and eight genera, respectively (Figure 2). The shared elevation-sensitive microbes in the
three body sites were affiliated with Sphingomonas, Bradyrhizobium, Rhodoplanes, Oxalobacteraceae,
Xanthomonadaceae, Rhodospirillaceae, and Geodermatophilaceae.
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Figure 2. Spearman correlation between core genera (mean relative abundance >0.09%) of the 
forehead (A), opisthenar (B), and palm (C) and elevation. “+” means positive correlation, “-” means 
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3.3. Alpha and Beta Diversity Patterns of Skin Microbiotas Along Elevational Gradients  

Rarefaction curves of observed OTUs for each sample were produced at the OTU level (Figure 
S2). The curves of most of the samples reached close to the plateau, indicating that our sequencing 
depth was able to capture most bacterial species of human skin microbiota. While the Shannon 
diversity values showed a weak downward trend with elevation for the palm microbiota, most of the 
alpha diversity values (including observed OTUs and Shannon diversity) of human skin microbiota 
significantly decreased with increasing elevation (Figure 3). The fitting curve slope of opisthenar 
microbiota was more stepper, indicating that opisthenar microbial diversity was more influenced by 

Figure 2. Spearman correlation between core genera (mean relative abundance >0.09%) of the
forehead (A), opisthenar (B), and palm (C) and elevation. “+” means positive correlation, “-” means
negative correlation.

3.3. Alpha and Beta Diversity Patterns of Skin Microbiotas Along Elevational Gradients

Rarefaction curves of observed OTUs for each sample were produced at the OTU level (Figure S2).
The curves of most of the samples reached close to the plateau, indicating that our sequencing
depth was able to capture most bacterial species of human skin microbiota. While the Shannon
diversity values showed a weak downward trend with elevation for the palm microbiota, most of the
alpha diversity values (including observed OTUs and Shannon diversity) of human skin microbiota
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significantly decreased with increasing elevation (Figure 3). The fitting curve slope of opisthenar
microbiota was more stepper, indicating that opisthenar microbial diversity was more influenced by
elevation. Two-way ANOVA analysis showed that elevation influences the observed OTUs (F = 4.660,
p < 0.001) or Shannon diversity (F = 3.476, p = 0.004) of human skin microbiota, while body sites or
the interaction between elevation and body site had no significant effects shaping the alpha diversity
values (all p > 0.05). In addition, UV was negatively correlated with Shannon diversity (Spearman
R = −0.332, p < 0.001) or observed OTUs (R = −0.343, p < 0.001) of human skin microbiotas.
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The non-metric multidimensional scaling (NDMS) plots based on the Jaccard and Bray–Curtis
matrices showed that the human skin microbiota structure had significant differences across elevations
(Figure 4). The skin microbiotas of different body sites at the same elevation clustered together,
indicating that the body site was a less important factor than elevation. PERMANOVA analysis
found that skin microbiotas were mainly impacted by the individual (Jaccard R2 = 0.285, p < 0.001;
Bray–Curtis R2 = 0.443, and p < 0.001) and elevation (Jaccard R2 = 0.059, p < 0.001; Bray–Curtis
R2 = 0.149, and p < 0.001), followed by gender (Jaccard R2 = 0.056, p < 0.001; Bray–Curtis R2 = 0.101,
and p < 0.001), age (Jaccard R2 = 0.016, p < 0.001; Bray–Curtis R2 = 0.082, and p < 0.001), height
(Jaccard R2 = 0.014, p = 0.002; Bray–Curtis R2 = 0.023, and p < 0.001) and weight (Jaccard R2 = 0.011,
p = 0.018; Bray–Curtis R2 = 0.021, and p < 0.001). The body site had a weak impact in shaping human
skin microbiota based on the Bray–Curtis distance matrix (R2 = 0.015, p = 0.003), while there were no
significant effects based on the Jaccard distance matrix (R2 = 0.018, p = 0.107). In addition, the skin
microbiotas at low-elevation areas from 501 to 2690 m showed clear structure separation from those at
high-elevation regions from 3110 to 3431 m. PERMANOVA confirmed that skin microbiotas between
the high and low-elevation areas had significantly different community structures (Jaccard R2 = 0.079,
p < 0.001; Bray–Curtis R2 = 0.179, p < 0.001). Notably, even after controlling host-related factors
(including individual, gender, age, height, weight, and body site), elevation was still a significant
factor that influenced human skin microbiota (partial mantel test r = 0.087, p < 0.001) based on the
Bray–Curtis distance.
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Figure 4. Non-metric multidimensional scaling (NMDS) plots showing the difference of human skin
microbiota across elevations and body sites at operational taxonomic units (OTU) level based on
(A) Jaccard and (B) Bray–Curtis distances.

Interestingly, we found that beta diversity values increased with elevation in different body sites
based on the Jaccard or Bray–Curtis dissimilarity matrix (all p < 0.05, Figure 5). In other words,
the community dissimilarity between individuals was more different with increasing elevation.
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Figure 5. Beta diversity (Jaccard and Bray–Curtis dissimilarities within each elevation, A,B) values of
human skin microbiota were significantly correlated with elevation (all p values < 0.05).

3.4. The Differences of Predicted Gene Functions between High and Low-Elevation Skin Microbiotas

A principal coordinate analysis (PCoA) plot based on the Bray–Curtis dissimilarity of predicted
metagenomes at level 3 of KEEG (Kyoto Encyclopedia of Genes and Genomes) showed that forehead,
opisthenar, and palm microbiota at high-elevation regions had different gene functional profiles than
those at low-elevation regions (ANOSIM r =0.126, p < 0.01, Figure S3). ANOSIM analysis also showed
that the individual, elevation, gender, host age, and weight significantly influenced the functions of
skin microbiotas (all p < 0.05, Table S2). In particular, we compared the specific gene functions at level 3
for each skin site between high and low-elevation regions (Table S3). Those gene functional pathways
involved in alanine, aspartate, and glutamate metabolism, and vitamin B6 metabolism were always
enriched in the high-elevation sites, regardless of skin sites. In contrast, a total of eight shared gene
functional pathways were more abundant in the low-elevation regions, these functional pathways
included melanogenesis, glycan bindng proteins, neuroactive ligand-receptor interaction, pancreatic
secretion, sesquiterpenoid biosynthesis, VEGF signaling pathway, CAM ligands, and ECM-receptor
interaction (Table S3).

3.5. Co-Occurrence Patterns of Different Skin Subcommunities

A meta-community ecological network was constructed based on the spearman correlations,
and then six different sub-networks were split. These networks included the six groups, namely
high-elevation forehead, low-elevation forehead, high-elevation opisthenar, low-elevation opisthenar,
high-elevation palm, and low-elevation palm (Figure 6). The bacterial networks of high-elevation skin
had less nodes and links (all links are positive) than those of low-elevation skin regardless of skin
locations (Table S1). In addition, we also compared four node-level topological features of different
subnetworks, including the betweenness centrality, closeness centrality, degree, and eigenvector
centrality (Figure 7). The values of degree, betweenness centrality, and eigenbector centrality were
significantly lower (p < 0.05) for high-elevation bacterial subnetworks than for low-elevation bacterial
subnetworks with the exception of palm networks. This trend suggests that microbial taxa at the
low-elevation were more located in the central positions within the corresponding network than
those at the high-elevation. In other words, the bacterial taxa at the high-elevation were more
located in the peripheral position in networks than those at the low-elevation. However, the values
of closeness centrality at the high-elevation were significantly higher (p < 0.05) than those at the
low-elevation, indicating that the nodes in the high-elevation networks were closer than those in the
low-elevation networks.
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Figure 6. Different co-occurrence subnetworks of high-elevation and low-elevation human skin
microbiotas based on a correlation analysis. A connection means a strong (Spearman’s R > 0.77) and
significant (FDR-corrected p < 0.001) correlation. Abbreviation, FDR = False discovery rate.

To confirm our above results, we also compared the overall network-level features of different skin
microbiota subnetworks (Table 1). The clustering coefficient, average degree, and graph density were
all lower at the high-elevation regions than at the low-elevation areas, suggesting that high-elevation
skin bacterial networks were more fragile and less connected than low-elevation bacterial networks.
Interestingly, we found that the modularity value was higher at high-elevation than at the low-elevation,
indicating that a higher level of nich differentiation but weaker microbial interactions for high-elevation
skin bacterial subnetworks.

Table 1. Network-level topological features of the bacterial subnetworks in human skin.

Group Nodes Edges Clustering
Coefficient

Average
Degree

Graph
Density Modularity

High-elevation forehead 744 3018 0.7337 8.1129 0.0109 0.1697
Low-elevation forehead 769 5136 0.7443 13.3576 0.0174 0.1166

High-elevation opisthenar 748 3123 0.7269 8.3503 0.0112 0.1591
Low-elevation opisthenar 767 5130 0.7444 13.3768 0.0175 0.1130

High-elevation palm 753 3661 0.7276 9.7238 0.0129 0.1461
Low-elevation palm 766 5116 0.7444 13.3577 0.0175 0.1172

To identify the features of keystone species in networks, we picked out 31 keystone species in
skin microbial networks (Table S4). These keystone species were mostly affiliated with Flavisolibacter,
Kaistobacter, Catellatospora, Steroidobacter, Glycomyces, and Chitinophaga. Most of these keystone species
(24 out of 31) had abundances of less than 0.1%, and were not the abundant taxa in human skin
microbiota. For instance, the abundance ranking of OTU177470 (belonging to Flavisolibacter) with the
highest abundance in the pool of keystone species were only 55th in skin microbiota.



Microorganisms 2019, 7, 611 14 of 23
Microorganisms 2019, 7, 611 14 of 23 

 

 

Figure 7. Four node-level topological features of high-elevation and low-elevation human skin 
microbiotas specifically the betweenness centrality (A), closeness centrality (B), degree (C), and 
eigenvector centrality (D). All values were significantly different between high-elevation and low-
elevation based on the Wilcoxon rank sum tests (p < 0.05). 

3.6. Ecological Processes Governing the Assembly of Human Skin Microbiotas 

To understand community assembly processes of human skin microbiota, we calculated which 
ecological processes governed the skin microbial communities between high and low-elevation 
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elevation (Figure 8B). 

Figure 7. Four node-level topological features of high-elevation and low-elevation human skin
microbiotas specifically the betweenness centrality (A), closeness centrality (B), degree (C), and
eigenvector centrality (D). All values were significantly different between high-elevation and
low-elevation based on the Wilcoxon rank sum tests (p < 0.05).

3.6. Ecological Processes Governing the Assembly of Human Skin Microbiotas

To understand community assembly processes of human skin microbiota, we calculated which
ecological processes governed the skin microbial communities between high and low-elevation regions
(Figure 8). For forehead, opisthenar, or palm, the high-elevation skin microbiotas had more variable
selection and homogeneous selection processes, but less dispersal limitation than the low-elevation
skin microbiotas (Figure 8A). Variable selection and homogeneous selection belong to deterministic
processes, while dispersal (dispersal limitation and homogenizing dispersal) and undominated
processes belonged to stochastic processes. We found that human skin microbiotas were assembled
by stochastic processes (58.4%–74.6%), but skin microbiota assembly at the high-elevation had more
deterministic processes (or less stochastic processes) than that at the low-elevation (Figure 8B).
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human skin microbiome is associated with various diseases [48,49]. Thus, understanding skin 
microbiota is very important to explore the relationship between microbiotas and human health. 
Previous studies on skin microbiotas mainly focused on low-elevation humans and few reports have 
uncovered diversity patterns, network interactions, and assembly processes of human skin 

Figure 8. Summary of the contributions of the ecological processes that determine human skin
microbiota assembly in different elevations. (A) The contributions of variable selection, homogeneous
selection, dispersal limitation, homogenizing dispersal, and undominated in the assembly of human
skin microbiota. (B) The relative contributions of deterministic processes and stochastic processes in
human microbiota assembly.

4. Discussion

Impacted by the immune system, host lifestyle, sanitary conditions, and environmental factors,
human skin microbiome is associated with various diseases [48,49]. Thus, understanding skin
microbiota is very important to explore the relationship between microbiotas and human health.
Previous studies on skin microbiotas mainly focused on low-elevation humans and few reports have
uncovered diversity patterns, network interactions, and assembly processes of human skin microbiotas
on high-elevation humans. Using microbial ecology theory and network topological analysis, we
found that elevation is a significant factor in shaping human skin microbiota diversity regardless of
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body sites. Alpha diversity values decrease with elevation, while beta diversity showed an opposite
trend. Notably, high-elevation skin microbiota networks were more fragile than those at low-elevation
areas, which possibly contribute to the higher incidence of microbiome-associated skin diseases
in high-altitude regions. In addition, stochastic processes dominate the human skin microbiotas,
but skin microbiotas at high elevation harbor more portion of deterministic processes than those at
low-elevation, indicating that high-elevation environments may be conducive to the promotion of
deterministic processes. These results greatly expand our understanding for human skin microbiota
assembly under extreme environments.

4.1. Elevation-Tolerant Microbes Indicate That the Adaptation of Skin Microbiota for Extreme
High-Elevation Environment

The relative abundance of elevation-tolerant microbes increased with increasing elevation. In this
study, we found that Acinetobacter, Chryseobacterium, Planomicrobium, Ruminococcus, Clostridium,
Lactobacillus, and Bacillales (one unknown genus) belonged to elevation-tolerant microbes regardless
of human body sites, indicating that this genus in the human skin may possibly adapt well to harsh,
cold, and high-UV environments at higher elevations. Interestingly, some elevation-tolerant microbes
have been reported as extremophiles derived from high-elevation regions, indicating that the presence
or increased abundance of these bacterial taxa is probably due to the exposure and selection of
high-elevation environments. For example, several species of Acinetobacter have been isolated from
extreme high-elevation lakes and wetlands [50,51]. These species can have a strong resistance to
desiccation, starvation, cold, and UV. They also have efficient DNA damage repair ability when exposed
to high UV [52]. While members of the genus Acinetobacter are strictly aerobic, they are able to form
intracellular polymers (polyhydroxyalkanoates) under adverse environmental conditions (e.g., lack of
oxygen) [53]. Thus, Acinetobacter should have broad adaptability capacity for extreme high-elevation
environments. Notably, Acinetobacter is a common opportunistic pathogen in hospital, which may lead
to various infections, such as pneumonia and bacteremia [54]. We speculate that a high abundance of
this genus at high elevations may be associated with a higher risk of diseases. Future studies should
uncover the functional role of Acinetobacter in human skin.

In contrast, we found that shared elevation-sensitive microbes in different skin sites included
Sphingomonas, Bradyrhizobium, Rhodoplanes, Oxalobacteraceae, Xanthomonadaceae, Rhodospirillaceae,
and Geodermatophilaceae. These microbes may be very sensitive to extreme environments in
high-elevation regions. For instance, some members of this genus will lose activation when exposed
to a low UV dose of 40 mJ/cm2 [55]. Thus, the relative abundance of Sphingomonas decreased with
increasing elevation, which is partly due to higher UV at high-elevation environments. Bradyrhizobium
are genneral symbiotic bacteria associated with plants [56] and is rarely detected in human skin.
Further studies should explore whether Bradyrhizobium is simply a native inhabitant or a transient
microbe picked up from the environment.

4.2. Alpha Diversity Decreases but Beta Diversity Increases for Skin Microbiota Along the Elevational Gradient

Generally, ecologists consider that one ecosystem that harbors more species diversity should be
more stable, and is able to exhibit high levels of ecosystem functions and services [57,58]. While species
can interact differently in different ecosystems, the evidence showed that high species diversity was
able to provide more functional redundancy and buffer ecosystem functions against possible species
loss or extinction [59,60] when facing environmental disturbance. In skin-microbe systems, a diverse
skin microbiota may contribute a distinct set of enzymes for decomposing toxic substances, and also
limit the overabundance of specific pathogenic bacteria associated with skin diseases by competing
with them. On the contrary, a decrease in skin microbial diversity was associated with skin diseases [18].
Our results found that skin microbial diversity decreased with increasing elevation regardless of
body sites, indicating that high-elevation humans are possibly linked to a higher prevalence of skin
diseases. Our results are largely consistent with those of Zeng et al. (2017), who also found that alpha
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diversity values of high-altitude humans and pigs were lower compared to those at lower altitudes.
High elevation is associated with extreme environmental conditions, such as high UV, which may kill
microbes or restrain their growth, and lead to species loss. Our data also supported this viewpoint,
because UV was negatively correlated with alpha diversity of human skin microbiotas. In addition
to UV, those unmeasured factors, such as temperature and oxygen concentration may also influence
skin bacterial diversity [61,62]. Interestingly, elevation had the greatest impact on opisthenar microbial
diversity, followed by the forehead and palm. The possible reason is that opisthenar suffers from
exposure to more light (or UV), while the Han Chinese often wear hats, and their forehead and palm
receive less exposure to UV. Thus, the loss rate of bacterial species on opisthenar is higher. Nevertheless,
body sites had no significant impacts in microbial alpha diversity, suggesting that human microbial
diversity is relatively stable in different skin sites.

Our data showed that the individual was the most important factor in determining human skin
microbiota. The results were largely the same as previous reports [3,63], where it was also found that
the composition of human individual skin microbiome was highly personalized. This microbiota
variability is probably dependent on an individual trait, because different human individuals have
discrepant host physiological characteristics. These findings suggest that individualized treatment
is needed to regulate skin microbiomes in order to treat diseases. In addition to the individual,
elevation is the second most important factor impacting community structure. We found that human
skin community structures were significantly different across elevations, which is similar to other
studies regarding skin microbial communities in humans, pigs, and amphibian [20,64]. In addition to
UV, as mentioned above, other unmeasured environmental factors (e.g., air temperature) associated
with elevation may influence the skin microbiota structure [65]. As UV and elevation was highly
auto-correlative, we could not disentangle the relative contributions of each of these two factors on the
skin microbiota structure. However, we found that elevation was still a significant factor that influenced
human skin microbiota even after controlling host-associated factors, indicating that elevation was
able to impact skin microbiomes.

Beta diversity values (including Jaccard and Bray-Curtis dissimlarities) of human skin microbiotas
within each elevation also increased with increasing elevation, indicating that inter-individual skin
microbial communities were more different at high-elevation regions. We listed two hypotheses for
future verification. First, high-altitude environmental pressure may cause different physiological and
immune responses for each human individual [66], thus probably indirectly increasing the difference
of inter-individual skin microbiota. Second, environmental (i.e., building environments) microbes at
different altitudes may also influence host skin microbiota, as it has been demonstrated that human
homes may shape skin bacterial classes [67]. In addition to the difference of microbial community
diversity, functional differences between high-elevation and low-elevation skin microbiotas also existed.
These results indicated that elevation also significantly impacts the skin community functions. Notably,
we found that vitamin B6 metabolism was always enriched in the high-elevation sites regardless of skin
sites, suggesting that vitamin B6 metabolism is very important in high-elevation environments. Indeed,
vitamin B6 was specifically efficient in quenching reactive oxygen species. Consequently, related results
from different organisms found that reduced levels of vitamin B6 were linked with severe susceptibility
to extreme environmental stress (oxidative, drought, and UV-B) [68]. Thus, the enriched vitamin
B6 metabolism at high elevation may probably be one kind of functional adaptability for human
skin microbiota. Interestingly, our results also showed that human skin microbiotas with more than
3000 m altitude had a significant structural or functional separation with less than 3000 m. The possible
reason is that approximately 3000 m elevation is a demarcation line for obvious changes in human
physiology [15], which may enormously influence the composition and function of skin microbiota.

4.3. High-Elevation Skin Microbiota Networks are More Fragile Than Those at Low-Elevation Areas

Network analysis is able to reveal the complex inter-interactions of different bacterial species in
microbial ecology study [25]. Here, the bacterial networks of high-elevation skin had less nodes and
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links than those of low-elevation skin regardless of skin locations, indicating that a high-elevation
environment led to simpler skin bacterial networks. All links were positive under the network
construction condition and the cutoff of correlation coefficients for nodes was 0.77, implying that
the cooperation or mutual benefit probably plays a dominant role among human skin microbiota.
Node-level topological features revealed significantly lower values of degree, betweenness centrality,
and eigenbector centrality for high-elevation subnetworks than for low-elevation subnetworks,
suggesting that bacterial taxa at the high-elevation were more located in the peripheral position in
networks. For network-level topological features, different subcommunities uncovered less connection
for bacterial taxa at high-elevation than those at low-elevation regardless of body sites. Thus, microbes
had a more distant relationship and less influence on other co-occurrences at high-elevation bacterial
networks. In other words, the microorganisms at the high-elevation networks had a more independent
status. It has been found that the bacterial networks with less graph density and clustering coefficients
in megacities were more fragile than non-megacities [48], and human population in megacities was
associated with more skin related diseases. Similarly, our results showed the bacterial networks at
high-elevation had less graph density and clustering coefficients than those at the low-elevation. Thus,
high-elevation humans may likely be more susceptible to related disease risk.

Our data showed that most of keystone species in networks had a low abundance and were
relatively rare in skin microbiota. The most abundant keystone species OTU177470 was at the 55th
position, suggesting that the keystone species in microbial networks were not necessarily the dominant
microbes in human skin. These results were congruent with those in other ecosystems [22,69], which
also found that rare species in microbial communities were keystone species. This ecological result was
advantageous to maintain stable network structures, because networks may recruit keystone species
from those rare taxa [70], which has a higher diversity compared with abundant microbes, rather
than depending on the input of new bacteria or choosing limited abundant species. Nevertheless,
the topological characteristics of our established networks were dependent on sequencing depth
and correlation threshold, and a network construction method by retaining OTUs with >0.01%
average relative abundance across all samples. This data processing method may probably impact the
topological features of microbial networks.

4.4. Stochastic Processes Dominate the Human Skin Microbiota, but High-Altitude Skin Microbiota Harbors
More Deterministic Processes

While the estimation of ecological processes may be influenced by technical deficiencies, such as
the difference of DNA extraction methods, PCR-bias, and sequencing errors, this method has been
found to be effective and widely applied in analyzing the microbiota assembly processes of humans,
pikas, fruit fly, and other environments [71–74]. Based on the phylogenetic analysis, we found that
human skin microbiota was mainly assembled by stochastic processes, implying that individual skin
microbial composition can be unpredictable, and stochastic factors (i.e., stochastic dispersal, birth,
or death) may be responsible for the community assembly. Our results were not inconsistent with the
previous study by Kim et al. (2018), who found human skin microbiotas are assembled primarily by
niche-based processes (similar to deterministic processes) based on null model testing. The possible
reason is that Kim et al. (2018) did not consider the phylogenetic relationship of bacterial species.
Our results indicate that it is difficult to regulate skin microbial ecology to improve human health due
to the stochastic assembly of human skin microbiota.

We found that high-elevation human skin microbiotas had more fractions of deterministic
processes regardless of skin locations, suggesting that elevation acts as strict environmental filters
and cause the increase of ‘selection’ processes. Our data supported this inference, as demonstrated
by the finding that more variable selection and homogeneous selection processes were detected in
high-elevation humans. Environmental filtering is a pivotal determinant of ecological community
assembly [75] and leads to phylogenetic clustering of closely related microorganisms and increase the
deterministic processes in human skin. In addition, high-elevation environments may improve human
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immune response [66] and the related immunity may select or enrich specific bacteria that adapt to the
extreme environment. Thus, deterministic processes increased in high-altitude humans. In addition,
we found that high-altitude humans had less dispersal limitations than those at the low-elevation,
implying that the former had less frequency of microbial transmission, probably due to less population
density or physical contact on the QTP. Further studies should investigate which factors determine
microbial community processes.

5. Conclusions

We are the first to study the diversity, function, interaction, and assembly of human skin microbiotas
along a wide elevational gradient. Our results showed that specific human skin bacteria, such as
Acinetobacter, might adapt to the cold, dry, and high-UV plateau environments. The individual is the
most important factor in determining skin microbiota. Elevation is a significant factor that influences
human skin microbiota, even after controlling host-related factors. Due to the filtering of high-altitude
environments, the alpha diversity of human skin microbiotas decreased with elevation, but the beta
diversity showed an opposite pattern. While stochastic processes dominate the human skin microbiota,
high-altitude skin microbiota harbors more deterministic processes. Thus, it is quite difficult to regulate
skin microbial ecology to improve human health due to the stochastic assembly of skin microbiota.
The bacterial networks at high-elevation were more fragile than those at low-elevation. Consequently,
high-elevation humans may likely be more susceptible to related disease risk. However, this study has
a limited sample size, a larger number of samples may make our results more accurate. In addition,
further studies should focus on the relationship between skin microbiota and human health.
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