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Abstract: Cell senescence is one of the most important forms of injury induced by cardiovascular
and other ischemic diseases. Fibroblasts are important participants in tissue repair after ischemic
injury and the main source of IL11 secretion. However, the roles of oxygen–glucose deprivation
(OGD) and IL11 in promoting fibroblast senescence and their regulatory mechanisms remain unclear.
This study selected the NIH3T3 and L929 fibroblast cell lines as research objects. We found that
OGD could induce the expression of p53, P16, p21, and collagen in fibroblasts. In the condition of
OGD, when IL11 intervened, fibroblasts’ senescence and collagen expression were changed. Some
studies have found that changes in kynurenine (KYN) metabolism are related to aging diseases,
and indoleamine 2,3-dioxygenase 1 (IDO1) is a key rate-limiting enzyme in the KYN metabolic
pathway. We found that KYN secretion decreased after OGD increased fibroblast senescence, and
inhibition of IL11 promoted IDO1 and increased KYN secretion. These results suggest that OGD
may promote fibroblast senescence and collagen expression via IL11 inhibition of the IDO1/KYN
metabolic pathway. Therefore, the revealed mechanism of OGD-promoted fibroblast senescence could
provide an effective theoretical basis for the clinical treatment of aging-related ischemic diseases.
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1. Introduction

Cell senescence is an irreversible state of cell cycle arrest. A variety of cellular stress
states, such as ischemia and DNA damage, can induce cell senescence [1]. Senescent
cells are mainly characterized by an increased volume, increased protein expression of
senescence markers p53, p21, and p16, and senescence-related secretory phenotypes, which
affect the pathophysiological processes of the heart, liver, and other tissues [2,3]. Fibroblasts
are an important participant in tissue repair after ischemic injury. It has been found that
ischemia can induce fibroblast senescence, and fibroblasts are also a common cell type for
studying cell senescence mechanisms in vitro [4]. After tissue ischemia, under the action of
cytokines, fibroblasts can be activated into myofibroblasts. Collagen secreted by fibroblasts
and myofibroblasts promotes scar formation in the injured area [5], which helps to maintain
the integrity of the tissue structure. However, studies have found that fibroblasts continue
to activate after stress-induced senescence, leading to the deposition of the extracellu-
lar matrix and damaging tissue function [6]. In addition, the expression of p53 and p21
in senescent fibroblasts is up-regulated, which promotes the release of pro-inflammatory
factors, intensifies the inflammatory response, and finally aggravates ischemic injury. There-
fore, clarifying the mechanism of ischemia-induced fibroblast senescence can provide an
effective theoretical basis for the clinical treatment of senescence-related ischemic diseases,
which has important clinical significance. NIH3T3 cells and L929 cells are fibroblast cell
lines derived from embryonic connective tissue and dermal connective tissue, respectively.
They are common objects to study the mechanism of cell senescence, and also common cell
lines to study ischemia-related diseases such as myocardial infarction, liver ischemia injury,
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and chronic injury area healing. It has been reported that hypoxia activates NIH3T3 and
L929 cells and increases the expression of collagen. Studies have also shown that H2O2,
serum starvation, and other conditions can induce stress-induced senescence of NIH3T3
and L929 cells and up-regulate p53, p21, p16, and other senescence markers. H2O2, DOX,
X-ray, D-galactose, RAS, serum starvation, and sodium butyrate can induce stress-induced
senescence of NIH3T3 and L929 cells and up-regulate senescence markers such as p53, p21,
and p16 [7]. However, the effect of oxygen-glucose deprivation (OGD) on fibroblast cell
line senescence and its mechanism have not been clarified.

IL11 is a member of the IL6 cytokine family, mainly derived from stromal cells such
as fibroblasts [8]. The expression of IL11 promotes tissue fibrosis [9,10]. Recent studies
have found that IL11 is closely related to cell senescence. IL11 is a pro-inflammatory
and pro-fibrosis factor. Studies have found that it promotes the aging of lung fibroblasts
and induces the secretion and deposition of collagen. This process may be mediated by
TGFβ/IL11/MEK/ERK signal pathways and is an effective target for preventing aging-
related pulmonary fibrosis [11]. IL11 and HO1 increased in the premature senescence
of WI-38 human diploid fetal lung fibroblasts [12]. In the senescence prostate model, it
is found that the expression of IL11 is increased, and its level can significantly promote
the low-level proliferation response of epithelial and stromal fibroblast types [13]. IL11
may be involved in fibroblast senescence and collagen expression, but its mechanism in
OGD-promoted fibroblast senescence remains unclear.

Metabolic abnormality is an important feature of cell senescence. According to the
analysis of the cell senescence metabolome, Trp metabolism is involved in the process
of cell senescence induction [14]. Mitochondrial dysfunction, metabolic imbalance, and
increased reactive oxygen species are important causes and manifestations of cell senes-
cence. Kynurenine (KYN) is a tryptophan metabolite that affects mitochondrial function
through the synthesis of NAD+ and NADP and plays an antioxidant role in the process of
cell senescence [15]. The KYN pathway is the most important in tryptophan metabolism,
which is mediated by the key rate-limiting enzyme indoleamine 2,3-dioxygenase 1 (IDO1).
It has been found that IDO1 is expressed in cardiomyocytes, fibroblasts, and other cells, but
the role of IDO1/KYN in OGD-promoted fibroblast senescence remains unclear.

Therefore, our study hypothesized that OGD promotes IL11 expression in fibroblasts,
and IL11 promotes fibroblast senescence and collagen secretion by affecting tryptophan
metabolism. In this study, the NIH3T3 and L929 fibroblast cell lines from two different
connective tissue sources were used to investigate the role and mechanism of OGD in
promoting fibroblast senescence. We used IL11 siRNA or an IL11 supplement to investigate
the regulatory mechanism of OGD in promoting fibroblast senescence through IL11, which
will provide a theoretical basis for the intervention of ischemia-related aging diseases.

2. Results
2.1. OGD-Promoted Fibroblast Senescence and Collagen-Related Protein Expression

To investigate the effect of oxygen and glucose deprivation on the senescence and
collagen expression of fibroblasts, NIH3T3 and L929 cells, which are commonly used to
study the mechanism of senescence and collagen, were selected. We first measured the
changes in the cell survival rate after 2 h, 4 h, 6 h, 8 h, and 10 h of OGD. The results show
that the survival rate of NIH3T3 and L929 cells decreased with time after 4 h, 6 h, 8 h, and
10 h of OGD treatment (Figure 1A). To explore the effect of different action time courses of
OGD on the senescence of NIH3T3 and L929 cells, we treated the cells with OGD for 2 h, 4 h,
6 h, 8 h, and 10 h and detected the expression changes of senescence-related marker proteins
p53, p21, and p16. The results show that compared with the control group, the expression
of the p53, p21, and p16 proteins in NIH3T3 and L929 cells increased significantly after
OGD treatment for 4 h, 6 h, 8 h, and 10 h (Figure 1B).
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Figure 1. OGD promoted fibroblast senescence. (A) Survival rates of NIH3T3 and L929 cells under 
oxygen–glucose deprivation (OGD) conditions for 0 h, 2 h, 4 h, 6 h, 8 h, and 10 h detected by MTT 
assay. OGD—oxygen–glucose deprivation; CON—control. The results are presented as the means 
± SDs, and Student’s t-test was used to determine the p-value. * p < 0.05, ** p < 0.01, and *** p < 0.001, 
compared with CON group. (B) Western blot analysis and densitometric analysis of p53, p21, and 
p16 protein levels in NIH3T3 and L929 cells under OGD conditions for 0 h, 2 h, 4 h, 6 h, 8 h, and 10 
h. GAPDH was used as the loading control. OGD—oxygen–glucose deprivation; CON—control. 
The results are presented as the means ± SDs, and Student’s t-test was used to determine the p-value. 
* p < 0.05, ** p < 0.01, and *** p < 0.001, compared with CON group in NIH3T3 cells; # p < 0.05 and ## p 
< 0.01, compared with CON group in L929 cells. 

To further detect the dynamic changes in collagen expression in NIH3T3 and L929 
cells after different treatment periods of OGD, we detected the changes in collagen mRNA 
and protein levels. The results show that compared with the control group, the mRNA 
levels of collagen I and collagen III in NIH3T3 and L929 cells increased significantly after 
OGD treatment for 6, 8, and 10 h (Figure 2A). Collagen I, collagen III, and α-SMA protein 

Figure 1. OGD promoted fibroblast senescence. (A) Survival rates of NIH3T3 and L929 cells under
oxygen–glucose deprivation (OGD) conditions for 0 h, 2 h, 4 h, 6 h, 8 h, and 10 h detected by MTT
assay. OGD—oxygen–glucose deprivation; CON—control. The results are presented as the means ±
SDs, and Student’s t-test was used to determine the p-value. *** p < 0.001, compared with CON group.
(B) Western blot analysis and densitometric analysis of p53, p21, and p16 protein levels in NIH3T3
and L929 cells under OGD conditions for 0 h, 2 h, 4 h, 6 h, 8 h, and 10 h. GAPDH was used as the
loading control. OGD—oxygen–glucose deprivation; CON—control. The results are presented as the
means ± SDs, and Student’s t-test was used to determine the p-value. * p < 0.05, ** p < 0.01, compared
with CON group in NIH3T3 cells; # p < 0.05 and ## p < 0.01, compared with CON group in L929 cells.

To further detect the dynamic changes in collagen expression in NIH3T3 and L929
cells after different treatment periods of OGD, we detected the changes in collagen mRNA
and protein levels. The results show that compared with the control group, the mRNA
levels of collagen I and collagen III in NIH3T3 and L929 cells increased significantly after
OGD treatment for 6, 8, and 10 h (Figure 2A). Collagen I, collagen III, and α-SMA protein
expression increased significantly (Figure 2B). In conclusion, OGD can promote senescence
and collagen expression in fibroblasts.
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results are presented as the means ± SDs, and Student’s t-test was used to determine the p-value. * 
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lagen expression, we detected the changes in IL11 expression in NIH3T3 and L929 cells 
under different OGD treatment periods. The results show that IL11 mRNA and protein 
expression levels were up-regulated in NIH3T3 and L929 cells after OGD treatment for 6, 
8, and 10 h (Figure 3A,B). Based on the results of the cell survival rate, IL11, collagen, and 
senescence-related protein expression, OGD induction for 6 h was selected as the experi-
mental condition for subsequent verification. To determine whether OGD promotes fibro-
blast senescence and collagen expression via IL11, we suppressed IL11 expression by 
transfecting IL11 siRNA. Under the condition of OGD, inhibition of IL11 in NIH3T3 and 
L929 cells significantly decreased the expression of senescence-related marker proteins 

Figure 2. OGD increased collagen expression. (A) mRNA expression was estimated by RT-PCR for
collagen I and collagen III in NIH3T3 and L929 cells under OGD conditions for 0 h, 2 h, 4 h, 6 h, 8 h,
and 10 h. (B) Western blot analysis and densitometric analysis of collagen I, collagen III, and α-SMA
protein levels in NIH3T3 and L929 cells under OGD conditions for 0 h, 2 h, 4 h, 6 h, 8 h, and 10 h.
GAPDH was used as the loading control. OGD—oxygen–glucose deprivation; CON—control. The
results are presented as the means ± SDs, and Student’s t-test was used to determine the p-value.
* p < 0.05, ** p < 0.01, and *** p < 0.001, compared with CON group in NIH3T3 cells; # p < 0.05,
## p < 0.01, and ### p < 0.001, compared with CON group in L929 cells.

2.2. OGD Promotes Fibroblast Senescence and Collagen Expression through IL11

To determine the mechanism by which OGD promotes fibroblast senescence and
collagen expression, we detected the changes in IL11 expression in NIH3T3 and L929 cells
under different OGD treatment periods. The results show that IL11 mRNA and protein
expression levels were up-regulated in NIH3T3 and L929 cells after OGD treatment for
6, 8, and 10 h (Figure 3A,B). Based on the results of the cell survival rate, IL11, collagen,
and senescence-related protein expression, OGD induction for 6 h was selected as the
experimental condition for subsequent verification. To determine whether OGD promotes
fibroblast senescence and collagen expression via IL11, we suppressed IL11 expression by
transfecting IL11 siRNA. Under the condition of OGD, inhibition of IL11 in NIH3T3 and
L929 cells significantly decreased the expression of senescence-related marker proteins p53,
p21, and p16 (Figure 3C) and the mRNA and protein expression of collagen I and collagen
III (Figure 4A,B) compared with the OGD group. The collagen contraction assay showed
that inhibition of IL11 resulted in an OGD-induced reduction in collagen contraction in
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NIH3T3 and L929 cells (Figure 4C). These results suggest that inhibition of IL11 could
inhibit OGD-promoted senescence and collagen expression in fibroblasts.
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Figure 3. Interfering with IL11 inhibited fibroblast senescence. (A) mRNA expression estimated
by RT-PCR for IL11 in NIH3T3 and L929 cells. (B) Western blot analysis and densitometric analysis
of IL11 protein levels in NIH3T3 cells and L929 cells; GAPDH was used as the loading control.
OGD—oxygen–glucose deprivation; CON—control. The results are presented as the means ± SDs,
and Student’s t-test was used to determine the p-value. * p < 0.05, ** p < 0.01, and *** p < 0.001,
compared with CON group in NIH3T3 cells; # p < 0.05 and ## p < 0.01, compared with CON group in
L929 cells. (C) Western blot analysis and densitometric analysis of IL11, p53, p21, and p16 protein
levels after inhibiting IL11 with siRNA in NIH3T3 and L929 cells.
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NIH3T3 and L929 cell senescence; GAPDH was used as the loading control. (C) Quantification of 
gel contraction and representative image of collagen gel containing OGD-induced senescent 
NIH3T3 and L929 cells with IL11 inhibited. OGD+NC—oxygen–glucose deprivation + negative con-
trol; CON+NC—control + negative control. The results are presented as the means ± SDs, and Stu-
dent’s t-test was used to determine the p-value. * p < 0.05, ** p < 0.01, and *** p < 0.001, compared with 
CON+NC group; # p < 0.05, ## p < 0.01, and ### p < 0.001, compared with OGD+NC group. 

We directly administered recombinant mouse IL11 to investigate the effect of IL11 
supplementation on OGD-promoted senescence and collagen expression in NIH3T3 and 
L929 cells. Western blot analysis showed that IL11 supplementation increased OGD-pro-
moted expression of p53, p21, and p16 proteins in NIH3T3 and L929 cells (Figure 5A). 
This suggests that IL11 supplementation promotes OGD-promoted senescence of NIH3T3 
and L929 cells. Similarly, after IL11 supplementation, the mRNA (Figure 5B) and protein 

Figure 4. Interfering with IL11 inhibited fibroblast collagen expression. (A) mRNA expression
was estimated by RT-PCR for collagen I and collagen III after inhibiting IL11 with siRNA after OGD-
induced NIH3T3 and L929 cell senescence. (B) Western blot analysis and densitometric analysis of
collagen I, collagen III, and α-SMA protein levels after inhibiting IL11 with siRNA in OGD- induced
NIH3T3 and L929 cell senescence; GAPDH was used as the loading control. (C) Quantification of gel
contraction and representative image of collagen gel containing OGD-induced senescent NIH3T3
and L929 cells with IL11 inhibited. OGD+NC—oxygen–glucose deprivation + negative control;
CON+NC—control + negative control. The results are presented as the means ± SDs, and Student’s
t-test was used to determine the p-value. * p < 0.05, ** p < 0.01, and *** p < 0.001, compared with
CON+NC group; # p < 0.05, ## p < 0.01, and ### p < 0.001, compared with OGD+NC group.

We directly administered recombinant mouse IL11 to investigate the effect of IL11 sup-
plementation on OGD-promoted senescence and collagen expression in NIH3T3 and L929
cells. Western blot analysis showed that IL11 supplementation increased OGD-promoted
expression of p53, p21, and p16 proteins in NIH3T3 and L929 cells (Figure 5A). This sug-
gests that IL11 supplementation promotes OGD-promoted senescence of NIH3T3 and L929
cells. Similarly, after IL11 supplementation, the mRNA (Figure 5B) and protein expression
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levels of collagen I and collagen III increased (Figure 6A), and collagen contraction in-
creased (Figure 6B). Through the above experiments, we proved that IL11 supplementation
can promote the senescence and collagen expression of NIH3T3 and L929 cells induced
by OGD. In general, it is proved that OGD promoted fibroblast senescence and collagen
expression through IL11.
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Figure 5. rmIL11 promoted fibroblast senescence and collagen expression. (A) Western blot analy-
sis and densitometric analysis of p53, p21, and p16 protein levels after supplementing rmIL11 in OGD-
induced NIH3T3 and L929 cell senescence. (B) mRNA expression estimated by RT-PCR for collagen I
and collagen III after supplementing rmIL11 in NIH3T3 cells and L929 cells. OGD—oxygen–glucose
deprivation; CON—control. The results are presented as the means ± SDs, and Student’s t-test was
used to determine the p-value. * p < 0.05, ** p < 0.01, and *** p < 0.001, compared with CON group in
NIH3T3 cells; # p < 0.05 and ## p < 0.01, compared with CON group in L929 cells.
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of IDO1 was down-regulated in NIH3T3 and L929 cells under OGD (Figure 7A). The Ehr-
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olites in NIH3T3 cells changed significantly. 

Figure 6. rmIL11 promoted fibroblast collagen expression. (A) Western blot analysis and densito-
metric analysis of collagen I, collagen III, and α-SMA protein levels after supplementing rmIL11 in
NIH3T3 and L929 cells; GAPDH was used as the loading control. (B) Quantification of gel contraction
and representative image of collagen gel containing NIH3T3 and L929 cells. OGD—oxygen–glucose
deprivation; CON—control. The results are presented as the means ± SDs, and Student’s t-test was
used to determine the p-value. * p < 0.05, ** p < 0.01, and *** p < 0.001, compared with CON group in
NIH3T3 cells; # p < 0.05, ## p < 0.01, and ### p < 0.001, compared with CON group in L929 cells.

2.3. OGD Inhibits Fibroblast IDO1/KYN

To determine the effect of OGD on IDO1/ KYN in fibroblasts, we detected the changes
in IDO1/ KYN in NIH3T3 and L929 cells under OGD. The results show that the expression
of IDO1 was down-regulated in NIH3T3 and L929 cells under OGD (Figure 7A). The Ehrlich
test results show that KYN expression decreased in NIH3T3 and L929 cells under OGD
conditions (Figure 7B). The expression of IDO1 and its mediated kynurenine metabolites in
NIH3T3 cells changed significantly.
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Figure 7. OGD inhibits fibroblast IDO1/KYN. (A) Western blot analysis and densitometric analysis
of indoleamine 2,3-dioxygenase 1 (IDO1) protein levels in NIH3T3 and L929 cells; GAPDH was used
as the loading control. The results are presented as the means ± SDs, and Student’s t-test was used to
determine the p-value. * p < 0.05, compared with CON group in NIH3T3 cells; # p < 0.05, compared
with CON group in L929 cells. (B) The relative kynurenine (KYN) level was detected by Ehrlich
assay in NIH3T3 and L929 cells. OGD—oxygen–glucose deprivation; CON—control. The results are
presented as the means ± SDs, and Student’s t-test was used to determine the p-value. * p < 0.05,
compared with CON group.

2.4. OGD Inhibits the Expression of IDO1/KYN in Fibroblasts via IL11

To determine the regulatory effect of IL11 on IDO1 and KYN, we inhibited IL11 using
siRNA and detected the changes in IDO1 by RT-PCR, Western blot, and immunofluo-
rescence. The results show that the mRNA (Figure 8A) and protein expression levels
of IDO1 in NIH3T3 and L929 cells increased under OGD conditions (Figure 8B,C). The
ELISA kit test results show that after inhibiting IL11, the content of IDO1 in NIH3T3 and
L929 cells increased under OGD conditions (Figure 8D). The Ehrlich test results show that
after IL11 inhibition, KYN expression in NIH3T3 and L929 cells increased under OGD
conditions (Figure 8E). The expression of IDO1 and its mediated kynurenine metabolites
in NIH3T3 cells changed significantly. The above results show that interference with IL11
could partially antagonize the inhibitory effect of OGD on the expression of IDO1/KYN
in fibroblasts.
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Figure 8. Interfering with IL11 promoted the expression of IDO1. (A) mRNA expression was
estimated by RT-PCR for IDO1 after inhibiting IL11 in NIH3T3 and L929 cells. (B) Western blot
analysis and densitometric analysis of IDO1 protein levels after inhibiting IL11 in NIH3T3 and L929
cells; GAPDH was used as the loading control. (C) Representative immunocytochemistry staining
of IDO1 and cell nuclei (Hoechst) after inhibiting IL11 in NIH3T3 and L929 cells. (D) IDO1 content
estimated by ELISA from treated cell lysate. (E) The relative KYN level was detected by Ehrlich assay
after inhibiting IL11 in NIH3T3 and L929 cells. OGD+NC—oxygen–glucose deprivation + negative
control; CON+NC—control + negative control. The results are presented as the means ± SDs, and
Student’s t-test was used to determine the p-value. * p < 0.05, ** p < 0.01, and *** p < 0.001compared
with CON+NC group; # p < 0.05, ## p < 0.01, and ### p < 0.001, compared with OGD+NC group.

Recombinant IL11 was administered to overexpress IL11, and the changes in IDO1
were detected by RT-PCR, Western blot, and immunofluorescence. It was found that IDO1
mRNA (Figure 9A) and protein expression levels were down-regulated in NIH3T3 and
L929 cells under OGD conditions (Figure 9B,C). The ELISA kit assay results show that after
the high expression of IL11, the content of IDO1 in NIH3T3 and L929 cells decreased under
OGD conditions (Figure 9D). The Ehrlich test results show that after the overexpression
of IL11, KYN expression decreased in NIH3T3 and L929 cells under OGD conditions
(Figure 9E). The above results show that OGD inhibited the expression of IDO1/KYN in
fibroblasts based on IL11.
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Figure 9. IL11 inhibited the expression of IDO1. (A) mRNA expression estimated by RT-PCR
for IDO1 after supplementing rmIL11 in NIH3T3 and L929 cells. (B) Western blot analysis and
densitometric analysis of IDO1 protein levels after supplementing rmIL11 in NIH3T3 and L929 cells;
GAPDH was used as the loading control. (C) Representative immunocytochemistry staining of IDO1
and cell nuclei (Hoechst) after supplementing rmIL11 in NIH3T3 and L929 cells. (D) IDO1 content
estimated by ELISA from treated cell lysate. (E) The relative KYN level was detected by Ehrlich assay
after inhibiting IL11 in NIH3T3 and L929 cells. OGD—oxygen–glucose deprivation; CON—control.
The results are presented as the means ± SDs, and Student’s t-test was used to determine the p-value.
* p < 0.05, ** p < 0.01, and *** p < 0.001, compared with CON group in NIH3T3 cells; # p < 0.05,
## p < 0.01, and ### p < 0.001 compared with CON group in L929 cells.

Our group’s previous experiments determined that IL11 inhibits the expression of
fibroblast senescence-related proteins based on IDO1/KYN. To determine the effect of IL11
based on IDO1/KYN on collagen-related proteins in fibroblasts, we administered IL11 and
KYN at the same time to detect the protein expression levels of collagen I and collagen
III in NIH3T3 and L929 cells induced by OGD. Compared with the supplementation with
IL11, supplementation with IL11 and KYN resulted in the down-regulation of collagen I
and III protein expression in NIH3T3 and L929 cells (Figure 10). These results indicate that
the increase in KYN inhibited the promoting effect of IL11 on collagen I and III protein
expression. In conclusion, it is suggested that IL11 may promote collagen expression in
fibroblasts under oxygen–glucose deprivation by affecting IDO1.
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creased [20], suggesting that the changing trend of collagen expression in senescent fibro-
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Figure 10. OGD inhibits the expression of IDO1/KYN in fibroblasts via IL11. (A) Western blot
analysis of collagen I and collagen III protein levels after supplementing 50 µM KYN and 25 ng/mL
rmIL11 in NIH3T3 and L929 cells. (B) Densitometric analysis of collagen I. (C) Densitometric analysis
of collagen III. GAPDH was used as the loading control. OGD—oxygen–glucose deprivation; CON—
control. The results are presented as the means ± SDs, and Student’s t-test was used to determine the
p-value. * p < 0.5 and ** p < 0.01, compared with CON group; # p < 0.05 and ## p < 0.01, compared
with IL11 group; && p < 0.01, compared with IL11 +OGD group.

3. Discussion

Fibroblasts play an important role in the repair of tissue ischemia injury, and ischemia-
induced fibroblast senescence affects the final result of the repair. Consistent with previ-
ous studies, OGD can simulate ischemic stress, serve as an in vitro model of myocardial
ischemia and stroke, and promote cell senescence [16,17]. NIH3T3 cells from mouse embry-
onic connective tissue and L929 cells from mouse dermal connective tissue are commonly
used to study ischemic injury and cell senescence [18,19]. By comparing these two fibrob-
last lines, we found that NIH3T3 and L929 cells can undergo stress-induced senescence
induced by OGD, which is manifested by the increased expression of the p53, p21, and
p16 proteins, as well as the increased expression of collagen. However, some studies have
found that the expression of type I collagen in fibroblasts in senescent skin is decreased [20],
suggesting that the changing trend of collagen expression in senescent fibroblasts is dif-
ferent. Because type I collagen is also the target of time and light senescence, these will
promote the degradation and decrease the yield of this protein, which also shows that
the expression of type I collagen is regulated by many factors. The different functions of
senescent cells induced by different external induction conditions will lead to different
collagen expressions. Senescent cells induced by stress such as ischemia only exist briefly
in the process of tissue repair to accelerate wound healing. However, senescent cells that
persist in senescent or chronically damaged tissues or cells with replicative senescence
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caused by a continuous passage in vitro tend to reduce collagen secretion and increase
matrix metalloproteinase secretion. The mechanisms and functions of these two types
of senescent cells are different. In addition, the functional differences of fibroblasts from
different sources will also lead to differences. For example, the senescence of skin fibrob-
lasts can lead to a reduction in collagen, which is related to the replication senescence
induced by telomere shortening and the increase in extracellular matrix metalloproteinases
induced by ultraviolet light. However, some studies have found that the early stage of
liver injury benefits from the increase in collagen in senescent fibroblasts. However, with
the continuous activation of senescent fibroblasts, the secretion of SASP factors increases,
which intensifies the inflammatory response and ultimately affects the healing of the in-
jured area. This also suggests that OGD induces stress-induced senescence in NIH3T3
and L929 cells, activates fibroblasts, and induces increased collagen expression. Ischemia
can induce fibroblasts to secrete a large amount of collagen and promote repair. However,
studies have found that fibroblasts continue to activate after stress-induced senescence,
leading to the deposition of the extracellular matrix and senescent tissue function [11]. In
addition, the expression of p53 and p21 in senescent fibroblasts is up-regulated, which
promotes the release of pro-inflammatory factors, intensifies the inflammatory response,
and finally aggravates the ischemic injury. Therefore, our results elucidate the regulatory
mechanism of fibroblast senescence after ischemia and could provide an effective basis for
the treatment of ischemic diseases.

IL11 is a member of the IL6 cytokine family, mainly derived from stromal cells such
as fibroblasts [8]. In fibroblasts, IL11 signaling activates JAK/STAT3 and MEK/ERK via
IL11RA/IL6ST and possibly AKT [21]. MEK/ERK activity correlates with the pro-fibrotic
effect of IL11 [22]. IL11 may trigger an inflammatory cascade. A recent study reported that
IL11 triggered a pro-inflammatory secretome with the notable up-regulation of IL8, IL6,
MCP1, CCL20, and CXCL1/5/6, which are important chemotaxins for neutrophils, mono-
cytes, and lymphocytes [23]. IL11 is a multifunctional cytokine produced by fibroblasts
and other stromal cells, which play an important role in cell senescence. In the study of
lung fibroblast senescence, the TGFβ/IL11/MEK/ERK signaling pathway can promote
fibroblast senescence and collagen secretion [11]. IL11 is also an important component
of SASP factors, which suggests that IL11 can regulate ischemia-induced stress-induced
senescence of fibroblasts [24]. In cardiac fibroblasts, supplementation of IL11 can effectively
activate downstream signal pathways and promote fibrosis [22]. Therefore, the present
study investigated the effects of overexpression of IL11 on OGD-induced senescence and
collagen expression in fibroblasts by supplementing IL11 and activating downstream sig-
naling pathways. By inhibiting IL11 [25,26] and supplementing IL11 [27], it was found that
OGD promoted fibroblast senescence and collagen expression via IL11.

Prolonged ischemia and hypoxia can lead to the fluctuation and imbalance of en-
ergy metabolism. A large number of studies have found that the enhancement of KYN
metabolism is related to tissue and cell ischemia [28] and affects ischemia-induced cell
senescence [29]. During ischemia injury, fibroblasts participate in cell repair by expressing
and secreting collagen, while KYN can inhibit the collagen expression of fibroblasts by acti-
vating AhR. In this study, the expression changes of IDO1 in NIH3T3 and L929 fibroblasts
induced by OGD were elucidated for the first time in a variety of ways, and the relationship
between IL11, IDO1, and its mediated kynurenine metabolites in OGD-promoted fibroblast
senescence and collagen expression was preliminarily elucidated. This provides a theoreti-
cal basis for the further study of IDO1 and kynurenine metabolism in the OGD-induced
stress-induced senescence of fibroblasts and the mechanism of IL11 regulation of IDO1
and kynurenine metabolism. In addition, our previous work found that IL11 induces the
expression of stress-related senescence proteins in NIH3T3 and L929 fibroblasts based on
the IDO1/KYN metabolic pathway. Therefore, we found that KYN was down-regulated
and collagen expression was increased after OGD-promoted fibroblast senescence, and
IL11 inhibition of IDO1 expression might be the reason for this.
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Overall, our study established that OGD can promote senescence and collagen ex-
pression in fibroblasts, and this effect is mediated by IL11. We found that OGD may affect
the IDO1/KYN metabolic pathway through IL11, thereby affecting fibroblast senescence
and collagen expression, which may provide an effective basis for the treatment of cellular
senescence caused by ischemic disease (Figure 11).
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Figure 11. A schematic diagram of the mechanism by which OGD promotes senescence and
collagen expression in fibroblasts. We found that OGD may promote fibroblast senescence and
collagen expression through IL11 inhibition of the IDO1/KYN metabolic pathway.

4. Materials and Methods
4.1. Cell Culture and Stimulations

NIH3T3 and L929 cells were obtained from Shanghai Zhong Qiao Xin Zhou Biotech-
nology Co. Ltd. The cells were cultured at 37 ◦C in a 5% CO2 atmosphere using RPMI
Medium 1640 basic (1640; Gibco, New York, NY, USA) supplemented with 10% fetal bovine
serum (FBS, Biological Industries, Brisbane, BI, Australia), 1:100 penicillin/streptomycin,
and 100 mM nonessential amino acids (Gibco, USA). Cells were passaged using a standard
protocol with 0.25% trypsin (Sigma, Saint Louis, MO, USA) and seeded 12 h before exper-
iments. The cells were seeded in 6-well culture plates at a confluence of 50%. The cells
were stimulated with 25 ng/mL IL11 (GenScript, Nanjing, China) and/or 50 µM L-KYN
(Macklin, Shanghai, China) diluted with RPMI 1640 for 2 h. For hypoxic conditions, the
cells were grown in a three-gas incubator (SANYO) with 1% oxygen, 5% carbon dioxide,
and 94% nitrogen. For glucose deprivation conditions, PRMI-1640 medium without glucose
(Gibco, USA) was used.

4.2. Antibody and Reagents

Collagen I antibody (AF7001, 1:1000), collagen III antibody (AF0136, 1:1000), α-SMA
antibody (AF1032, 1:1000), p53 antibody (AF0879, 1:1000), p21 antibody (AF6290, 1:1000),
and p16 antibody (AF5484, 1:1000) were purchased from Affinity Biosciences. IL11 antibody
(A1902) was purchased from ABclonal. rmIL11 (Z03052) was purchased from GenScript,
and L-KYN (L864410) was purchased from Macklin.

4.3. Cell Transfection

Small interfering RNA targeting IL11 (si-IL11) (CACAGATGAGAGACAAATT) was
purchased from RIBOBIO. siRNAs (si-IL11 and si-NC) were transfected into NIH3T3
and L929 cells with a final concentration of 20 nM using Lipofectamine 2000 (Invitrogen,
Waltham, MA, USA) according to the manufacturer’s instructions. After being trans-
fected for 24 h, cells were subjected to OGD for 6 h. Cells were then harvested for the
subsequent experiments.
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4.4. RNA Isolation and Quantitative RT-PCR

Cultured cells were treated with Trizol reagent (Thermo Fisher, USA). The cDNA
Synthesis Kit (TransGen Biotech, Beijing, China) was used for reverse transcription PCR (RT-
PCR). Comparative quantitative PCR (Q-PCR) was performed by using the SYBR Green Q-
PCR Kit (Roche, Mannheim, Germany). Primers are listed as follows. The Ct values were an-
alyzed using the ∆∆Ct method, and relative changes in mRNA levels were obtained by nor-
malization to GAPDH relative to the control. IDO1: 5′-AGGATGCGTGACTTTGTG-3′ and
5′-GAGGGCTCTTCCGACTT-3′; α-SMA: 5′-CATCAGGGAGTAATGGTTGGAATGGG-3′

and 5′-GTGTTCTATCGGATACTTCAGCGTCAG-3′; IL11: 5′-AGGTGGTCCTTCCCTAAAG
ACTCTG-3′ and 5′-CAAGAGCTGTAAACGGCGGAGTAG-3′; collagen III: 5′-AGTCGGAG
GAATGGGTGGCTATC-3 and 5′-CAGGAGATCCAGGATGTCCAGAGG-3′; collagen I: 5′-
GGGCAACAGCAGATTCACCTACAC-3′ and 5′-CAAGGAATGGCAGGCGAGATGG-3′;
GAPDH: 5′-AAGCCCATCACCATCTTCCA-3′ and 5′-CCTGCCTCACCACCTTCTTG-3′.

4.5. Western Blot

The protein lysate from cells was isolated using RIPA (Solarbio) with protease and
phosphatase inhibitors for 10 min and then centrifuged for 20 min, 4 ◦C, 14,000× g. After
30 min of incubation on ice, the lysates were centrifuged for 20 min, 4 ◦C, 10,000× g.
The electrophoresis separation was carried out in 10% polyacrylamide gel. After the
transfer, PVDF (Polyvinylidene fluoride) membranes (Merck-Millipore, Burlington, MA,
USA) were blocked for 1 h in 5% milk in Tris-buffered saline with 0.1% Tween (TBS-T)
followed by overnight incubation in the primary antibody at 4 ◦C. On the following day,
the membranes were rinsed with TBS-T and incubated for 1 h with the secondary antibody.
Chemiluminescent HRP Substrate (Merck-Millipore) and the ChemiDoc system (Bio-Rad,
Hercules, CA, USA) were used for signal detection. Analysis was conducted in three
independent experiments.

4.6. ELISA

The lysates for ELISA were isolated from cells in 200 µL precooled PBS (contain-
ing protease inhibitor), followed by ice bath ultrasound for 3 min and centrifugation at
4 ◦C, 12,000× g for 10 min. To evaluate levels of IDO1 in fibroblasts, ELISA assays were
performed (YX-090415M, Sinobestbio) according to the manufacturer’s instructions.

4.7. Collagen Contraction Assay

After stimulation, cells were trypsinized, counted, and mixed with the Collagen Gel
Working Solution prepared according to the manufacturer’s protocol (C8062, Solarbio).
The solution was added to 24 well plates and allowed to polymerize for 20 min at 37 ◦C.
Fresh growth medium was added to the solidified collagen gels, and plates were returned
to the incubator. After OGD for 6 h, the surface of contraction was released and contraction
was monitored. Next, the surface area of contracted gels was imaged using a Chemi Doc
instrument (Bio-Rad) and measured using the ImageJ software (NIH).

4.8. Immunofluorescence

After stimulation, cells were fixed with 4% paraformaldehyde for 5 min at room tem-
perature, permeabilized with 0.01% Triton X-100 for 5 min, and blocked with 5% BSA in PBS
for 20 min. Specimens were incubated with primary mouse anti-IDO1 (1:500, clone CAT-
5H10, Thermo Fisher Scientific, Waltham, MA, USA) and an anti-αSMA antibody (1:200)
at room temperature, followed by the secondary AlexaFluor555 goat anti-rabbit antibody
(1:8000) at room temperature for 1 h. Hoechst 3342 (1:1000) was used to label the nuclei. Im-
munofluorescence was analyzed using a ZEISS Axio Scope5/ A1 fluorescence microscope.

4.9. MTT Assay

Under OGD conditions for 2 h, 4 h, 6 h, 8 h, and 10 h, 20 µL of 5 mg/mL MTT
solution was added to each well, and the plate was further incubated at 37 ◦C for 4 h.
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Thereafter the medium was aspirated, the wells were washed with PBS and allowed to dry
for approximately 2 h, and 200 µL of DMSO was added to each well. The microtiter plate
was placed on a shaker to dissolve the dye. After the formazan crystals had dissolved, the
absorbance was determined at 490 nm with a fluorescence microplate reader.

4.10. Ehrlich Assay

After treating cells, 1 mL of the cell supernatant was collected. Then 100 µL of
30% TCA solution was added to each tube of samples and standards and mixed upside
down at 65 ◦C for 15 min, and then 12,000× g for 10 min. The supernatant was collected,
and 140 µL was added to each well of the 96 well plates. An equal volume of 2% 4-
dimethylaminobenzaldehyde was added per hole; the absorbance was determined at
490 nm with a fluorescence microplate reader. The standard curve (12, 6, 3, 1.5, 0.75, 0.375,
0.1875, and 0.09375 µM) was plotted. According to the standard curve, the corresponding
concentration and the ratio of the treatment group to the control group were calculated.

4.11. Statistical Analysis

The in vitro experiments were performed in three independent trials, and all the results
are presented as the means ± SDs. An unpaired Student t-test was used for comparison of
the two groups: * p < 0.05; ** p < 0.01; *** p < 0.001.
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