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Abstract: Currently, there is no objective biomarker to indicate disease progression and monitor
therapeutic effects for amyotrophic lateral sclerosis (ALS). This study aimed to identify plasma
biomarkers for ALS using a targeted metabolomics approach. Plasma levels of 185 metabolites
in 36 ALS patients and 36 age- and sex-matched normal controls (NCs) were quantified using an
assay combining liquid chromatography with tandem mass spectrometry and direct flow injection.
Identified candidates were correlated with the scores of the revised ALS Functional Rating Scale
(ALSFRS-r). Support vector machine (SVM) learning applied to selected metabolites was used to
differentiate ALS and NC subjects. Forty-four metabolites differed significantly between ALS and
NC subjects. Significant correlations with ALSFRS-r score were seen in 23 metabolites. Six of them
showing potential to distinguish ALS from NC—asymmetric dimethylarginine (area under the curve
(AUC): 0.829), creatinine (AUC: 0.803), methionine (AUC: 0.767), PC-acyl-alkyl C34:2 (AUC: 0.808),
C34:2 (AUC: 0.763), and PC-acyl-acyl C42:2 (AUC: 0.751)—were selected for machine learning. The
SVM algorithm using selected metabolites achieved good performance, with an AUC of 0.945. In
conclusion, our findings indicate that a panel of metabolites were correlated with disease severity of
ALS, which could be potential biomarkers for monitoring ALS progression and therapeutic effects.

Keywords: amyotrophic lateral sclerosis; biomarker; metabolomics; creatinine; asymmetric dimethy-
larginine; methionine; phosphatidylcholine; sphingomyelin

1. Introduction

Amyotrophic lateral sclerosis (ALS) is a progressive neurodegenerative disease caused
by the progressive degeneration of motor neurons [1]. The pathogenesis of neurodegen-
eration in ALS has not been fully disclosed. Several pathogenic pathways have been
identified, including abnormal proteostasis; mitochondrial, autophagic, and metabolic dys-
function; increased oxidative stress and inflammation; and failure of axonal transport [2,3].
Approximately 10% of patients with ALS have a family history of the disease, with the
remainder of cases classified as sporadic [4]. Currently, effective treatments to prevent
disease progression or modify the disease course for ALS are few. Riluzole prolongs sur-
vival by 2–3 months [5], whereas edaravone mildly improves patient mobility [6]. The
main hurdle in developing an effective treatment for ALS is the lack of objective and
useful biomarkers to indicate early disease progression and to test the efficacy of potential
treatments. Establishing ALS-specific molecular biomarkers, particularly in blood, could
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help in revealing pathogenesis, detecting the disease at preclinical or early stages, indicat-
ing disease progression, and monitoring the effect of therapeutic measures by potential
disease modifiers.

Metabolites are compartment-specific in the sense that they may participate in differ-
ent biochemical reactions according to whether they are found in bodily fluids, cells, or
tissues. The profiles of metabolites are produced by catabolic and anabolic processes in
different tissues, serving to reflect dysregulated cellular and metabolic processes. In ALS,
the metabolic profiles revealed by various metabolomics platforms show a disturbance of a
number of ALS-associated metabolic pathways, including amino acid, pyruvate, and lipid
metabolism [7–10]. Altered levels of sphingolipids have been reported in the plasma of
ALS patients [11–13]. Plasma levels of arginine, proline, lysine, histidine, and polyamines
are also changed in ALS patients [7,12,14–16]. Herein, we measured plasma levels of
185 metabolites in ALS patients to identify candidate metabolic biomarker(s) and pathome-
chanistic pathway(s) of ALS by using an assay combining liquid chromatography–tandem
mass spectrometry (LC–MS/MS) and direct flow injection. Biomarker candidates that
were correlated with clinical parameters were subjected to machine learning to establish an
algorithm for diagnosing ALS.

2. Materials and Methods
2.1. Standard Protocol Approvals, Registrations, and Patient Consents

The study protocol was approved by the Institutional Review Boards of Chang Gung
Memorial Hospital (ethical licenses No: 201601762B0, 13 January 2017; 201601762B0C501,
26 October 2018; 201601762B0C502, 17 February 2020; 201601762B0C601, 25 March 2020).
Written informed consent was obtained from all recruited patients and controls. Patients
with ALS were recruited from the neurology clinics of Chang Gung Memorial Hospital
between December 2018 and November 2020. The diagnosis of ALS was based on the Awaji
criteria for diagnosis of ALS [17]. Demographic information, laboratory data, scores on the
revised ALS Functional Rating Scale (ALSFRS-r) [18], and medications were recorded for
each patient. Sex- and age-matched normal controls (NCs) were randomly recruited from
neurology outpatient clinics. The number of hexanucleotide repeat expansions within the
C9ORF72 gene was recorded for patients with a family history of ALS. All subjects were free
from systemic infection, chronic renal failure, cardiac or liver dysfunction, malignancies,
autoimmune diseases, stroke, or any neurodegenerative diseases other than ALS. Blood
samples for metabolomics analysis were collected from subjects who were asked to fast
overnight for 12 h before collection.

2.2. Determining Concentrations of Plasma Metabolites

Plasma samples from 36 patients with ALS and 36 NCs were collected to quantify
185 metabolites belonging to acylcarnitines, amino acids, biogenic amines, glycerophos-
pholipids, sphingomyelins (SMs), and sugars, using the targeted Absolute IDQ® p180
kit (Biocrates Life Sciences AG, Innsbruck, Austria). Plasma samples were centrifuged at
13,000× g. The supernatant (10 µL) was loaded onto a filter paper, dried under a nitrogen
flow, and derivatized using 5% phenyl isothiocyanate (20 µL) for 20 min. Ammonium
acetate (5 nM, 300 µL) in methanol was added to the sample spots on the filter paper after
they were dried under a nitrogen flow for 45 min. The extracts were then injected onto an
Acquity UPLC BEH C18 (2.1 mm × 75 mm, 1.7 µm particle size; Waters Corp., Milford,
MA, USA) at 50 ◦C to separate amino acids and biogenic amines into negative electrospray
ionization and multiple reaction monitoring (MRM) mode. Then, sphingolipids, sugars,
acylcarnitines, and glycerophospholipids were separated by flow injection analysis–tandem
mass spectrometry (FIA–MS/MS). TargetLynxTM (Waters Corp.) with an external 7-point
calibration was used to quantify LC data. The converted flow injection analysis data were
imported into the Biocrates® MetIDQ™ software (Biocrates Life Sciences AG).
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2.3. Statistical Analysis

Continuous variables were presented as mean and standard deviation, and analyzed
by Student’s t-test or analysis of covariance (ANCOVA) with false discovery rate (FDR) ad-
justment to correct multiple tests, where appropriate. Categorical variables were presented
as counts and percentages and analyzed using the chi-squared test. The clinical variables
and metabolites were analyzed with orthogonal partial-least-squares-discriminant-analysis
(OPLS-DA) using the web-based metabolomics software MetaboAnalyst 5.0 (McGill Uni-
versity, Montreal, QC, Canada). The variable importance in the projection (VIP) of each
metabolite in the model was calculated to indicate its contribution to the classification. A
higher VIP value indicates a stronger contribution to the discrimination between groups.
VIP values greater than 1.0 were considered significantly different. Pearson correlations
were applied to evaluate the relationship between the levels of metabolites and clinical
parameters. An analysis of the receiver operating characteristic (ROC) curve was used to
measure the ability of individual molecules to distinguish ALS patients from NCs. Selected
molecules were further introduced to the support vector machine (SVM) algorithm. The
performance estimation of the models was further analyzed by ROC curves generated
by Monte-Carlo cross-validation using balanced subsampling. Two-thirds of the subjects
were used to build classification models, which were then validated using the remaining
third. To produce a smooth ROC curve, 100-fold cross-validations were performed, and
the results were averaged to generate the plot.

2.4. Data Availability

The datasets generated during the current study are available from the corresponding
author on reasonable request.

3. Results
3.1. Participants

A total of 36 patients with ALS and 36 sex- and age-matched NCs were recruited into
this study (Table 1). A family history of ALS was noted in one male patient, who also
carried hexanucleotide repeat expansions within the C9ORF72 gene. Patients with ALS had
a significantly lower body mass index (BMI, 21.36 ± 4.52) than NCs (25.22 ± 3.64, p < 0.001).
The levels of preprandial glucose, triglyceride, cholesterol, high-density lipoprotein, and
low-density lipoprotein were similar between the ALS and NC groups. The interval
between symptom onset and blood draw was 2.89 ± 3.49 years. The ALSFRS-r scores
of the ALS patients were 27.14 ± 13.93. Eighty patients (50%) with ALS were treated
with riluzole. None of them were treated with edaravone, given that edaravone remained
unavailable in Taiwan. The spinal-onset subtype was seen in 33 patients (91.67%), followed
by bulbar-onset (5.56%) and respiratory-onset (2.78%) subtypes.

3.2. Targeted Metabolomics Analysis

Among 185 metabolites studied using the AbsoluteIDQ® p180 Kit, 131 were detectable
among all subjects. The OPLS-DA for all metabolites could separate ALS from NCs (R2Y,
0.389; Q2, 0.311, Figure 1A), while 53 metabolites had a VIP score > 1.0 (Figure 1B and
Supplementary Table S1). After adjustment for BMI, 44 metabolites had significantly
different plasma levels between ALS and NCs, including 31 phosphatidylcholines (PCs),
4 SMs, and 9 biogenic amines/amino acids (Table 2 and Supplementary Table S2). The
43 metabolites with VIP score > 1.0 and altered plasma levels in ALS patients were selected
as biomarker candidates for further correlation with clinical parameters in the ALS group.
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Table 1. Demographic characteristics and blood biochemical parameters of included patients with amyotrophic lateral
sclerosis (ALS) and age- and sex-matched normal controls (NCs).

NC (n = 36) ALS (n = 36)

Age (years) 57.89 ± 6.51 57.31 ± 9.86
Male (%) 21 (0.58%) 21 (0.58%)

BMI * 25.22 ± 3.64 21.36 ± 4.52
Triglyceride (mg/dL) 131.33 ± 78.54 107.16 ± 49.21
Cholesterol (mg/dL) 198.42 ± 65.19 184.99 ± 52.96

HDL (mg/dL) 48.48 ± 17.45 54.55 ± 16.44
LDL (mg/dL) 121.16 ± 49.52 115.77 ± 36.65

Pre-prandial glucose (mg/dL) 106.14 ± 46.05 95.89 ± 11.48
Glycohemoglobin (%) 6.04 ± 2.00 5.67 ± 0.64

Diabetes (%) 4 (11.11%) 5 (13.89%)
Time between symptom onset and blood draw (years) 2.89 ± 3.49

Family history of ALS (%) 1 (2.78%)
Riluzole (%) 18 (50%)

ALSFRS-r 27.14 ± 13.93
Onset subtype

Spinal 33 (91.67%)
Bulbar 2 (5.56%)

Respiratory 1 (2.78%)

ALSFRS-r: revised Amyotrophic Lateral Sclerosis Functional Rating Scale; BMI: body mass index; HDL: high-density lipoprotein;
LDL: low-density lipoprotein. *: Significant difference between NC and ALS. p < 0.05. Two-tailed Student’s t-test.
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Figure 1. Orthogonal partial least squares-discriminant analysis (OPLS-DA) between normal controls (NCs, n = 36) and
patients with amyotrophic lateral sclerosis (ALS) (n = 36). (A) OPLS-DA shows a separation of metabolites between
two groups (R2Y = 0.389, Q2 = 0.311). R2Y, cumulative variation in the Y matrix; Q2, predictive performance of the model.
(B) The top 30 metabolites with variable importance in the projection (VIP) score > 1.0 indicating their contribution to the
classification in the OPLS-DA model. aa: acyl-acyl; ae: acyl-alkyl; ADMA: asymmetric dimethylarginine; OH: hydroxy;
lysoPC: lysophosphatidylcholine; PC: phosphatidylcholine; SM: sphingomyelin.
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Table 2. Top 15 plasma metabolites that significantly differ between patients with amyotrophic lateral
sclerosis (ALS) and age- and sex-matched normal controls (NCs).

Compound Name NC (n =36) ALS (n =36) p Value

ADMA (µM) 0.45 ± 0.10 0.59 ± 0.11 p < 0.001
Creatinine (µM) 75.81 ± 16.78 51.16 ± 20.91 p < 0.001

PC ae C34:3 (µM) 5.88 ± 1.19 4.31 ± 1.41 p < 0.001
PC ae C38:2 (µM) 1.43 ± 0.68 0.81 ± 0.41 p < 0.001
PC ae C30:2 (µM) 0.06 ± 0.01 0.05 ± 0.01 p < 0.001

Tyrosine (µM) 75.29 ± 15.68 59.58 ± 13.91 p < 0.001
PC ae C34:2 (µM) 8.13 ± 1.65 6.57 ± 1.41 p < 0.001
Tryptophan (µM) 65.06 ± 14.17 52.35 ± 10.85 p < 0.001
Methionine (µM) 28.38 ± 5.57 23.16 ± 5.03 p = 0.001

Phenylalanine (µM) 71.29 ± 9.95 61.02 ± 11.23 p = 0.001
PC aa C42:2 (µM) 0.34 ± 0.07 0.27 ± 0.07 p = 0.001
PC ae C30:0 (µM) 0.20 ± 0.06 0.15 ± 0.04 p = 0.001
PC aa C40:2 (µM) 0.41 ± 0.13 0.31 ± 0.08 p = 0.002
PC aa C34:2 (µM) 171.00 ± 20.29 190.19 ± 21.92 p = 0.002

lysoPC a C26:1 (µM) 0.05 ± 0.02 0.04 ± 0.01 p = 0.002
p value: analysis of covariance (ANCOVA) adjustment for body mass index, with false discovery rate correction.
aa: acyl-acyl; ae: acyl-alkyl; ADMA: asymmetric dimethylarginine; OH: hydroxy; lysoPC: lysophosphatidyl-
choline; PC: phosphatidylcholine; SM: sphingomyelin.

3.3. Clustering and Pathway Enrichment Analysis

The hierarchical clustering heatmaps using the selected biomarker candidates and
the clinical parameters of ALS patients are shown in Supplementary Figure S1A. Most of
the patients with ALS were aggregated in the same cluster. Metabolomics pathway enrich-
ment analysis identified 17 over-represented pathways among the differential metabolites
(Supplementary Figure S1B and Supplementary Table S3). The leading pathways associ-
ated with ALS were “phenylalanine, tyrosine, and tryptophan biosynthesis”, “tyrosine
metabolism”, and “ubiquinone and other terpenoid-quinone biosynthesis”.

3.4. Correlation Analysis between Metabolites and Disease Severity

The levels of these metabolites were further correlated with ALSFRS-r scores (Table 3).
Positive correlations with ALSFRS-r scores were seen in plasma levels of 22 metabolites,
particularly creatinine (r = 0.61, p < 0.001), PC acyl-alkyl (ae) C34:3 (r = 0.55, p < 0.001), and
SM hydroxy (OH) C22:1 (r = 0.53, p = 0.001). Plasma levels of asymmetric dimethylarginine
(ADMA) were negative correlated with ALSFRS-r scores (r = −0.41, p = 0.012). These
22 metabolites were selected for further ROC curve analysis.

3.5. Classification Models for Differentiating Patients with Amyotrophic Lateral Sclerosis
and Controls

Among 22 selected metabolites, six demonstrated an adequate potential to distinguish
ALS and NC, with an area under the ROC curve (AUC) greater than 0.750. ADMA showed
the greatest AUC (0.829) to distinguish ALS and NC, followed by PC ae C34:3 (AUC: 0.808),
creatinine (AUC: 0.803), methionine (AUC: 0.767), PC ae C34:2 (AUC: 0.763), and PC acyl-
acyl (aa) C42:2 (AUC: 0.751, Figure 2). The SVM algorithm using these six metabolites
demonstrated a good ability to separate ALS from NC (AUC: 0.945, Figure 3). The average
accuracy for 100 cross-validations was 0.88. These results support the potential of using a
combination of identified metabolite biomarkers to establish a machine learning algorithm
for ALS diagnosis.
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Table 3. The correlations between plasma levels of identified metabolites and scores of the revised
Amyotrophic Lateral Sclerosis rating scale (ALSRS-r).

Compound Name ALSRS-r p Value

Creatinine 0.61 <0.001
PC ae C34:3 0.55 <0.001

SM (OH) C22:1 0.53 0.001
PC ae C38:6 0.52 0.001
Methionine 0.47 0.004
PC aa C42:4 0.43 0.009
PC aa C42:2 0.43 0.009
PC ae C40:1 0.42 0.011

ADMA −0.42 0.012
Tryptophan 0.41 0.012
PC ae C38:0 0.40 0.016

Valine 0.40 0.016
Phenylalanine 0.39 0.018

Histidine 0.38 0.023
PC ae C34:0 0.37 0.024

lysoPC a C18:0 0.37 0.029
PC aa C36:6 0.34 0.040
PC ae C32:2 0.34 0.040

lysoPC a C16:0 0.34 0.043
PC aa C34:4 0.33 0.047
PC ae C34:2 0.33 0.048
PC ae C40:4 0.33 0.049

aa: acyl-acyl; ae: acyl-alkyl; ADMA: asymmetric dimethylarginine; OH: hydroxy; lysoPC: lysophosphatidyl-
choline; PC: phosphatidylcholine; SM: sphingomyelin.
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Figure 3. Diagnosis of amyotrophic lateral sclerosis by identified metabolites. (A) Receiver operating
characteristic analysis using asymmetric dimethylarginine (ADMA), phosphatidylcholine (PC) acyl-
alkyl (ae) C34:3, creatinine, methionine, PC ae C34:2, and PC acyl-acyl (aa) C42:2 by support vector
machine. One-hundred-fold cross-validations were performed, and the results were averaged to
generate the plot. The 95% confidence intervals are indicated as the blue shaded area. (B) Predictive
accuracy of cross-validations. The average accuracy was 0.88. CI: Confidence Interval.

4. Discussion

By extensively examining the plasma levels of 185 metabolites in ALS patients, we
found profound metabolomic alterations in 31 PCs, 4 SMs, and 9 amino acids or amines.
These metabolites were involved in the biosynthesis or metabolism of sphingolipids, glyc-
erophospholipids, and amino acids, including tyrosine, tryptophan, methionine, histidine,
valine, and isoleucine (Figure 4). Twenty-two metabolites were demonstrated to correlate
with ALSFRS-r scores. Plasma levels of six metabolites, including ADMA, creatinine,
methionine, PC aa C42:2, PC ae C34:3, and C34:2, demonstrated the potential to distinguish



Biomedicines 2021, 9, 1944 8 of 12

ALS patients from NCs. Using these metabolites, the SVM machine learning algorithm
demonstrated a good ability to separate ALS from NCs. In addition to identifying signifi-
cant alterations in lipid and amino acid metabolism, these results also support the role of
plasma metabolomic analysis to detect ALS and monitor disease progression.
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PCs are abundant lipoproteins of cell membranes and play critical roles in membrane
structure and cellular signal transduction [19]. Inhibition of PC synthesis can trigger
apoptosis [20]. Increased levels of PC C36:4 have been observed in the cerebrospinal fluid
(CSF) of ALS patients [9]. By contrast, decreased levels of total PCs have been reported
in the plasma of ALS patients and have shown significant increases in follow-up samples
of patients [21]. Our study further elucidated the reduced plasma levels in ALS patients
of 31 specific PCs, 14 of which were significantly correlated with the ALSFRS-r scores.
Reductions in PCs in plasma are also seen in other neurodegenerative diseases, such as
Alzheimer’s (AD) and Huntington’s disease (HD) [22,23]. The specifics of these lipid
markers need to be confirmed by further investigation.

SMs, which contain acyl chains that vary in length from long-chain to very-long-chain
fatty acids [24], are indispensable sphingolipids in mammalian cell membranes [25]. The
role of SMs in ALS pathogenesis remains elusive. Increased levels of SMs have been
reported in the spinal cords of superoxide dismutase (SOD)-overexpressing mice and ALS
patients [26]. Elevated levels of SMs are present in both the grey matter and ventral white
matter tissue samples of ALS patients [27]. On the other hand, the levels of SM in the
spinal cord of SOD1-G86R mice were significantly down-regulated [28]. In the plasma of
ALS patients, we found elevated levels of SM C24:1 and SM C20:2, but decreased levels
of SM (OH) C22:1 and SM (OH) C24:1. The hydroxylation of SMs may be important in
maintaining growth and mediating the fatty acid composition of sphingolipids [29,30].
Further studies are warranted to confirm the role of SMs and their hydroxylation in the
pathogenesis of ALS.
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Derived from the high-energy product creatine, blood creatinine is widely used as a
biomarker of kidney function. Previous studies have demonstrated decreased creatinine
levels in those with motor neuron diseases, including ALS [10,12,31], spinal muscular
atrophy (SMA) [32], and spinal and bulbar muscular atrophy (SBMA) [31]. Consistent
with our study, lower levels of creatinine have been observed in the plasma [10,12,31],
serum [32], and CSF [14] of ALS patients. Lawton et al. [12] also demonstrated a correlation
between plasma levels of creatinine and the scores of ALSFRS-r. Decreased creatinine levels
were also observed in the serum of SMA patients, which correlated with increasing disease
severity [32]. Serum creatinine levels decrease before the onset of clinical symptoms in
SBMA patients [31]. Creatine, synthesized primarily in the liver from the methylation of
guanidinoacetic acid by guanidinoacetate N-methyltransferase, is transported through the
blood to muscles [33]. Creatine is nonenzymatically converted to creatinine in muscles,
which is excreted by the kidneys into the urine [33]. Therefore, the reduction in creatinine
in plasma could be a biomarker reflecting the loss of skeletal muscle in patients with ALS.
On the other hand, creatine also plays an important role in brain energetics [34]. Future
studies in patients with genetically defined ALS will be warranted to clarify the role of
creatinine in the prodromal stage of ALS.

Valine and isoleucine are branched-chain essential amino acids (BCAAs). The catabolism
of BCAA majorly takes place in the skeletal muscle by branched-chain amino-acid amino-
transferase to form glutamate and the corresponding branched-chain keto acids [35]. Re-
duced blood levels of BCAAs have been discovered in those with neurodegenerative dis-
eases, including AD and HD. Serum levels of valine are reduced in patients with AD [36].
Low levels of BCAAs have also been identified in the plasma of HD patients [22,37]. Our
study similarly detected low plasma levels of valine and isoleucine in ALS patients. By
contrast, Wuolikainen et al. [14] detected high plasma levels of BCAAs in patients with
ALS. It is also worth noting that the supplementary intake of BCAAs failed to demonstrate
a clinical benefit in ALS patients [14], suggesting that these metabolites are not appropriate
targets for treating ALS.

Phenylalanine, tyrosine, and tryptophan are essential components for the produc-
tion of several neurotransmitters, including epinephrine, norepinephrine, dopamine, and
serotonin [38,39]. As a precursor of histamine, the transportation of histidine across the
blood–brain barrier is essential for maintaining the histaminergic nervous system, involved
in sleeping, eating, and mood stability [40]. Methionine is required for providing a methyl
group for the synthesis of creatine and PCs, as well as for DNA methylation [41]. Our
study found that the levels of phenylalanine, methionine, tryptophan, and histidine were
reduced and positively correlated with the ALSFRS-r scores in ALS patients. Similarly,
Ilzecka et al. [42] found reduced plasma levels of tyrosine in patients with ALS. ALS pa-
tients also had lower CSF levels of tryptophan [43]. By contrast, CSF levels of tyrosine,
histidine, and phenylalanine were increased in ALS patients [15,43]. The role of these
amino acids in ALS pathogenesis requires further elucidation.

ADMA, an endogenous inhibitor of endothelial nitric oxide synthase [44], plays a role
in mediating endothelial dysfunction and the risk of cardiovascular disease [45]. In the
CSF of patients with ALS, the ADMA concentration has been reported to be significantly
decreased [46]. Our study showed elevated ADMA in the plasma of ALS patients. The
plasma levels of ADMA were also negatively correlated with the ALSFRS-r scores.

Goutman et al. [10] applied SVM to 259 metabolites with an AUC of 0.96 to differentiate
ALS patients from NCs. Using six selected metabolites, our model demonstrated compara-
ble performance, with an AUC of 0.945, providing a potentially easily accessible tool for
ALS diagnosis. Creatinine, methionine, and ADMA were used by both machine-learning
algorithms, reinforcing the participation of these molecules in ALS pathogenesis. However,
the relatively small number of subjects raises concerns about overfitting and inadequate
generalization. The sensitivity to differentiate ALS patients from those with other neurode-
generative diseases was uncertain. To validate our results, future metabolomics studies
should recruit a larger number of patients with ALS and other neurodegenerative diseases.



Biomedicines 2021, 9, 1944 10 of 12

Genetic factors can cause differences in metabolites and should be considered a
contributory mechanism to the manifestation of ALS. For example, mutations in the SOD1
and C9ORF72 genes are found in the majority of those with familial ALS [47]. We found
hexanucleotide repeat expansions within the C9ORF72 gene in a patient, but we did not
perform a SOD1 genetic study.

There are limitations to this study. Currently, molecular diagnosis of ALS remains
unavailable. The power in our study may not have been sufficient to detect smaller
changes in metabolites associated with ALS. Some unknown interactions of medications
or other factors may also have partially contributed to the metabolic differences between
groups. Our results need to be validated in a different cohort. The temporal changes in
these metabolites should be studied using a longitudinal follow-up of a larger cohort of
ALS patients. Further investigations are warranted to determine whether metabolomics
biomarkers identified are related to the primary process of motor neuron degeneration in
ALS and whether certain biomarkers are more closely aligned with specific ALS subtypes.
Nevertheless, our study clearly captures important features of the metabolomics of the
plasma of ALS patients (Figure 4). These metabolic changes provide potential avenues
for investigating pathogenesis, monitoring clinical progression, and assessing treatment
efficacy in ALS patients. The metabolomics-based machine learning algorithm also showed
high potential to assist in the diagnosis of ALS.

5. Conclusions

Using targeted metabolomics, we identified several metabolites significantly corre-
lated with disease severity in patients with ALS. Although the sample size was limited
by the rarity of ALS, we found key metabolites that are probably involved in the patho-
genesis of ALS. These findings also provide a panel of biomarkers for ALS diagnosis and
progression, as well for potential new therapeutic targets for ALS.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/biomedicines9121944/s1, Figure S1: The correlation between selected metabolites and clinical
parameters, Table S1: Metabolites with VIP score > 1, Table S2: Plasma metabolites that significantly
differ between patients with amyotrophic lateral sclerosis (ALS) and age- and sex-matched normal
controls (NCs), Table S3: The pathway analysis of metabolites with altered levels in the plasma of
patients with amyotrophic lateral sclerosis.

Author Contributions: Conceptualization, K.-H.C. and H.-C.K.; formal analysis, K.-H.C., C.-N.L.
and H.-C.K.; funding acquisition, H.-C.K.; investigation, C.-N.L., C.-M.C., R.-K.L., C.-C.C., M.-F.L.,
C.-C.H., H.-S.C., L.-S.R. and H.-C.K.; writing—original draft, K.-H.C.; writing—review and editing,
C.-M.C., R.-K.L., C.-C.C., M.-F.L., C.-C.H., H.-S.C., L.-S.R. and H.-C.K. All authors have read and
agreed to the published version of the manuscript.

Funding: This work was supported by grants CMRPG 3E142, CMRPG 3F136, CMRPG 3H1761,
CMRPG 3J1751, and CMRPG 3K1871 from Chang Gung Memorial Hospital, Taoyuan, Taiwan.

Institutional Review Board Statement: The study protocol was approved by the Institutional Review
Boards of Chang Gung Memorial Hospital (ethical licenses No: 201601762B0, 201601762B0C501,
201601762B0C502, 201601762B0C601).

Informed Consent Statement: Written informed consent was obtained from all subjects involved in
the study.

Data Availability Statement: The datasets generated during the current study are available from the
corresponding author on reasonable request.

Acknowledgments: The authors would like to thank the patients and controls for participating in
this study. We are also thankful for the technical support from The Metabolomics Core Laboratory,
Chang Gung University.

Conflicts of Interest: The authors declare no conflict of interest.

https://www.mdpi.com/article/10.3390/biomedicines9121944/s1
https://www.mdpi.com/article/10.3390/biomedicines9121944/s1


Biomedicines 2021, 9, 1944 11 of 12

References
1. Goutman, S.A. Diagnosis and Clinical Management of Amyotrophic Lateral Sclerosis and Other Motor Neuron Disorders.

Continuum 2017, 23, 1332–1359. [CrossRef]
2. Goutman, S.A.; Chen, K.S.; Paez-Colasante, X.; Feldman, E.L. Chapter 39—Emerging understanding of the genotype–phenotype

relationship in amyotrophic lateral sclerosis. In Handbook of Clinical Neurology; Geschwind, D.H., Paulson, H.L., Klein, C., Eds.;
Elsevier: Amsterdam, The Netherlands, 2018; Volume 148, pp. 603–623. ISBN 0072-9752.

3. Chia, R.; Chio, A.; Traynor, B.J. Novel genes associated with amyotrophic lateral sclerosis: Diagnostic and clinical implications.
Lancet Neurol. 2018, 17, 94–102. [CrossRef]

4. Talbott, E.O.; Malek, A.M.; Lacomis, D. The epidemiology of amyotrophic lateral sclerosis. Handb. Clin. Neurol. 2016, 138,
225–238. [CrossRef]

5. Blasco, H.; Patin, F.; Andres, C.R.; Corcia, P.; Gordon, P.H. Amyotrophic Lateral Sclerosis, 2016: Existing therapies and the ongoing
search for neuroprotection. Expert Opin. Pharmacother. 2016, 17, 1669–1682. [CrossRef]

6. Abe, K.; Aoki, M.; Tsuji, S.; Itoyama, Y.; Sobue, G.; Togo, M.; Hamada, C.; Tanaka, M.; Akimoto, M.; Nakamura, K.; et al. Safety and
efficacy of edaravone in well defined patients with amyotrophic lateral sclerosis: A randomised, double-blind, placebo-controlled
trial. Lancet Neurol. 2017, 16, 505–512. [CrossRef]

7. Patin, F.; Corcia, P.; Vourc’h, P.; Nadal-Desbarats, L.; Baranek, T.; Goossens, J.F.; Marouillat, S.; Dessein, A.F.; Descat, A.; Madji
Hounoum, B.; et al. Omics to Explore Amyotrophic Lateral Sclerosis Evolution: The Central Role of Arginine and Proline
Metabolism. Mol. Neurobiol. 2017, 54, 5361–5374. [CrossRef] [PubMed]

8. Blasco, H.; Corcia, P.; Moreau, C.; Veau, S.; Fournier, C.; Vourc’h, P.; Emond, P.; Gordon, P.; Pradat, P.F.; Praline, J.; et al.
1H-NMR-based metabolomic profiling of CSF in early amyotrophic lateral sclerosis. PLoS ONE 2010, 5, e13223. [CrossRef]

9. Blasco, H.; Veyrat-Durebex, C.; Bocca, C.; Patin, F.; Vourc’h, P.; Kouassi Nzoughet, J.; Lenaers, G.; Andres, C.R.; Simard, G.; Corcia,
P.; et al. Lipidomics Reveals Cerebrospinal-Fluid Signatures of ALS. Sci. Rep. 2017, 7, 17652. [CrossRef] [PubMed]

10. Goutman, S.A.; Boss, J.; Guo, K.; Alakwaa, F.M.; Patterson, A.; Kim, S.; Savelieff, M.G.; Hur, J.; Feldman, E.L. Untargeted
metabolomics yields insight into ALS disease mechanisms. J. Neurol. Neurosurg. Psychiatry 2020, 91, 1329–1338. [CrossRef]

11. Bjornevik, K.; Zhang, Z.; O’Reilly, E.J.; Berry, J.D.; Clish, C.B.; Deik, A.; Jeanfavre, S.; Kato, I.; Kelly, R.S.; Kolonel, L.N.; et al.
Prediagnostic plasma metabolomics and the risk of amyotrophic lateral sclerosis. Neurology 2019, 92, e2089–e2100. [CrossRef]

12. Lawton, K.A.; Brown, M.V.; Alexander, D.; Li, Z.; Wulff, J.E.; Lawson, R.; Jaffa, M.; Milburn, M.V.; Ryals, J.A.; Bowser, R.; et al.
Plasma metabolomic biomarker panel to distinguish patients with amyotrophic lateral sclerosis from disease mimics. Amyotroph.
Lateral Scler. Frontotemporal Degener. 2014, 15, 362–370. [CrossRef]

13. Lawton, K.A.; Cudkowicz, M.E.; Brown, M.V.; Alexander, D.; Caffrey, R.; Wulff, J.E.; Bowser, R.; Lawson, R.; Jaffa, M.; Milburn,
M.V.; et al. Biochemical alterations associated with ALS. Amyotroph. Lateral Scler. 2012, 13, 110–118. [CrossRef] [PubMed]

14. Wuolikainen, A.; Jonsson, P.; Ahnlund, M.; Antti, H.; Marklund, S.L.; Moritz, T.; Forsgren, L.; Andersen, P.M.; Trupp, M.
Multi-platform mass spectrometry analysis of the CSF and plasma metabolomes of rigorously matched amyotrophic lateral
sclerosis, Parkinson’s disease and control subjects. Mol. Biosyst. 2016, 12, 1287–1298. [CrossRef] [PubMed]

15. Kumar, A.; Bala, L.; Kalita, J.; Misra, U.K.; Singh, R.L.; Khetrapal, C.L.; Babu, G.N. Metabolomic analysis of serum by (1) H NMR
spectroscopy in amyotrophic lateral sclerosis. Clin. Chim. Acta 2010, 411, 563–567. [CrossRef]

16. Blasco, H.; Nadal-Desbarats, L.; Pradat, P.F.; Gordon, P.H.; Madji Hounoum, B.; Patin, F.; Veyrat-Durebex, C.; Mavel, S.; Beltran, S.;
Emond, P.; et al. Biomarkers in amyotrophic lateral sclerosis: Combining metabolomic and clinical parameters to define disease
progression. Eur. J. Neurol. 2016, 23, 346–353. [CrossRef]

17. De Carvalho, M.; Dengler, R.; Eisen, A.; England, J.D.; Kaji, R.; Kimura, J.; Mills, K.; Mitsumoto, H.; Nodera, H.; Shefner, J.; et al.
Electrodiagnostic criteria for diagnosis of ALS. Clin. Neurophysiol. 2008, 119, 497–503. [CrossRef]

18. Cedarbaum, J.M.; Stambler, N.; Malta, E.; Fuller, C.; Hilt, D.; Thurmond, B.; Nakanishi, A. The ALSFRS-R: A revised ALS
functional rating scale that incorporates assessments of respiratory function. BDNF ALS Study Group (Phase III). J. Neurol. Sci.
1999, 169, 13–21. [CrossRef]

19. Exton, J.H. Phosphatidylcholine breakdown and signal transduction. Biochim. Biophys. Acta 1994, 1212, 26–42. [CrossRef]
20. Cui, Z.; Houweling, M.; Chen, M.H.; Record, M.; Chap, H.; Vance, D.E.; Terce, F. A genetic defect in phosphatidylcholine

biosynthesis triggers apoptosis in Chinese hamster ovary cells. J. Biol. Chem. 1996, 271, 14668–14671. [CrossRef] [PubMed]
21. Area-Gomez, E.; Larrea, D.; Yun, T.; Xu, Y.; Hupf, J.; Zandkarimi, F.; Chan, R.B.; Mitsumoto, H. Lipidomics study of plasma from

patients suggest that ALS and PLS are part of a continuum of motor neuron disorders. Sci. Rep. 2021, 11, 13562. [CrossRef]
22. Cheng, M.L.; Chang, K.H.; Wu, Y.R.; Chen, C.M. Metabolic disturbances in plasma as biomarkers for Huntington’s disease. J.

Nutr. Biochem. 2016, 31, 38–44. [CrossRef]
23. Whiley, L.; Sen, A.; Heaton, J.; Proitsi, P.; Garcia-Gomez, D.; Leung, R.; Smith, N.; Thambisetty, M.; Kloszewska, I.; Mecocci, P.;

et al. Evidence of altered phosphatidylcholine metabolism in Alzheimer’s disease. Neurobiol. Aging 2014, 35, 271–278. [CrossRef]
24. Ohno, Y.; Suto, S.; Yamanaka, M.; Mizutani, Y.; Mitsutake, S.; Igarashi, Y.; Sassa, T.; Kihara, A. ELOVL1 production of C24

acyl-CoAs is linked to C24 sphingolipid synthesis. Proc. Natl. Acad. Sci. USA 2010, 107, 18439–18444. [CrossRef]
25. Taniguchi, M.; Okazaki, T. The role of sphingomyelin and sphingomyelin synthases in cell death, proliferation and migration-from

cell and animal models to human disorders. Biochim. Biophys. Acta 2014, 1841, 692–703. [CrossRef] [PubMed]

http://doi.org/10.1212/CON.0000000000000535
http://doi.org/10.1016/S1474-4422(17)30401-5
http://doi.org/10.1016/B978-0-12-802973-2.00013-6
http://doi.org/10.1080/14656566.2016.1202919
http://doi.org/10.1016/S1474-4422(17)30115-1
http://doi.org/10.1007/s12035-016-0078-x
http://www.ncbi.nlm.nih.gov/pubmed/27590138
http://doi.org/10.1371/annotation/2c2f8fce-a5be-40a3-af8f-48f119b2c593
http://doi.org/10.1038/s41598-017-17389-9
http://www.ncbi.nlm.nih.gov/pubmed/29247199
http://doi.org/10.1136/jnnp-2020-323611
http://doi.org/10.1212/WNL.0000000000007401
http://doi.org/10.3109/21678421.2014.908311
http://doi.org/10.3109/17482968.2011.619197
http://www.ncbi.nlm.nih.gov/pubmed/22117131
http://doi.org/10.1039/C5MB00711A
http://www.ncbi.nlm.nih.gov/pubmed/26883206
http://doi.org/10.1016/j.cca.2010.01.016
http://doi.org/10.1111/ene.12851
http://doi.org/10.1016/j.clinph.2007.09.143
http://doi.org/10.1016/S0022-510X(99)00210-5
http://doi.org/10.1016/0005-2760(94)90186-4
http://doi.org/10.1074/jbc.271.25.14668
http://www.ncbi.nlm.nih.gov/pubmed/8663247
http://doi.org/10.1038/s41598-021-92112-3
http://doi.org/10.1016/j.jnutbio.2015.12.001
http://doi.org/10.1016/j.neurobiolaging.2013.08.001
http://doi.org/10.1073/pnas.1005572107
http://doi.org/10.1016/j.bbalip.2013.12.003
http://www.ncbi.nlm.nih.gov/pubmed/24355909


Biomedicines 2021, 9, 1944 12 of 12

26. Cutler, R.G.; Pedersen, W.A.; Camandola, S.; Rothstein, J.D.; Mattson, M.P. Evidence that accumulation of ceramides and
cholesterol esters mediates oxidative stress-induced death of motor neurons in amyotrophic lateral sclerosis. Ann. Neurol. 2002,
52, 448–457. [CrossRef] [PubMed]

27. Dodge, J.C.; Treleaven, C.M.; Pacheco, J.; Cooper, S.; Bao, C.; Abraham, M.; Cromwell, M.; Sardi, S.P.; Chuang, W.L.; Sidman, R.L.;
et al. Glycosphingolipids are modulators of disease pathogenesis in amyotrophic lateral sclerosis. Proc. Natl. Acad. Sci. USA 2015,
112, 8100–8105. [CrossRef]

28. Henriques, A.; Croixmarie, V.; Bouscary, A.; Mosbach, A.; Keime, C.; Boursier-Neyret, C.; Walter, B.; Spedding, M.; Loeffler,
J.P. Sphingolipid metabolism Is dysregulated at transcriptomic and metabolic levels in the spinal cord of an animal model of
amyotrophic lateral sclerosis. Front. Mol. Neurosci. 2017, 10, 433. [CrossRef]

29. Chen, M.; Markham, J.E.; Dietrich, C.R.; Jaworski, J.G.; Cahoon, E.B. Sphingolipid long-chain base hydroxylation is important for
growth and regulation of sphingolipid content and composition in Arabidopsis. Plant Cell 2008, 20, 1862–1878. [CrossRef] [PubMed]

30. Haak, D.; Gable, K.; Beeler, T.; Dunn, T. Hydroxylation of Saccharomyces cerevisiae ceramides requires Sur2p and Scs7p. J. Biol.
Chem. 1997, 272, 29704–29710. [CrossRef]

31. Hijikata, Y.; Hashizume, A.; Yamada, S.; Inagaki, T.; Ito, D.; Hirakawa, A.; Suzuki, K.; Atsuta, N.; Tsuboi, T.; Hattori,
M.; et al. Biomarker-based analysis of preclinical progression in spinal and bulbar muscular atrophy. Neurology 2018, 90,
e1501–e1509. [CrossRef]

32. Alves, C.R.R.; Zhang, R.; Johnstone, A.J.; Garner, R.; Nwe, P.H.; Siranosian, J.J.; Swoboda, K.J. Serum creatinine is a biomarker of
progressive denervation in spinal muscular atrophy. Neurology 2020, 94, e921–e931. [CrossRef]

33. Wyss, M.; Kaddurah-Daouk, R. Creatine and creatinine metabolism. Physiol. Rev. 2000, 80, 1107–1213. [CrossRef]
34. Andres, R.H.; Ducray, A.D.; Schlattner, U.; Wallimann, T.; Widmer, H.R. Functions and effects of creatine in the central nervous

system. Brain Res. Bull. 2008, 76, 329–343. [CrossRef]
35. Holecek, M. Branched-chain amino acids in health and disease: Metabolism, alterations in blood plasma, and as supplements.

Nutr. Metab. 2018, 15, 33. [CrossRef] [PubMed]
36. Toledo, J.B.; Arnold, M.; Kastenmuller, G.; Chang, R.; Baillie, R.A.; Han, X.; Thambisetty, M.; Tenenbaum, J.D.; Suhre, K.;

Thompson, J.W.; et al. Metabolic network failures in Alzheimer’s disease: A biochemical road map. Alzheimer’s Dement. 2017, 13,
965–984. [CrossRef] [PubMed]

37. Mochel, F.; Charles, P.; Seguin, F.; Barritault, J.; Coussieu, C.; Perin, L.; Le Bouc, Y.; Gervais, C.; Carcelain, G.; Vassault, A.; et al.
Early energy deficit in Huntington disease: Identification of a plasma biomarker traceable during disease progression. PLoS ONE
2007, 2, e647. [CrossRef]

38. Fernstrom, J.D.; Fernstrom, M.H. Tyrosine, phenylalanine, and catecholamine synthesis and function in the brain. J. Nutr. 2007,
137, 1539S–1547S, discussion 1548S. [CrossRef]

39. Hoglund, E.; Overli, O.; Winberg, S. Tryptophan Metabolic Pathways and Brain Serotonergic Activity: A Comparative Review.
Front. Endocrinol. 2019, 10, 158. [CrossRef]

40. Haas, H.L.; Sergeeva, O.A.; Selbach, O. Histamine in the nervous system. Physiol. Rev. 2008, 88, 1183–1241. [CrossRef] [PubMed]
41. Parkhitko, A.A.; Jouandin, P.; Mohr, S.E.; Perrimon, N. Methionine metabolism and methyltransferases in the regulation of aging

and lifespan extension across species. Aging Cell 2019, 18, e13034. [CrossRef]
42. Ilzecka, J.; Stelmasiak, Z.; Solski, J.; Wawrzycki, S.; Szpetnar, M. Plasma amino acids concentration in amyotrophic lateral sclerosis

patients. Amino Acids 2003, 25, 69–73. [CrossRef] [PubMed]
43. Toczylowska, B.; Jamrozik, Z.; Liebert, A.; Kwiecinski, H. NMR-based Metabonomics of Cerebrospinal Fluid Applied to

Amyotrophic Lateral Sclerosis. Biocybern. Biomed. Eng. 2013, 33, 21–32. [CrossRef]
44. Vallance, P.; Leone, A.; Calver, A.; Collier, J.; Moncada, S. Accumulation of an endogenous inhibitor of nitric oxide synthesis in

chronic renal failure. Lancet 1992, 339, 572–575. [CrossRef] [PubMed]
45. Lentz, S.R.; Rodionov, R.N.; Dayal, S. Hyperhomocysteinemia, endothelial dysfunction, and cardiovascular risk: The potential

role of ADMA. Atheroscler. Suppl. 2003, 4, 61–65. [CrossRef]
46. Isobe, C.; Abe, T.; Terayama, Y. Decrease in asymmetrical dimethylarginine, an endogenous nitric oxide synthase inhibitor, in

cerebrospinal fluid during elderly aging and in patients with sporadic form of amyotrophic lateral sclerosis. Neurosignals 2010, 18,
43–48. [CrossRef] [PubMed]

47. Zou, Z.Y.; Zhou, Z.R.; Che, C.H.; Liu, C.Y.; He, R.L.; Huang, H.P. Genetic epidemiology of amyotrophic lateral sclerosis: A
systematic review and meta-analysis. J. Neurol. Neurosurg. Psychiatry 2017, 88, 540–549. [CrossRef] [PubMed]

http://doi.org/10.1002/ana.10312
http://www.ncbi.nlm.nih.gov/pubmed/12325074
http://doi.org/10.1073/pnas.1508767112
http://doi.org/10.3389/fnmol.2017.00433
http://doi.org/10.1105/tpc.107.057851
http://www.ncbi.nlm.nih.gov/pubmed/18612100
http://doi.org/10.1074/jbc.272.47.29704
http://doi.org/10.1212/WNL.0000000000005360
http://doi.org/10.1212/WNL.0000000000008762
http://doi.org/10.1152/physrev.2000.80.3.1107
http://doi.org/10.1016/j.brainresbull.2008.02.035
http://doi.org/10.1186/s12986-018-0271-1
http://www.ncbi.nlm.nih.gov/pubmed/29755574
http://doi.org/10.1016/j.jalz.2017.01.020
http://www.ncbi.nlm.nih.gov/pubmed/28341160
http://doi.org/10.1371/journal.pone.0000647
http://doi.org/10.1093/jn/137.6.1539S
http://doi.org/10.3389/fendo.2019.00158
http://doi.org/10.1152/physrev.00043.2007
http://www.ncbi.nlm.nih.gov/pubmed/18626069
http://doi.org/10.1111/acel.13034
http://doi.org/10.1007/s00726-002-0352-2
http://www.ncbi.nlm.nih.gov/pubmed/12836061
http://doi.org/10.1016/S0208-5216(13)70053-6
http://doi.org/10.1016/0140-6736(92)90865-z
http://www.ncbi.nlm.nih.gov/pubmed/1347093
http://doi.org/10.1016/S1567-5688(03)00035-7
http://doi.org/10.1159/000312527
http://www.ncbi.nlm.nih.gov/pubmed/20407287
http://doi.org/10.1136/jnnp-2016-315018
http://www.ncbi.nlm.nih.gov/pubmed/28057713

	Introduction 
	Materials and Methods 
	Standard Protocol Approvals, Registrations, and Patient Consents 
	Determining Concentrations of Plasma Metabolites 
	Statistical Analysis 
	Data Availability 

	Results 
	Participants 
	Targeted Metabolomics Analysis 
	Clustering and Pathway Enrichment Analysis 
	Correlation Analysis between Metabolites and Disease Severity 
	Classification Models for Differentiating Patients with Amyotrophic Lateral Sclerosis and Controls 

	Discussion 
	Conclusions 
	References

