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Abstract

We evaluated the accuracy and precision of the CENTURY soil organic matter model for

predicting soil organic carbon (SOC) sequestration under rainfed corn-based cropping sys-

tems in the US. This was achieved by inversely modeling long-term SOC data obtained

from 10 experimental sites where corn, soybean, or wheat were grown with a range of till-

age, fertilization, and organic matter additions. Inverse modeling was accomplished using a

surrogate model for CENTURY’s SOC dynamics sub-model wherein mass balance and

decomposition kinetics equations from CENTURY are coded and solved by using a nonlin-

ear regression routine of a standard statistical software package. With this approach we

generated statistics of CENTURY parameters that are associated with the effects of N fertili-

zation and organic amendment on SOC decay, which are not as well quantified as those of

tillage, and initial status of SOC. The results showed that the fit between simulated and

observed SOC prior to inverse modeling (R2 = 0.41) can be improved to R2 = 0.84 mainly by

increasing the rate of SOC decay up to 1.5 fold for the year in which N fertilizer application

rates are over 200 kg N ha-1. We also observed positive relationships between C inputs and

the rate of SOC decay, indicating that the structure of CENTURY, and therefore model

accuracy, could be improved by representing SOC decay as Michaelis-Menten kinetics

rather than first-order kinetics. Finally, calibration of initial status of SOC against observed

levels allowed us to account for site history, confirming that values should be adjusted to

account for soil condition during model initialization. Future research should apply this

inverse modeling approach to explore how C input rates and N abundance interact to alter

SOC decay rates using C inputs made in various forms over a wider range of rates.
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Introduction

The CENTURY soil organic matter (SOM) model [1] is an agro-ecosystem model developed

to simulate the dynamics of multiple SOM “compartments” or “pools”, which differ in their

size and degree of physical and/or chemical stabilization, under various agronomic practices

and soil/climatic conditions (Fig 1).

The model has been widely used to guide soil-based nutrient management, mitigate agricul-

tural non-point source pollution, and promote soil organic carbon (SOC) sequestration. Impor-

tantly, CENTURY and closely associated models are being used for accounting of national

inventories and policy development [2–5]; this highlights the need for continual model refine-

ment resulting from improved understanding of factors influencing model kinetics.

Like other process models describing SOM dynamics, CENTURY’s performance depends

on the accuracy of parameter values employed and the degree to which the initial status of the

modeled system is known. Accuracy and precision of predictions are generally improved for site-

specific application with model calibration wherein the model’s initial conditions and parameter

values are adjusted for a site or region against observed data. CENTURY calibration typically

includes adjustment of i) the initial distribution of SOC among three SOM pools (active, slow,

and passive) and ii) one or more of the parameters related with decay rates of those pools [6, 7].

This type of calibration usually involves manual adjustments, which result in variable success and

uncertainties in model prediction that partly depend on the modeler’s experience [8].

While systematic approaches such as automatic calibration algorithms can be used to over-

come the subjectivity inherent in “by-hand” approaches to calibration, statistical methods

can be used to quantify model uncertainty. For example, Yeluripati et al. [9] used a Bayesian

approach to reduce and quantify the uncertainty in the initial conditions of the daily time step

version of CENTURY. More recently, Kwon and Hudson [10] adapted an inverse modeling

approach using a surrogate model for CENTURY’s SOC dynamics sub-model (SCSOC). A

nonlinear regression routine of a standard statistical software package was used to provide a

statistical perspective on the parameters and their influence on estimates of SOC computed by

CENTURY.

Using the SCSOC on long-term data collected from conventionally tilled corn-based

systems at the Morrow Plots in Illinois, Kwon and Hudson [10] found that CENTURY overes-

timated the positive effects of N fertilization on SOC. This effect was attributed to overestima-

tion of the positive effects of C inputs on SOC levels and under-estimation of the stimulatory

effects of N addition on decay rates. Results presented by Ogle et al. [11] suggested that CEN-

TURY-modeled SOC is overestimated in N fertilized systems, and agreed with the conclusion

of Kwon and Hudson [10]. In their work, a linear mixed effect model was used to quantify the

accuracy and precision in modeled SOC using data from 47 agricultural experiments selected

to represent the most prevalent cultivation methods in US row crop systems. A similar ap-

proach was applied by Ogle et al. [12] to demonstrate that the model structure and parameteri-

zation are the largest sources of uncertainty associated with CENTURY based estimates of

SOC. Recent work by Fujita et al. [13] showed that SOM decomposition models can be im-

proved by considering interactions between C and N inputs and their effect on decay rates and

stock flows. Another source of poor model performance is inaccurate prediction of C inputs

[14]. Uncertainty associated with model-based estimates of C inputs, which are greater than

those associated with N inputs in fertilized systems, must be better quantified.

In this study, we used SCSOC to evaluate the structure and parameterization of CEN-

TURY’s SOC sub-model using field measured data obtained from multiple crop production

sites. Datasets like the one developed by Ogle et al. [11] are ideal for parameter calibration using

inverse modeling as they provide information about changes in organic matter stocks associated
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with management applied across a large environmental gradient. In addition to allowing us to

obtain more precise and accurate parameter estimates, these data allow us to directly evaluate

the influences of key factors including C inputs, yield, and N inputs, on SOC decay rates [15].

We inversely modeled SOC data to estimate CENTURY parameters reflecting the i) influence

of yield and associated estimates of litter inputs to soil, ii) initial status of SOC, and iii) effects of

management, mainly N fertilization and organic amendments, on SOC decay kinetics.

Materials and methods

Overview of SCSOC model structure and inverse modeling

The SCSOC was developed as a nonlinear regression tool to rapidly and objectively optimize

site-specific parameters for CENTURY using time-series data [10] (Fig 2A).

Fig 1. The environment and sub-models of CENTURY soil organic matter model.

doi:10.1371/journal.pone.0172861.g001
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It is coded within the Model procedure of SAS [16] to provide parameter estimation, simu-

lation, and forecasting of dynamic nonlinear simultaneous equation models. The SCSOC

represents the same conceptual pools as the CENTURY’s SOC sub-model, including i) above-

ground and belowground plant litter (residues), which are divided into structural (SR) and

metabolic (MR) litter pools depending on their lignin content, ii) active microbes in surface

residues, and iii) active (A), slow (S) and passive (P) SOM pools. The temporal evolution of

each pool j (Cj(t)) is expressed by combining the rate expressions for decomposition (Eq 1)

with the resultant product formation rates and litter input fluxes to form a set of coupled, dif-

ferential mass balance equations describing each plant litter and SOM pool.

dCjðtÞ
dt
¼ ½xMR;j � vMR� þ ½xSR;j � vSR� þ ½xA;j � vA� þ ½xS;j � vS� þ ½xP;j � vP� � vj ð1Þ

where xMR,j is the fraction of the decomposed C derived from the metabolic litter C pool that

flows into the SOM pool j and vMR is the decomposition rate of the metabolic litter C pool. The

same convention and notion is applied to other SOM pools.

In CENTURY, these equations are numerically solved for a series of fixed time intervals

using a first-order numerical procedure (Euler method) that approximates the decomposition

rate over an entire month, vj(m), using Cj(m), which denotes the value of C at the beginning of

the month (Eq 2):

vjðmÞ ¼ k
�

j ðmÞ � CjðmÞ ð2Þ

where k�j ðmÞ is a site-specific decay rate coefficient for SOM pool j and its value is the product

of the maximum decay rate coefficient in uncultivated soil (S1 Table) and factors that account

for i) the site-specific effects of residue quality and soil texture, ii) temporally variable influ-

ences of soil temperature and moisture (defac), and iii) soil tillage effect (clteff).

Fig 2. Overview of the surrogate CENTURY’s SOC dynamics sub-model (SCSOC). (a) SCSOC’s structure, data inputs, and nonlinear regression

(Model) procedure performed in SAS statistical software and (b) summary statistics generated by the SCSOC run.

doi:10.1371/journal.pone.0172861.g002

Inverse modeling of CENTURY-predictions for soil C sequestration

PLOS ONE | DOI:10.1371/journal.pone.0172861 February 24, 2017 4 / 18



Instead of using the Euler method, the SCSOC employs the Crank-Nicholson method,

which uses the average of Cj(m) and Cj(m+1) to solve the differential equations with SAS’

Model procedure (Eq 3).

vj mð Þ ¼ k
�

j mð Þ �
Cjðmþ 1Þ þ CjðmÞ

2
ð3Þ

Using the Model procedure, the SCSOC can perform an inverse modeling of observed SOC

data to estimate CENTURY parameters and their standard errors (SE). It can also test for sta-

tistical significance and be used to rapidly and efficiently conduct uncertainty analysis using

Monte Carlo (MC) simulation.

Importantly the SCSOC allows users to derive time-dependent variables, which are typically

simulated in plant growth, nutrient cycling, and hydrology sub-models of CENTURY (Fig 1),

from model input datasets. As a result, it can isolate and quantify individual sources of uncer-

tainty associated with modeling SOC dynamics. For example, by decoupling C and N sub-

models it can empirically evaluate the effects of N inputs on SOC decay.

Key model variables—aboveground and belowground residues replaced by crop/plant C

input rates to soil (LAGSOIL and LBGSOIL) and climatic factors represented by the defac parameter—

are read into the SCSOC from model input datasets (Fig 2A). While the C input rates are

empirically estimated using productivity data and relationships between yield or aboveground

biomass and agronomic indices (yield-based C inputs) [i.e. the ratio of grain mass to total

aboveground plant production (harvest index, HI), and the ratio of total aboveground shoot

production to total root production (root to shoot ratio, RSR)], they can be directly derived

from the plant growth routine in CENTURY (CENTURY-modeled C inputs) and used in the

SCSOC. Note that CENTURY-modeled C inputs include feedbacks from the CENTURY’s N

sub-model where the empirical approach reflects soil N (and weather-based) impacts on plant

growth in achieved yields. Like LAGSOIL and LBGSOIL, defac can be directly derived from empirical fits

as well.

Application of SCSOC inverse modeling to US rainfed corn production

systems

We used data from 10 sites described in Ogle et al [11] to evaluate the CENTURY predictions

for SOC sequestration using the SCSOC. These were selected from among 47 sites because

yield data was recorded during the experimental periods and at least two SOC or SOM obser-

vations in top soil (soil depths of 0–20 cm) had been made over time (Table 1).

The dataset includes detailed information about management practices, monthly tempera-

ture and precipitation, soil textural classes, grain yields, and SOC or SOM levels (Table 1). By

using the dataset to parameterize CENTURY, Ogle et al. [11] ran CENTURY simulations and

generated output files that contained CENTURY- modeled values of the LAGSOIL, L
BG
SOIL, defac and

losses of SOC resulting from pre-agricultural and agricultural periods of interest. We used

those CENTURY output files to derive monthly C input rates and defac variables.

The initial fraction of SOC in the slow SOM pool (fS) and the management effect factor

(mgmteff), which accounts for the combined effects of tillage, N fertilization, and organic mat-

ter (OM) additions on SOC decay of either the active or slow SOM pool, were estimated using

the SCSOC fit to observed SOC or SOM data. Model parameters that were not estimated

through calibration procedures or treated as input variables used CENTURY default values.

We inversely estimated fS at each of the 10 experimental sites and multiplied them with SOC

reported at the beginning of each simulation to assign SOC masses to each of the three pools.

In cases where initial SOC observations varied among treatments within a site, we estimated fS

Inverse modeling of CENTURY-predictions for soil C sequestration
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Table 1. Summary of key information on the sites used for CENTURY calibration using the SCSOC.

Location Experiment

start

Texture

(Clay/

Sand)

Prior land

use

Annual

average

precipitation

Annual

average

temperature

Treatmenta Number of

SOC

observations

Simulation

period and

duration
Number of

treatment

- Year - - Fraction

-

- mm - - ˚C - - # - - Detailsb - - # - - yrs -

Lexington,

KY

1970 0.29 /0.07 Bluegrass

pasture

(~50 yrs)

1140 13 8 1 crop rotation

(CC) × 4 N rates

(0, 84, 164, and

336) × 2 tillage

(CT and NT)

24 1970–1990

Urbana, IL 1876 0.24 /0.09 Tall grass

prairie

938 11.1 8 2 crop rotations

(CC and CS) ×
(3 N rates (0,

224, and 336)

+ 1 OM (4.5 Mg

ha yr-1)) × 1

tillage (CT)

172 1955–1992

Lamberton,

MN

1960 0.27 /0.31 Tall grass

prairie

632 6.2 4 1 crop rotation

(CC) × 4 N rates

(0, 40, 80, and

160) × 1 tillage

(CT)

8 1960–1992

Hoytville,

OH

1963 0.40 /0.21 Cultivation

(6 yrs)

845 9.5 6 3 crop rotations

(CC, CS, & SC)

× 1 N rate (200)

× 2 tillage (CT

and & NT)

12 1963–1992

Wooster,

OH

1962 0.15 /0.25 Grass

meadow (6

yrs)

905 9.1 6 3 crop rotations

(CC, CS, & SC)

× 1 N rate (250)

× 2 tillage (CT

and & NT)

13 1962–1992

South

Charleston,

OH

1963 0.20 /0.15 Cultivation

(6 yrs)

952 11.9 2 1 crop rotation

(CC) × 1 N rate

(250) × 2 tillage

(CT and & NT)

4 1963–1992

East

Lansing, MI

1963 0.10 /0.80 Pasture and

cultivation

782 8.6 5 1 crop rotation

(CC) × 1 tillage

(CT) × (2 N rates

(0 and180) + 3

OM (6, 12, and

18 Mg ha yr-1))

20 1968–1982

Nashua, IA 1978 0.22 /0.32 Cultivation 825 7.3 6 3 crop rotations

(CC, CS, and

SC) × 2 tillage

(CT and NT) × 1

N rate (180)

13 1978–1989

KBS, MI 1980 0.18 /0.40 Cultivation 632 8.4 2 1 crop rotation

(CSW) × 1 N

rate (150) × 2

tillage (CT and

NT)

24 1989–2001

Rodale, PA 1981 0.30 /0.17 Pasture and

cultivation

1045 12.4 3 1 crop rotation

(CS) × 1 N rate

(150) × 1 tillage

(CT) × triplicates

8 1981–1992

a All sites with N treatment and tillage while two sites with organic matter additions.
b Crop rotation: CC, continuous corn; CS, corn-soybean; CSW, corn-soybean-wheat; SC, soybean-corn. Tillage: CT, conventional tillage; NT, no tillage.

The unit of N rate is kg N ha yr-1.

doi:10.1371/journal.pone.0172861.t001
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for individual treatments. The fA, which is normally small (0.02 ~ 0.05) and rapidly adjusts to

residue input rates [10], was assumed to be 0.02 regardless of treatment or site and fP was set to

make the fractions sum to unity. This resulted in estimation of a total of 14 parameters related

to initial SOC status.

To estimate mgmteff, we first defined it as a product of the effects of three management

practices and their interactions in our calibration.

mgmteff ¼ clteff � ferteff � omeff ð4Þ

Where clteff, ferteff, and omeff are the effects of tillage, N fertilization, and OM addition (e.g.

manure application) on SOC decay. These variables take on values of unity for experimental

treatments and years when the practices were not in effect and assume a fitted value where and

when these practices were applied. To allow us to follow up on previous work suggesting that

the effects of fertilization might be improved by calibration and reduce the confounding effects

resulting from simultaneous calibration of three management effects, we fixed the clteff effect

to a value of 1.4 applied over the year following tillage to achieve the effects of CENTURY’s

default value of 5.5 applied for the month in which moldboard plowing or conventional tillage

occurs before returning to unity for the other 11 months. To estimate ferteff and omeff, we clas-

sified studies according to levels of N fertilization [low (�100), mid (100~200), and high

(�200) kg N ha-1 rates] and OM addition [mid (�10) and high (�10) t dry matter ha-1 rates]

and assumed coefficients would be greater than zero, which allowed them to be log-trans-

formed to estimate λFERT and λOM which equal ferteff and omeff after exponentiation:

ferteff ¼ elFERT

omeff ¼ elOM
ð5Þ

Note that when λFERT and λOM are not significantly different from zero, ferteff and omeff
equal one.

Finally, we ran the model to inversely estimate SOC and to generate the summary statistics

of nonlinear ordinary least square parameter estimates (Fig 2B).

For the parameters of management effects, we reported the estimates after the log-

transformation.

Sensitivity analyses of model inputs

Comparison of C input rates derived from observed yields using agronomic indices and mod-

eled yields allowed us to determine how sensitive parameter estimates were to C input rates.

Observed grain yields, HI [17–21], and RSR [22] were used in Eqs 6 and 7 to determine input

rates.

LAGSOIL ¼ Y � 100 � yð Þ � CAG �
ð1 � HIÞ
HI

� f MIX ð6Þ

LBGSOIL ¼ Y � 100 � yð Þ � CBG �
ðRSRÞ
HI
� RD ð7Þ

Where Y is yield (Mg ha-1), θ is the moisture content in grain (%), CAG and CBG are concentra-

tion of C in either aboveground or belowground litter (Mg C kg dry matter-1) [23–24], and RD
is the fraction of root mass at certain soil depth (Table 2).

We assumed that conventional tillage (CT) and no tillage (NT) differ in the fractions of

aboveground litter that is transferred to soils (fMIX), with values of 0.95 and 0.05 being added,

Inverse modeling of CENTURY-predictions for soil C sequestration
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respectively according to CENTURY default values. The C inputs added as OM were similarly

calculated by modifying Eq 6.

Uncertainty analyses of model predictions

In addition to parameter estimation, we conducted an uncertainty analysis of model predic-

tions. For this, we ran 1,000 MC simulations by employing parameter estimates along with their

approximate standard errors and using covariance matrices obtained from inverse modeling.

We used the MC simulations to compute distributions of model predictions and associated con-

fidence limits. We also investigated how uncertainty in observations affects model predictions

by generating “synthetic” observed SOC data that are randomly drawn from a normal distribu-

tion having a mean as an observed SOC data and a standard deviation that represent of 10% of

the observed SOC. While a 10% uncertainty level may be lower than that associated with mea-

surements taken at some individual sites, this level of uncertainty is high compared to the “min-

imum detectable difference” that has been suggested for SOC change considered by greenhouse

gas registries and C trading mechanisms over a 5-yr period [25–28]. Similarly, “synthetic” yield

data were also generated using the same approach as for SOC. Using these “synthetic” observed

SOC and yield datasets, we conducted inverse modeling, followed by 1,000 MC simulations.

We assumed that the confidence interval of model predictions constructed from the MC simu-

lations would reflect the uncertainties of model inputs, parameters and structure.

Results and discussion

Parameter estimates and C input rates

Prior to inverse modeling, we evaluated the fit between observed SOC at experimental sites

and CENTURY-modeled SOC from the dataset and output files compiled by Ogle et al. [11]

(Fig 3A), which revealed a less than optimal fit (Fig 3A; R2 = 0.41, P<0.05), as is typical for

uncalibrated studies [e.g. 14].

This is partly explained by the inclusion of simulated yield achieved by a mixture of crops

and management systems in the regression. While simulated and measured yields were posi-

tively related when all systems were considered together (Fig 3B), the inclusion of yields for

fertilized and unfertilized corn and soybean/wheat resulted in considerable spread for individ-

ual crop types such that the correlation between simulated and measured yields for individual

crops (corn or soybean/wheat) was not significant.

CENTURY overestimated average yields in many sites (Lexington, South Charleston, and

Rodale and, to a lesser degree, Urbana and East Lansing) and that likely accounts for overesti-

mation of SOC at some sites, but it underestimated yield in others (e.g. Hoytville) (Fig 4).

Table 2. Literature-derived values for agronomic indices and crop C composition used to compute C returned to soils.

Harvest index

(HI)

Root to shoot ratio

(RSR)

A fraction of root mass in 0–20 cm soil

depth (RD)

Moisture content in

grain

C concentration of crop

residue

Above-

ground

Below-

ground

___ % ___ ___ kg C kg dry matter-1___

Corn 0.53 0.55 0.80 15 0.437 0.343

Soybean 0.46 0.56 0.80 13 0.454 0.467

Winter

wheat

0.45 0.62 0.90 14 0.370 0.296

Manure 0.450

doi:10.1371/journal.pone.0172861.t002
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Fig 3. Comparison of (a) CENTURY-modeled soil organic C with observed soil organic C and (b) CENTURY-modeled grain yields with observed grain

yields. The grey lines are 1:1 lines while the black lines are regression lines. All R2 are significant at P<0.05.

doi:10.1371/journal.pone.0172861.g003

Fig 4. Comparison of CENTURY-modeled grain yields with observed yields at each experimental site. The grey lines are 1:1 lines. NT, CT, F, and

OM indicate no tillage, conventional tillage, fertilization, and organic matter addition, respectively.

doi:10.1371/journal.pone.0172861.g004
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PLOS ONE | DOI:10.1371/journal.pone.0172861 February 24, 2017 9 / 18



Also, CENTURY frequently underestimated observed yields and therefore C inputs in

unfertilized systems, but this bias was not apparent at sites with synthetic fertilization or

organic amendments (Fig 5).

Inverse modeling, notably improved the model fit. We estimated fS(0) by fitting the equa-

tions to multi-year SOC records andmgmteff in scenarios that used either CENTURY-mod-

eled C input rates (R2 = 0.84, P<0.05) (Fig 6A) or yield-based C input rates (R2 = 0.82,

P<0.05) (Fig 6B).

All parameter estimates were significantly different from one except for the omeff value

that was estimated with observed yields (Table 3). Both the ferteff and omeff decreased when

observed yields were used instead of CENTURY-based estimates to calibrate the SCSOC. This

is likely due to the fact that observed C inputs in unfertilized plots were significantly higher

than estimated values (Fig 5). There was no consistent difference between modeled and field-

based estimates of C inputs in N fertilized systems regardless of fertilizer type or tillage. The C

inputs were greatest in systems receiving organic inputs in addition to crop residues. Esti-

mated C input rates to soil were always lower for fertilized plots under NT than CT because

Fig 5. C input rates to soil under corn production (mean ± standard error). The rates were calculated by the plant growth module in

CENTURY and agronomic indices coupled with observed yields in SCSOC, across management practices. NT, CT, FERT, and OM

indicate no tillage, conventional tillage, fertilization, and organic matter addition, respectively. Based on Student’s t-test for paired data at

P<0.05, different letters indicate that C input rates calculated by CENTURY and SCSOC are significantly different.

doi:10.1371/journal.pone.0172861.g005
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both CENTURY and SCSOC assume only 5% of aboveground residues are mixed with soils in

NT systems and assume that 95% of C inputs are added under CT. This results in additions of

~2 Mg C ha-1 yr-1 of C under NT corn that is fertilized with N, which is about half the amount

added under similarly managed CT (Fig 5). If one altered these assumptions to reflect shifts

toward use of chisel plows instead of moldboard plowing in CT systems and account for the

mixing action achieved by earthworms one might use factors closer to 0.85 and 0.15 in CT and

NT systems respectively. Regardless of C placement assumptions, in all cases coefficients

describing management effects on decay suggested there is a stimulatory effect of fertilizer

addition on decay. The ferteff parameter, which was calibrated using data from all sites along

with yield-based C input rates, was significantly different from one (P<0.05) (Table 3), imply-

ing that SOM decay rates occurring during the periods following fertilization were 1.24 (low N

input rate) ~ 1.59 (high N input rate) times faster than that during unfertilized periods. By

multiplying the ferteff coefficient with 1.4, the default value of clteff, we estimate the calibrated

mgmteff would be 1.7 ~ 2.2.

This is similar to what Kwon and Hudson [10] found using data from the Morrow Plots

alone where they found mgmteff needed to be given a value of up to 2 for the year where N fer-

tilizer was applied along with tillage. Further studies might need to explore relationships

between SOC and ferteff using a larger data set to explore how fertilizer rate and form might

interact with decay rates and/or improve existing stoichiometric controls for C transfers

among the SOM pools that exist within CENTURY. In this work, the numbers of studies used

Fig 6. The results of calibration with (a) CENTURY-modeled C input rates and (b) yield-based C input rates. The grey lines are 1:1 lines while the black lines

are regression lines. All R2 are significant at P<0.05.

doi:10.1371/journal.pone.0172861.g006
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to estimate coefficients for non-fertilized, low, medium, and high N inputs rates were relatively

small.

Again the result for omeff in the directly measured scenario was greater than, but not signif-

icantly different from one (Table 3), which is consistent with the fact that effects on SOC

might vary with manure type [29]. This would indicate that calibrating multiple omeff to

describe feedbacks from the addition of a wide range of rates (4.5 ~ 18 Mg ha yr-1) and types

(estimated C/N) of organic additions might be appropriate instead of using only two omeff
coefficients to describe them all.

Recently, Fujita et al. [13] used inverse modeling to calibrate a coupled C and N based

decomposition model and demonstrated that by accounting for the influence of recent man-

agement on the active fraction and stoichiometry of organic matter inputs they could improve

decay model performance at larger temporal or global scales. The need for calibrating the slow

pool (fS(0)) along withmgmteff also suggests that the effects of recent management on SOC

dynamics should be incorporated into the analysis, and is typically addressed in CENTURY

simulation modeling frameworks [e.g. 12]. Estimates for fS(0) that were based on observed

yields ranged between 0.35 ~ 0.78 (Table 3); this agrees with model derived estimates of recal-

citrant fraction pool-size reported in Falloon and Smith [30]. Positive effects of recent manage-

ment on SOC is reflected by a shift of stocks from the recalcitrant to the slow pool. Compared

to yield-based estimates of fs, estimates derived from CENTURY-modeled yield were

Table 3. Parameters inversely estimated using the SCSOC. Parameter estimates, which were significantly different from zero (initial fraction of slow

SOC) or unity (management effect) at P<0.05), are reported as mean ± standard error. NS indicates not significant from zero. Three levels of N fertilization

were classified as low (�100), mid (100~200), and high (�200) kg N ha-1 rates; two levels of OM addition were classified as mid (�10) and high (�10) t dry

matter ha-1 rates.

C input rates

based on

Parameters estimated

___________________________________Initial slow SOC pool (fraction of total) _________________________________

Sites Lexington,

KY

Urbana, IL Lamberton,

MN

Hoytville,

OH

Wooster,

OH

South

Charleston,

OH

East

Lansing,

MI

Nashua,

IA

KBS, MI Rodale,

PA

Observed

Yield

0.60±0.04 0.36

±0.030.66

±0.020.36

±0.020.56

±0.02

0.78±0.03 0.50±0.04 0.70±0.06 0.49±0.12 0.66±0.09 0.43

±0.08

0.61±0.14

0.65±0.16

0.35

±0.07

CENTURY

modeled

0.54±0.04 0.27

±0.040.50

±0.020.19

±0.020.40

±0.02

0.69±0.03 0.35±0.03 0.51±0.05 0.35±0.03 0.51±0.05 0.27

±0.06

0.46

±0.130.47

±0.14

0.29

±0.06

_______________________________________Management effect (unitless)______________________________________

N

inputs

ferteff omeff

Observed

Yield

Low 1.24±0.09

Mid 1.37±0.11 Mid 1.07±0.16

(NS)

High 1.59±0.08 High 1.26±0.23

(NS)

CENTURY

modeled

Low 1.34±0.11

Mid 1.74±0.16 Mid 2.10±0.28

High 2.19±0.13 High 2.02±0.38

doi:10.1371/journal.pone.0172861.t003
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consistently reduced by an average of 53% (decreases range from 17~176% based on comparison

of initial and adjusted values). Generally, the sites where grass vegetation was present just prior

to the start of the study period had higher initial fs values and SOC levels than sites with a history

of continuous cultivation. The highest fS (0) value (0.78) was estimated for Lamberton, followed

by the Wooster (0.70), East Lansing (0.66), KBS (0.65), and Lexington (0.59) sites where grass

vegetation was dominant prior to implementation of experimental treatments. One exception

was the KBS site (fS (0) = 0.60) but this estimate was relatively uncertain based on the site’s high

standard error. Intermediate fS(0) values, about 0.50, were estimated for two Ohio sites (South

Charleston and Hoytville) where cultivation had been conducted for less than 10 years. The fS(0)

values estimated at Rodale and Nashua sites where cultivation had been conducted for at least 10

years ranged from 0.35 to 0.43 (Table 3). At the Urbana site, where practices had been in place

for over 80 years prior to the starting year of simulation (1955), estimated fS(0) values varied sig-

nificantly among treatments. All fS(0) were greater than 0.50 when treatments had a history of

cultivation with OM addition while they were less than 0.40 without OM addition.

Estimates of fs(0) obtained using C inputs estimated by CENTURY also varied to reflect site

history. These results suggest fS(0) values can be adjusted to account for soil condition during

model initialization. It should be noted that site history is also reflected in estimates of fP(0)

because values were determined by difference (fP(0) = 1–0.02—fS(0)) and so vary as a result of

changes in fS(0). Estimates of fP(0) ranged from 0.37 ~ 0.63, and were higher for sites calibrated

with CENTURY-modeled yield.

Uncertainty analyses

At three sites (i.e. Wooster, Lansing, and KBS) (Fig 7), CENTURY-modeled SOC fell within

the 95% confidence intervals (CI) of estimated SOC that was derived from inverse modeling of

observed SOC data followed by MC simulations.

Fig 7. 95% confidence intervals constructed by using 1,000 Monte Carlo (MC) simulations and parameter statistics. The statistics were derived from

either inverse modeling of observed SOC with yield-based C input rates (grey solid line) or inverse modeling of “synthetic” SOC with “synthetic” yield-based C

input rates (black solid line). Grey dots plot CENTURY-modeled SOC against observed SOC. The diagonal lines are 1:1 lines.

doi:10.1371/journal.pone.0172861.g007
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Most model estimates for SOC at the Lexington site also fell within that CI. This implies

that model calibration was not needed to obtain acceptable estimates at those 4 sites and that

new parameter estimates will not improve model predictions statistically if uncertainties are

considered. When uncertainties or errors of measurements related to observed SOC and yield

data were further explored using inverse modeling of “synthetic” SOC and yield data coupled

with MC simulations, wider CIs (black lines) that were produced encompassed some estimated

SOC values at two sites (South Charleston and Nashua) but values remained outside the limits

at 4 other locations. This means that model calibration is required to achieve acceptable esti-

mates of SOC at those locations (Fig 7). Even after 95% CIs were constructed from inverse

modeling of “synthetic” data, problems with over- (Urbana) and under- (Lamberton) estima-

tion of SOC remained, indicating that site-specific calibration is needed to effectively model

SOC at those sites. However, we should also recognize that we have assumed a ±10% variation

with respect to the mean, which may not reflect the full variation in the samples.

Improving model predictions

The need to calibrate one or more of the parameters that adjust decay rates might suggest that

there is also a need to refine the mathematical functions associated with decay rates. Our find-

ing, which suggests that components of mgmteff require adjustments, agree with previous

work wherein individual CENTURY modelers relied on expert judgment to adjust this param-

eter. Importantly, we observed a positive relationship between mgmteff and C input rates (Fig

8); this effect was most clear when interactions with tillage and amendment type are

considered.

This is consistent with the findings of Huggins et al. [31], who modeled SOC changes at

Urbana using a one-compartment, first-order decay model, and Kwon and Hudson [10], who

Fig 8. Relationships between management practices and C inputs under corn production. The C inputs were derived from observed yields and

agronomic indices (box plot) or management effect estimated (line plot). NT, CT, FERT, and OM indicate no tillage, conventional tillage, fertilization, and

organic matter addition, respectively. Three levels of N fertilization are classified as low (�100), mid (100~200), and high (�200) kg N ha-1 rates and two

levels of OM addition as mid (�10) and high (�10) t dry matter ha-1 rates, respectively.

doi:10.1371/journal.pone.0172861.g008
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used the SCSOC to model data collected at the Urbana site. Saturation of SOC is sometimes

used to explain rapid decay rates [32] but we discount this explanation, as increases in turnover

observed within individual site comparisons are similar or greater in soils with lower SOC

levels.

The SOM decay process is sensitive to both the mass of SOM and the characteristics of the

microbial community (e.g. size and activity), which are also influenced by N fertilization his-

tory [33], rather than simply the mass of SOM as assumed in many SOM models, including

CENTURY. Stimulation of soil microbial activity caused by increased C inputs can result from

alleviation of C limitation. Stimulation of microbial activity can also result from alleviation of

N limitations through fertilization that induces production of enzymes to degrade SOC [34].

The importance of these interactions is apparent in recent SOM models that explicitly incor-

porate microbial population size/activity (e.g. [35, 36]). Positive priming by C and N additions

that are known to occur [37], are not effectively captured by established process models. Feed-

backs of N additions were captured in this work through statistical adjustment of rate modify-

ing coefficients. It is possible that the feedback of C additions could be achieved by replacing

the first-order kinetic equation used to describe SOC decay with a nonlinear Michaelis-Men-

ten rate equation to better describe the relationship between C inputs and microbial activity.

Reliance on such detailed formulations, however, would make model parameterization more

complex [36].

For example, if we replace mgmteff with a nonlinear Michaelis-Menten rate equation and a

metabolic residue pool (CMR) in order to represent the microbial activity incorporated into the

SOM decay rate calculations for the active and slow pools, we can redefine a site-specific decay

rate coefficient for SOM pool j as follows:

k�j mð Þ ¼ k0

j � defac mð Þ �
Vmax � CMRðmÞ
Km þ CMRðmÞ

� �

� Cj mð Þ ð8Þ

Where k0
j is the maximum decay rate coefficient of SOM pool j in uncultivated soil, Vmax rep-

resents maximum microbial activity at saturating substrate concentrations and Michaelis con-

stant Km is the substrate concentration at which the reaction rate is half of Vmax.
When we employed this equation to estimate the active and slow pools, we obtained a rela-

tionship between observed and modeled SOC that was similar to that obtained after calibration

ofmgmteff (R2 = 0.86, P<0.05). These findings suggest use of alternative rate laws could signifi-

cantly improve models of both long-term and short-term C dynamics.

Conclusion

Drawing on data from multiple sites, we were able to generate robust parameter estimates

using climatic factors and C input rates derived from CENTURY outputs simulated by Ogle

et al. [11] when they were combined with yield-based estimates of C inputs. A surrogate CEN-

TURY model (SCSOC) was used to calculate time-series for SOC stocks and optimize the fit to

observed SOC by adjusting the coefficient that determines management effects on SOC decay

rates.

Inverse modeling results suggested N additions accelerated SOC decay for the year follow-

ing application up to 1.5 fold when the model was driven using yield-based C inputs, or by 2

fold when CENTURY-modeled C inputs were used. In addition, we found SOM decay rates

were positively related to the magnitude of C inputs to the soil, and this indicates that the

structure of CENTURY may need some revision to improve the estimation of production. Our

evaluation suggests SOM decay may be better represented as Michaelis-Menten kinetics than

first-order kinetics. This dependence of turnover times on C and N input rates indicates that C

Inverse modeling of CENTURY-predictions for soil C sequestration
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and N priming has significant implications for attempts to manage soil C levels and should be

explicitly represented in SOC models. Finally, calibration of the initial fraction of SOC in the

slow SOM pool against SOC levels allowed us to account for site history, suggesting that values

should be adjusted to account for soil condition during model initialization. Further calibra-

tion efforts are needed to describe feedbacks from C inputs made in various forms over a

wider range of rates.
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