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Abstract 

Cancers evolve in a dynamic ecosystem. Thus, characterizing cancer’s ecological dynamics is crucial to 

understanding cancer evolution and can lead to discovering novel biomarkers to predict disease progression. 

Ductal carcinoma in situ (DCIS) is an early-stage breast cancer characterized by abnormal epithelial cell 

growth confined within the milk ducts. Although there has been extensive research on genetic and epigenetic 

causes of breast carcinogenesis, none of these studies have successfully identified a biomarker for the 

progression and/or upstaging of DCIS. In this study, we show that ecological habitat analysis of hypoxia and 

acidosis biomarkers can significantly improve prediction of DCIS upstaging. First, we developed a novel eco-

evolutionary designed approach to define habitats in the tumor intra-ductal microenvironment based on 

oxygen diffusion distance in our DCIS cohort of 84 patients. Then, we identify cancer cells with metabolic 

phenotypes attributed to their habitat conditions, such as the expression of CA9 indicating hypoxia responding 

phenotype, and LAMP2b indicating a hypoxia-induced acid adaptation. Traditionally these markers have 

shown limited predictive capabilities for DCIS upstaging, if any. However, when analyzed from an ecological 

perspective, their power to differentiate between indolent and upstaged DCIS increased significantly. Second, 

using eco-evolutionary guided computational and digital pathology techniques, we discovered distinct spatial 

patterns of these biomarkers and used the distribution of such patterns to predict patient upstaging. The 

patterns were characterized by both cellular features and spatial features. With a 5-fold validation on the 

biopsy cohort, we trained a random forest classifier to achieve the area under curve(AUC) of 0.74. Our results 

affirm the importance of using eco-evolutionary-designed approaches in biomarkers discovery studies in the 

era of digital pathology by demonstrating the role of eco-evolution dynamics in predicting cancer progression. 

 

 

Keywords: 

Breast cancer, tumor ecology and evolution, DCIS, Eco-evolutionary biomarkers, Metabolic phenotypes, 

Habitats, Pathomic, Machine learning, digital pathology 

 

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 28, 2024. ; https://doi.org/10.1101/2024.06.23.600274doi: bioRxiv preprint 

mailto:chao.chen.1@stonybrook.edu
mailto:mehdi.damaghi@stonybrookmedicine.edu
https://doi.org/10.1101/2024.06.23.600274
http://creativecommons.org/licenses/by-nd/4.0/


 

Introduction: 

In recent years, the understanding that cancer is a dynamic ecological and evolutionary process has become 

deeply entrenched 1,23. To date, several evolutionary approaches have been adapted and applied in cancer 

biology, such as diversity measures to predict disease progression; however, tumor ecosystem and ecological 

habitat studies are still overlooked 3,4. Within the human body and much like organisms in the natural world, 

cancer cells follow evolutionary principles, utilizing resources and establishing habitats within tissues 5,6. This 

ecological perspective of cancer is crucial for discovering the natural processes driving cancer evolution. 

Recognizing the parallels between organismal ecology and the tumor microenvironment opens up untapped 

opportunities to incorporate ecological measures, improving our understanding of both tumor dynamics and 

selective pressures shaping tumors’ evolutionary landscapes. Such insights may potentially lead to improved 

cancer prognosis, progression prediction, risk stratification, and therapeutic strategies. If tumor evolutionary 

state and/or its evolutionary trajectories could be reliably achieved using a single biopsy formalin-fixed 

paraffin-embedded (FFPE) tissue, clinical translation would be comparatively more manageable. 

Nevertheless, studies have yet to determine whether measures of tumor evolvability derived from a single 

biopsy sample are adequate, or if the inclusion of multiple samples significantly enhances predictions of 

clinical outcomes 7. 

Breast cancer incidence  in the US has been increasing over the past decade at a rate of 0.5% per year8. With 

increased mammographic screening, there has been a substantial increase in detecting the early non-invasive 

forms of breast cancer, such as ductal carcinoma in situ (DCIS)2,9. About one-third of breast cancers detected 

by mammography are DCIS10. As the most common pre-cancer state, DCIS can progress to  invasive disease 

in a linear evolution pattern, or can be part of other clonal evolutionary dynamics such as branching, 

punctuated, or neutral evolution 2,9,11. Since DCIS and IDC (invasive ductal carcinoma) are indistinguishable 

by (epi-)genetic mutations, gene expression, or protein biomarkers, and because it is not possible to predict 

whether DCIS will remain indolent or upstage to more aggressive disease, almost all early tumors are treated 

with aggressive interventions2,12–14. To avoid such over treatment, more research is needed to fully understand  

evolution from pre-cancer to indolent DCIS or upstaged to IDC9. 

DCIS is a heterogeneous group of neoplastic lesions confined to the mammary ducts. The confinement of 

proliferating cancer cells inside the duct and growth of cancer cells toward the center of the duct, which is far 

from vasculature, causes limitations in oxygen and nutrients. This intraductal oxygen microenvironment is 

also influenced by complex ecosystems surrounding the duct, such as vascular activity15, stiffness of 

extracellular matrix (ECM) 16, and metabolites6,17,18 19 (Figure 1A) . Local microinvasion is the main 

difference between DCIS and IDC and might also be the first evolutionary step of upstaging in the case of 

linear evolution11. Microinvasion consists of cohorts of cancer cells  that breach the basement membrane into 

the surrounding ECM. Recently, genomic analysis of matched DCIS and IDC samples has revealed that in 

75% of cases, the invasive recurrence was found to be clonally related to the initial DCIS. This implies that 

tumor cells derived from DCIS could evolve in a linear or branching fashion with 18% new transformations 

and/or clonogensis11.  These new findings emphasize the extraordinary heterogeneity in genotype and 

phenotypic plasticity in breast cancer that must be studied in light of evolution and ecological studies. Thus, 

we designed our study to capture the phenotypic heterogeneity of cancer cells in their selective 

microenvironments. We hypothesize that non-genetic ecological factors, such as intra-ductal 

microenvironmental conditions, may be responsible for transitioning from a DCIS to IDC phenotype, in the 
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case of linear and branching evolution, or may select clones with pre-existing IDC phenotypes in the case of 

the other evolutionary trajectories, including punctuated and neutral evolution6,11,18,20. 

 

To validate this hypothesis, we propose a novel method to study DCIS evolution, by capturing and 

characterizing “cell habitats” and their interactions in the tumor ecosystem. Tumor evolution requires 

phenotypic diversity within a population undergoing microenvironmental selection forces 21. Cells that adapt 

in response to selection may present similar phenotypes, corresponding to the microenvironment exerting the 

selection.  We started by defining the habitats based on availability of oxygen into: a) oxygenated habitat and 

b) hypoxic habitat. Following previous theory18, these habitats are defined by distance from the duct boundary. 

However, a uniform distance threshold hardly captures the true oxidate/hypoxic states of cells. Therefore, we 

 

Figure 1. Ecological and evolutionary designed biomarkers of DCIS upstaging. A) Model of 

microenvironment-driven evolution of breast cancer from normal breast tissue to DCIS and IDC: Our schematic is 

overlaid on HE staining of breast cancer specimens at different  stages of DCIS and IDC. Different patients may 

experience various types of evolutionary trajectory following different evolutionary models, including linear and 

branched progression from DCIS to IDC shown here.  B) The patient cohort was curated from retrospective DCIS 

samples, with two sample collections at biopsy and excision. The main criterion was the diagnosis of DCIS at the 

biopsy stage. C) Eco-evolutionary designed- machine learning assisted pipeline to define cancer  cell niches inside 

oxygen habitats in DCIS. i) Data preprocessing steps including duct annotation, cell detection and classification for 

HE and IHC slides, followed by coregistration to map IHC-identified cells onto the HE slide. ii)  The analysis is 

carried out at multiple scales, namely duct, habitat and niche, from the largest to smallest. At each scale the nucleus 

morphology texture feature and spatial features are extracted. iii )The pattern differential analysis approach where 

the patterns are firstly identified and then the proportions of such patterns are used as features to predict the 

upstaging status of a patient. 
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further proposed to fine-tune these habitats using protein expression indicative of phenotypes resulting from 

cancer cell adaptation to variation in oxygen availability. Therefore, we defined intraductal DCIS niches 

inside habitats as clusters of cells with similar phenotypic behavior responding to hypoxia. Through analysis 

via these niches, we can identify more aggressive phenotypes leading to microinvasion and DCIS upstaging 

to IDC or possible direct evolution to IDC without going through DCIS sub-stages.  

 

Our biomarkers are designed based on prior biological knowledge. Oxygen availability determines the source 

of energy production as of either mitochondrial respiration or glycolysis. Hypoxic cells switch to glycolysis, 

causing lactic acid production that can lead to acidosis when lactic acid is not cleared from the tumor space. 

Peri-luminal cells will experience hypoxia if they are far (>0.125 - 0.160 mm) from a blood supply.  These 

cancer cells inhabit a microenvironment of hypoxia, acidosis, and severe nutrient deprivation 18,22. These 

environmental properties exert a strong selection pressure upon the cancer cells, which in turn feeds back to 

the microenvironment, creating a dynamically changing tumor ecosystem containing several habitats. We 

have shown that cancer cells within breast ducts subjected to chronic hypoxia and acidosis evolve mechanisms 

of adaptations to survive in this harsh microenvironment 17,18,20. We have also shown that cells adapted to 

hypoxic and/or acidic niches have developed specific metabolic vulnerabilities that can be targeted to push 

them back to a more physiologically normal state17. Both these studies strengthen the acid-induced evolution 

model of breast cancer and our proposed evolutionary designed biomarkers including CA9 and LAMP2b in 

this research6,17,20,23,24,18. Here we examined the role of these biomarkers within an eco-evolutionary concept 

as a predictor of DCIS upstaging for the first time. We used these markers as representative of the cancer cell 

metabolic states to define niches inside habitats that can select for more aggressive phenotypes, leading to 

microinvasion and DCIS upstaging to IDC or possible direct evolution to IDC without going through DCIS 

sub-stages.  

To perform our analysis, we curated a retrospective cohort of DCIS patients, with specimens collected from 

Biopsy (Bx) samples before surgery and after  Excision (Ex).  All the patients had histologically confirmed 

DCIS on core biopsy, followed by diagnosis confirmed on surgical excision specimens with either DCIS or 

IDC (Figure 1B). Our niche-based prediction model is trained and tested on the Bx samples. This best fits 

future clinical applications that machine learning model can be subsequently applied to predict upstaging at 

Bx for future patients. We then stained 3 sequentially sectioned slides for HE, CA9 and LAMP2b. We 

manually annotated ducts bigger than 400 μms in diameter. The 200 um in radius annotation ensures each 

duct has both oxygenated and hypoxic habitats to build a balanced cohort for analysis. We developed a novel 

algorithm to detect intra-ductal DCIS cell niches based on biomarker expression similarity. Then, we studied 

the spatial organization of CA9- and LAMP2b-positive cells as the eco-evolution markers of cancer cells in 

hypoxic and acidic habitats at three different scales: whole slide, duct, and hypoxic habitats. Multiple spatial 

functions and spatial entropies were used to describe the spatial patterns of the cell groups (niche and micro-

niche). After a systematic and comprehensive analysis, we observed that the spatial features at the finest 

habitat level possess the most predictive power where the micro-niches were defined by the expression of 

CA9 and LAMP2b in hypoxic habitats . By characterizing these micro-niches with spatial and pathomic 

features, we then developed a risk scoring system by integrating principles of ecological-evolutionary 

dynamics with pathological imaging and molecular features of early-stage breast tumors (Figure 1C).  We 

show that quantitative analyses of immunohistological  images combined with the tumor’s eco-evolution 

dynamics and underlying molecular pathophysiology can significantly improve predicting the evolutionary 
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trajectory of that cancer. We developed a machine learning model fine-tuning the tumor habitats into micro-

niches using specific molecular signatures of resident cancer cells to provide informed decision support.  

In summary, we show that specific habitats containing micro-niches of cells with similar phenotypes 

responding to hypoxia and acidosis, or adaptation to long term exposure of these conditions, are responsible 

for DCIS progression, and hence would be correlated to upstaging. To test this hypothesis, we applied machine 

learning techniques to calculate the niches inside the tumor to define spatial and temporal distribution of 

habitats in solid tumors of DCIS patients with indolent and upstaged disease. By deploying eco-evolutionary 

principles and machine learning techniques, our work proposes a novel consilient approach - as opposed to 

the traditional single biomarker studies - to stratify DCIS patients  

 

Results: 

Sample curation and cohort building 

We built a retrospective cohort from 84 patients with histologically confirmed DCIS on core biopsy, followed 

by surgical excision, with available FFPE blocks at both Bx and Ex. The cohort has two arms: the first one is 

indolent DCIS including the patient diagnosed with DCIS at both Bx and Ex. The second arm includes the 

upstaged group with DCIS at Bx and IDC at Ex (Figure 1B). Hematoxylin and eosin (HE) stained slides of 

DCIS biopsy cores were retrieved from both the biobank core at Stony Brook University and the Moffitt 

Cancer Center tissue core and reviewed by our study pathologist. Then the selected blocks were pulled and 

sequentially cut for HE staining and CA9 and LAMP2b IHC staining. The HE and subsequent 2 IHC slides 

are digitally scanned using the Aperio XT® high-throughput slide scanner, and housed on the web-based 

Aperio server/Spectrum database package. Upstage status was pulled from the electronic medical record and 

approved by our study pathologist from the Ex tissues (Figure 1C). All images were then segmented and 

annotated using Qupath supervised by study pathologist 25. 

 

Annotation of eco-evolutionarily defined habitats at the individual duct level. 

We have shown previously that peri-luminal cells that are far (>0.125 - 0.160 mm) from a blood supply inhabit 

a microenvironment of hypoxia and lactic acidosis 18,20,26. Thus we created two simple annotation  

zones on HE slides based on O2 diffusion distance representing oxygen habitats: i) hypoxic zone or habitat 

that is above 125 μms  from the duct boundary, basement membrane, and ii) normoxic habitat that is the outer 

regions adjacent to the basement membrane (Figure 2A). We used the basement membrane as our zero point 

of reference. We also annotated necrotic zones inside the hypoxic habitats that also represent the anoxic 

habitat falling perfectly above 0.160 mm distance from basement membrane. Since reactive stroma is also of 

interest to our group and others, we annotated reactive stroma for each duct with binary scoring of 1 for having 

reactive stroma or 0 for lacking it (Supplementary Table 1). To ensure a balanced representation of hypoxic 

and normoxic habitats, we established a duct size threshold of minimum 400 μms  in diameter (or 200 μms 

radius) for manual annotation (Figure S1). After annotating all the ducts bigger than 200 ums of radius on 

HE slides, we expanded our annotations to other 2 consecutive IHC slides stained with CA9 and LAMP2b 

antibodies (Figure 2B). Then our pathologist manually scored each duct for both hypoxic and normoxic 

habitats separately for positivity of CA9 (0-3) (Supplementary Table 1). Following this, positive cells in 

IHC slides were counted using Qupath25, habitats were categorized into different classes based on the count 

of positive cells, and the count of each category of habitats for each patient was then compared between the 

upstaged and indolent patient groups. 
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Figure 2. Eco-evolutionarily designed biomarker discovery to predict upstaging in DCIS. A) 
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Illustration of normoxic, hypoxic and necrotic habitats in a duct. B) Illustration of annotation and 

scoring on 2 IHCs and how cells are scored in each habitats. C) and D) Dot plots of counts of CA9 

expression in each habitat per duct. Cells are scored 0 for ‘negative’ or ’1+’,’2+’,’3+’ for positive 

cells based on their intensity. Scoring was performed and analyzed separately for normoxic 

(oxidative) habitat (C) or hypoxic habitat (D). In the dot plot, each dot is a single duct. The color of 

dots reflect their score as follows: Blue=0, yellow=’1+’, orange=’2+’,  and red=’3+’. The number of 

dots reflects how many ducts were detected in each patient’s biopsy with size bigger than 400 um in 

diameter. The distribution in hypoxic habitat is significantly different between indolent and upstaged 

groups in hypoxic habitats and not in oxygenated habitat. Data was analyzed using the Wilcoxon 

signed-rank test. The same graph is created for LAMP2b (supplementary fig. 2) 

 

Using the Wilcoxon test, it was shown that there existed significant differences. The tests were carried out for 

both hypoxic and oxidative layers for 2 stains; the result for CA9 (Figure 2C and 2D), and for LAMP2b 

markers (Figure S2) as well as architecture, grade, lymphocytes, microcalcifications, and necrosis 

(Supplementary Table 1). As shown in Figure 2D, CA9 scoring in hypoxic habitat is much more definitive 

between indolent and upstaged groups compared to normoxic zone, or the whole duct, or the whole slide 

scoring as done traditionally (Figure S1B). We showed that the CA9-positive cells distribute differently 

between the 2 patient groups if we focused on hypoxic habitats or oxidative habitats. The performance 

improvement comparing the count scoring in different habitats and duct scoring in the whole duct suggests 

that exploring the cell composition and interaction in fine habitats inside ducts are meaningful and necessary. 

 

Defining metabolic niches inside habitats to build spatial machine learning model and improve 

performance 

Previous scoring of hypoxic and normoxic habitats was carried out for each biomarker individually and was 

restricted to only the count of the positive cells in each habitat. In order to expand the analysis to involve the 

interaction and relationship between different types of eco-evolutionary marker positive cells, a co-

registration step is crucial to create multiplex IHC (mIHC) and map cells onto a common reference 2D space. 

We chose the HE slides as the reference and registered all IHC slides on to it (Figure S2). Note that since our 

analysis is carried out duct-by-duct, it is not necessary to register the whole slides. Instead, for each duct, we 

register its IHC staining with the HE staining. This ensures all the downstream analyses could be performed 

on the same HE coordinates system for each duct. Then we used these mIHC images to define niches of cells 

representing CA9, LAMP2b, or combination phenotype. We hypothesized that these niches inside habitats 

using the two phenotypes can be more informative than each marker alone. Thus, we focus on the cell features 

such as nuclear morphology and texture and cell spatial features inside these niches to explore their effect on 

upstaging. As illustrated in Figure 3, we first map each marker IHC positive cells to the reference HE slide 

using the co-registration described above. Then, by treating each positive cell as a node and connecting the 

cells within a distance threshold, we construct a cell-proximity graph out of mIHC positive cells whereby 

each connected component of this graph represents a continuous region or niche that is hypoxic, acidic, or 

both. The threshold is a tunable parameter that is optimized by the classifying power of the downstream 

analysis. And depending on the selection of the eco-evo markers, there can be CA9 positive niches, LAMP2b 

positive niches, and CA9 and LAMP2b positive niches. We then develop a pattern differential analysis 

pipeline, which comprises two stages. First, the samples are clustered based on the features and classified into 
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one of the clusters or patterns. Then for each patient, we calculate the proportion of each pattern, forming a 

distribution profile of the patterns.  

 
Figure 3. Niches are defined inside habitats from the hypoxia and acidosis markers 

expression. A) One sample duct from CA9 slide. Top: The original IHC slide. Middle: Cell detection 

and intensity-based classification using Qupath overlaid on the slide. Bottom: the graph constructed from 

the CA9 positive cells and the connected components of the graph (Niches) highlighted in different colors. 

B) The HE staining of the same duct as A. Top: The original HE slide. Middle: Duct annotation overlaid 

on the HE slide. Bottom: Co-registered CA9-positive niches mapped and overlaid on HE slide as mIHC 

to be able to extract HE features from CA9 positive niches. Note the orientation of HE and CA9 slide was 

opposite and our co-registration technique successfully created a mIHC of the ducts with similar 

coordinates.  The same approach was used for LAMP2b and the combination. 

 

By using these proportion features, we train a classifier aiming to predict the upstaging status. From this 

pipeline, we are able to predict the clinical outcome of a patient based on his/her spatially-defined pattern 
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distributions.(Figure 1C). Then, to test the hypothesis that finer regions with biological meanings could 

provide better predictive power, we conduct a multi scale analysis performing a series of experiments using 

the same set of features and with the same pattern differential analysis pipeline at 3 different scales: duct, 

habitat and niche (Figure 1C). Under the habitat level, normoxic and hypoxic zones are analyzed separately. 

And under the niche level, CA9-positive cells, LAMP2b-positive cells, and CA9- and LAMP2b-positive cells 

are analyzed separately. 

For all the experiments, the biopsy dataset underwent 5-fold stratified cross-validation, where in each round, 

4 folds served as the training dataset and 1 fold as the test dataset, with the goal of predicting the patients’ 

clinical outcome at the biopsy stage. Upon comparing the  mean accuracy score and the mean AUC score of 

all the classifiers, the niche level classifier yielded the best predictive results under both metrics (Table 1).  

 

Table 1. Performance scores of multi scale classifiers. 

 

Post analysis to reveal contributing features and prototype visualization on mIHC. 

After selecting the best classifier based on the AUC metric, we ran SHAP (SHapley Additive exPlanations) 

analysis to obtain the SHAP values for each feature, specifically the proportions of each pattern. The most 

contributing pattern was identified as the one with the maximum SHAP value. Subsequently, a differential 

analysis was performed for this pattern to identify the top features that significantly differ from other patterns. 

These features were determined using correlation, mutual information (MI), and maximum relevance 

minimum redundancy (MRMR) methods. For pattern 5, the common feature set identified included Area_min, 

Perimeter_min, AreaBbox_min, and F_0< = r <10. A prototype for pattern 5 was then selected, which closely 

matched the mean values of these top features, and visualized. This process is illustrated in Figure 4. By 

leveraging multi-scale analysis and integrating spatial interactions of CA9 and LAMP2b positive cells through 

a comprehensive machine learning pipeline, we were able to identify key patterns and features that 

differentiate between indolent and upstaged DCIS. The use of SHAP analysis and differential analysis allowed 

us to pinpoint the most impactful patterns and their contributing features, such as Area_min, Perimeter_min, 

AreaBbox_min, and F_0<=r<10, enhancing the interpretability of the model. Overall, the niche-level analysis 

yielded the highest accuracy and AUC, underscoring the importance of fine-scale, biologically meaningful 

regions in predicting clinical outcomes. This approach not only advances our understanding of tumor 

microenvironments, but also holds promise for more precise prognostic tools in clinical settings. 

 

 Duct Habitat Niche 

Normoxia Hypoxia CA9 LAMP2b CA9 & LAMP2b 

Accuracy 0.78 ± 0.06 0.86 ± 0.03 0.83 ± 0.06 0.82 ± 0.06 0.90 ± 0.03 0.90 ± 0.03 

AUC 0.61 ± 0.08 0.67 ± 0.03 0.66 ± 0.10 0.64 ± 0.10 0.72 ± 0.07 0.74 ± 0.13 
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Discussion: 

 

       

Figure 4. Post Analysis reveals the top contributing patterns and features. A) UMAP of the 

features of the niches, different colors represent different clusters(patterns) B) Top: The impact of 

each pattern on the classifying result, the proportion of pattern 5 has the greatest impact. Bottom: 

Using correlation, MI, and MRMR to obtain the most contributing features in the pattern 5 clustering 

phase, identifying a common feature set that includes 4 features: Area_min, Perimeter_min, 

AreaBbox_min, and F_0<=r<10. C) UMAP showing the value of the 4 identified features for different 

samples, and it can be seen that samples in the pattern 5 tend to have higher values in Area_min, 

Perimeter_min, AreaBbox_min and low values for F_0<=r<10. D) A niche belonging to pattern 5, it 

contains no small size cells and exhibits a relatively dispersed distribution. 
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Ductal carcinoma in situ is the most prevalent type of precancer that can range from indolent to aggressive. 

DCIS lesions are highly heterogeneous in their intra- and inter- ductal physical microenvironments, genetics, 

and molecular expression patterns. They can be described as complete ecosystems containing habitats and 

niches including normal epithelial cells, pre-cancer cells, stromal cells, vasculature, structural proteins, 

signaling proteins and physical factors such as pH and oxygen concentration18. These habitats and niches of 

micro-domains can contain unique mixtures of cells with physical and biochemical characteristics, with 

differential evolutionary potential and trajectories 47. The niches with similar mixtures of cells usually are also 

similar in their physiology and phenotypes mainly due to living in similar habitats. Our hypothesis is that 

knowledge of these niches and their habitats can potentially provide patient benefit by stratifying their tumor 

progress and therapeutic choices. However, tools and techniques are lacking to distinguish them. Proper tools 

and techniques can identify and define habitats and niches to map (pre-)cancer ecosystems to discriminate 

between the different types of DCIS in order to design the right treatment for breast cancer patients. 

 Here, we argue that the reason for DCIS overdiagnosis and overtreatment results from conventional 

frameworks focusing on genetic signature and ignoring phenotypic heterogeneity in tumor ecosystems. Then 

we interpret complex eco-evolutionary data of cancer cells in their niche using machine learning and 

pathomics within an innovative ecological and evolutionary dynamic framework. Oxygen habitats are 

recognized from their variable levels of perfusion and oxygenation. It has been suggested that this variability 

serves as a significant factor in influencing the  ecological diversity, new habitats, and increased tumor 

heterogeneity leading to diverse evolutionary trajectories. Solid tumors often exhibit an impaired vascular 

system, leading to habitats within tumors that vary in hypoxia, nutrient deficiency, and acidity. These habitats 

can significantly influence the regional selection of cellular phenotypes in distinct subregions. On the other 

hand, the phenotype of the cells inhabiting these niches can be used to define the habitats. Inhabiting hypoxia, 

acidosis, and severe nutrient deprivation niches, face (pre-)cancer cells to strong selective pressures leading to 

divergence to novel phenotypes in population. These new phenotypes can reciprocally influence the microenvironment 

reshaping due to their new metabolic phenotypes resulting in a dynamically changing tumor ecosystem with multiple 

habitats. Previous research from our group and others demonstrated that cancer cells within breast ducts, exposed to 

chronic hypoxia and acidosis, develop adaptive mechanisms for survival in this challenging microenvironment.  

However, none of these findings were used in an eco-evolutionary designed translational study for biomarker discovery 

or treatment design. In this study, we explore these biomarkers within an eco-evolutionary framework for the first time, 

using them as indicators of the metabolic state of cancer cells to define habitats that may favor the selection of more 

aggressive phenotypes, which in turn can be used to predict  the upstaging of DCIS. 

We curated a retrospective cohort of 84 DCIS patients with histologically confirmed DCIS on core biopsy, followed by 

surgical excision diagnosed as either DCIS or IDC. We then stained the 2 sequentially sectioned slides for HE, CA9 

and LAMP2b and manually annotated 916 single ducts and more than 3000 habitats on all three slides and scored them. 

This unique detailed eco-evolutionary annotation can be used for future similar eco-evolutionary designed studies 

including stroma habitats. Our risk scoring system integrating principles of ecological-evolutionary dynamics with 

pathological imaging and molecular features of early-stage breast tumors showed improvement on prediction power of 

biomarkers alone and in combination. 

Our study demonstrates the utility of eco-evolutionary principles in understanding DCIS progression. 

However, the ability to define more refined cell phenotypes within each region of interest (ROI) could further 

enhance our analysis. If we can identify and characterize more detailed phenotypes, it would allow us to 

extract additional features that describe the spatial interactions of these phenotypes. This, in turn, could 

potentially improve the classifier's performance and make the results more interpretable. By capturing the 
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intricate interactions between various cell types and their microenvironments, we could gain deeper insights 

into the ecological dynamics driving DCIS progression and improve predictive models for patient outcomes. 

 

Method: 

 

Method Overview 

Our evolutionary analysis pipeline takes 3 consecutive slides of each patient sample, detects intra-ductal cell 

niches, characterizes these niches with their spatial and morphological features, and then predicts whether the 

patient will be indolent or upstaged based on the distribution of these niches. In particular, the pipeline has 4 

modules. First we annotate and align ducts from different whole slide images (WSIs) of the same patient 

sample. This ensures cells of different slides are aligned and we can characterize their interactions. In the 

second module, we detect and map all eco-evo positive cells (i.e., cells activated with the selected stains) into 

the same duct, and detect different clusters of cells as niches. In the third module, we characterize these niches 

with comprehensive spatial statistical features, as well as their morphological features as observed in HE. 

Finally, we categorize these niches into different subclasses through deep-learning based dimension reduction 

and clustering based on their features. We use the distribution of different niche subclasses to characterize 

different samples/patients. We demonstrate the discriminative power of this niche-based characterization in 

predicting whether a patient will be indolent or upstaged in the future. Figure 1C illustrates the overview of 

our pipeline. 

 

Data Preparation and Usage 

The data used in this study is the biopsy samples collected after mammography and before surgery. 84 samples 

including 68 indolent + 16 upstaged were analyzed. For each sample, we obtained 3 whole slide images, 

including 1 HE and 2 IHC slides. We conduct 5-fold stratified cross validation, where 4 folds are used for 

niche clustering and for the training of the indolent/upstaged classifier and 1 fold is used for validation. This 

fits the clinical application we are aiming for; we would like our model to estimate the risk based on biopsy 

samples, which are much less invasive and can be used for patient stratifications before surgery and hopefully 

decrease over treatment. Further details on HE and IHC acquisition are provided below. 

 

Sample selection, immunohistochemistry and HE staining. Patients' tumor blocks were selected by 

pathologists using the archived HE stained slides. The blocks were sequentially sectioned 4 μms and de-

identified for research use. 3 slides were used to be stained with primary antibodies of 1:100 dilution of anti-

LAMP2 (#ab18529, Abcam), and 1 ug/ml concentration of Goat anti-CA9 (#AF2188, R&D), and HE staining 

using standard hematoxylin and eosin protocol. Positive and negative controls were used. Normal placenta 

was used as a positive control for LAMP2 and clear cell renal cell carcinoma was used as a positive control 

for CA9. For the negative control, an adjacent section of the same tissue was stained without application of 

primary antibody and any stain pattern observed was considered as non-specific binding of the secondary. 

Primary immunohistochemical analysis was conducted using digitally scanning slides. The scoring method 

used by the pathologist reviewer to determine (a) the degree of positivity scored the positivity of each sample 

ranged from 0 to 3 and was derived from the product of staining intensity (0–3+). A zero score was considered 

negative, score 1 was weak positive, score 2 was moderate positive, and score 3 was strong positive. (b) The 

percentage of positive tumors stained (on a scale of 0–3). 
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Whole slide imaging (WSI) of IHC and HE slides were obtained by scanning at 20X magnification (of 0.5022 

micrometer per pixel) using Aperio AT2 from Leica Biosystems. Images were transferred to cloud storage 

and also locally to be uploaded in QuPath software for analysis. QuPath software was used to detect the 

positive pixels for each IHC marker (CA9 and LAMP2b) and to segment the HE images into hypoxic and 

normoxic tumor habitats based on their distance from the basement membrane. 

 

MODULE 1: Duct Annotation and Alignment 

We annotate and align ducts within all input slides (1 HE + 2 IHCs per sample). For the Bx cohort, there are 

a small number of ducts per slide. They were annotated by 1 pathologist and trained students. After annotating 

ducts, we align the ducts from the three modalities via co-registration. This alignment enables us to map cells 

into the same spatial domain and analyze their interaction. Details are provided below. 

 

Manual Annotation of Ducts in the Bx Cohort. QuPath was used as the interface to annotate ducts by the 

pathologist (Dr. Bai) and the trained students. We annotate ducts from WSIs of all three modalities. To ensure 

best characterization, we only identify ducts of >400 μms diameter, with visible myoepithelial layer and 

basement membrane. Following this, based on distance, each duct was annotated with four layers: reactive 

stroma, oxidative/normoxia, hypoxic/hypoxia, and necrosis. Reactive stroma was defined as the stroma up to 

125 μms outside a given duct. Within the duct, necrosis was defined as any area containing dead cells, as 

identified by a lack of nuclei. Oxidative layer was defined as the area containing cells inside the duct within 

125 μms of the basement membrane. Hypoxia was defined as the area containing cells inside the duct further 

than 125 μms from the basement membrane. The annotations were done for all 84 samples in the Bx cohort, 

and then were exported as standard GeoJSON files.  

 

Co-registration.  

To characterize the interactions of different modalities from single-plexed slides, an alignment strategy was 

utilized. We register both CA9 and LAMP2b IHC slides towards the HE slides. A direct co-registering at the 

whole slide level with manual landmarks does not give us satisfactory alignment at each duct, due to the 

variable deformations across slides. We further co-registrate the slides in a duct-by-duct fashion. Using 

initially registered whole slides, and spatial proximity, we identify the corresponding ducts at the HE and 2 

IHC slides. Next, we register both the CA9 duct and LAMP2b duct into the corresponding HE duct. We use 

Virtual Alignment of pathology Image Series (VALIS), which provides a fully automated pipeline to register 

whole slide images (WSI) using rigid and/or non-rigid transformations 30. For each sample, we chose non-

rigid registration and registered the ducts from CA9 and LAMP2b towards the reference HE duct. The co-

registration procedure and the qualitative results are shown in Figure S3 and S4. The co-registration provides 

a mapping of any cells detected in CA9 or LAMP2b towards a shared spatial domain, enabling the analysis 

of their interactions.  

 

MODULE 2: Cell and Niche Detection  

Cell detection. With the duct annotations in place, we automatically detect cells from the 2 IHCs and 

determine if they are positive in CA9 or LAMP2b based on their intensities. As we are only interested in intra-

ductual cell niches, we only detect cells within each duct. For each IHC duct, we detect cells using Qupath 

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 28, 2024. ; https://doi.org/10.1101/2024.06.23.600274doi: bioRxiv preprint 

https://paperpile.com/c/LYa2zO/ge8z
https://doi.org/10.1101/2024.06.23.600274
http://creativecommons.org/licenses/by-nd/4.0/


 

watershed cell detection algorithm25. Based on the intensity level, we categorize the cells into 4 groups: 

‘Negative’, ’1+’, ’2+’, and ’3+’. The detection of cells within an HE duct is done by starDist25,29 extension on 

Qupath.  

 

Graph construction for niche detection. After all eco-evo positive cells (i.e., CA9 or LAMP2b positive 

cells) were annotated and mapped on HE ducts, we were able to perform analysis on an intra-duct level. Since 

there are still a large amount of eco-evo positive cells within each duct, with diverse spatial context and 

morphological features, we construct a graph with these cells and detect connected components of the graph 

as “niches”. Each eco-evo positive cell niche is supposed to have a similar eco-evo phenotype and be spatially 

coherent. We overlay both CA9 positive and LAMP2b positive cells into the same domain as an 

approximation of the local eco-evo cell distribution, because the two IHCs are consecutive sections from the 

same tissue block (Figure S5). This gives us the opportunity to measure their interaction via spatial statistical 

functions as defined later. Based on the same principle, we use cell morphological features extracted from HE 

within the region of each niche to characterize the niche. 

 

MODULE 3: niche Characterization and Feature Extraction 

Once niches are detected. We extracted both spatial and morphological features to characterize them. To 

describe the spatial interaction patterns, we utilized various spatial functions as features. We also extract cell 

features consisting of morphology features and texture features that are commonly adopted in HE image 

analysis.  

 

Cellular Features. The morphological features include area, eccentricities, circularity, elongation, extent, 

major axis length, minor axis length, solidity and curvature, the texture features include  angular second 

moment (ASM) of co-occurence matrix, contrast, correlation, entropy, homogeneity and intensity .All of these 

features were calculated following the implementations in the sc-MTOP35 package.   

Although we do not have exact cell-to-cell correspondence between the cells within a niche and cells detected 

in HE, we still can aggregate morphological and texture features within the proxy of the eco-evo cells of a 

niche to characterize the niche. For each niche, we identify the concave hull region enclosing its eco-evo 

positive cells within the HE duct. Next, we aggregate cell features across all HE-detected cells within the 

corresponding region. For each cell feature dimension, we calculated its mean, standard deviation, maximum, 

minimum, kurtosis and skewness. 

 

Spatial Features. We extract various spatial statistical functions36 to characterize eco-evo positive cells and 

their interactions. These functions are listed below.  

G Function: The G function, denoted as G(r), is the cumulative distribution function of nearest-neighbor 

distance. The G function provides insights into the clustering or dispersion behavior of the point pattern. 

𝐺(𝑟)  =  𝑃{𝑑(𝑢, 𝑋\𝑢)  ≤  𝑟| 𝑢 ∈  𝑋}, 𝑑(•) 𝑖𝑠 𝑡ℎ𝑒 𝑚𝑖𝑛𝑖𝑚𝑢𝑚 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 

F Function: The F function, known as the empty space function, is the cumulative distribution 

function of the empty-space distance. The F function is commonly used to assess the regularity or 

inhibition patterns in point patterns. 

𝐹(𝑟)  =  𝑃{𝑑(𝑢, 𝑋)  ≤  𝑟}, 𝑑(•) 𝑖𝑠 𝑡ℎ𝑒 𝑚𝑖𝑛𝑖𝑚𝑢𝑚 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 
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K Function: Ripley's K function, denoted as K(r), is a measure of second-order intensity or spatial interaction. 

It assesses whether points tend to be more clustered or dispersed within a certain distance r compared to a 

CSR process. It considers both the distance and intensity of points to capture the clustering behavior of the 

point pattern. 

𝐾(𝑟)  =
|𝑊|

𝑛(𝑛 − 1)
∑ ∑ 1{𝑑𝑖𝑗 ≤ 𝑟}𝑒𝑖𝑗(𝑟)

𝑛

𝑗=1,𝑗≠𝑖

𝑛

𝑖=1

, 𝑒𝑖𝑗(•) 𝑖𝑠 𝑡ℎ𝑒 𝑒𝑑𝑔𝑒 𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑖𝑜𝑛 𝑤𝑒𝑖𝑔ℎ𝑡 

L Function: L function is a variance stabled version of K function. 

𝐿(𝑟)  =  
√𝐾(𝑟)

𝑟
 

We calculated G, F, and L functions in both univariate and multivariate fashions. For each of the functions, 

the distances between source cell and the target cells are considered. Univariate spatial functions sample 

source cells and target cells from the same type of cells while multivariate counterparts’ sample from different 

types of cells. Univariate G,F,L are calculated for the single-marker cell subsets, and multivariate G_cross, 

L_cross for different subsets such as CA9-LAMP2b. ‘Gest’ function and ‘Fest’ function from ‘spatstat’ R 

package were used with Kaplan-Meier estimator37, and ‘Lest’ function was used with isotropic correction38,39.

  

 

MODULE 4: Prognostic Risk Estimation with Pattern Proportion 

In the last module, we train a classifier using these niches to predict whether a patient will be “upstaged” or 

“indolent” in the future. This establishes the prognostic power of these niches. A direct aggregation of niche 

information within each sample/patient is not sufficient. Tumor microenvironment is heterogeneous, and 

niches demonstrate diverse spatial and morphological behavior. To account for the diversity, we will focus 

on how different niches are distributed across a sample. We show that the distributions of different niches 

essentially characterize the tumor ecology in a much more refined manner compared with previous distance-

based definitions of hypoxia/oxidative layers.  

One technical challenge is that the niche features computed in the previous module are high dimensional and 

the niche features are diversely distributed. We propose to first find a simplified distributional description of 

the niches, and then use the simplified description for prediction. First, we cluster the niches into different 

sub-classes based on their features. The clustering is carried out using K-means clustering with a tunable 

parameter k. Once the niche sub-classes are determined. We use their distribution on each sample to predict 

its upstage/indolent status. The prediction power of the classifier sheds light on the prognostic power of the 

niches and their spatial and cellular features.  

To understand the contribution of each feature to the prediction model, we employed SHAP (SHapley 

Additive exPlanations) analysis. SHAP is a unified approach to interpreting machine learning models by 

assigning each feature an importance value for a particular prediction. In our study, SHAP values were 

computed for the features representing the proportions of different patterns within the niches. By calculating 

the SHAP values, we could determine the impact of each feature on the model’s output, thereby identifying 

the most influential patterns that contribute to predicting DCIS upstaging. This step is crucial for ensuring the 

transparency and interpretability of the machine learning model. 

Furthermore, we select features that are highly relevant to the sub-classes using different approaches including 

covariance, mutual information scoring and maximum relevance minimum redundancy (mRMR)42 and 
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choose the features identified by both approaches. Figure 4C shows the gradient map of each of these features 

on niches in the latent space. 

 

Niche distribution for prognosis. After assigning each duct to its sub-class, we aggregate across all niches 

of each sample and use its sub-class distribution to characterize this sample. Assuming k niche sub-classes, 

each sample has a k dimensional histogram to describe its niche sub-class distribution. We call this the niche 

distributional (Nbd-Dist) feature. We trained a classifier to predict whether a sample is indolent or upstage. 

Repeating the iteration 10 times and comparing the mean area under curve (AUC) on the test set. The classifier 

types experimented include lightGBM, soft vector machine (SVM), logistic regression and random forest, 

and the random forest classifier yields the best performance. 

 

Resource availability 

Lead contact 

Further information and any related requests should be directed to and will be fulfilled by the lead contact 

Mehdi Damaghi (Mehdi.Damaghi@stonybrookmedicine.edu). All the staining and annotations are 

deposited in the physical sciences in oncology network. 

Materials availability 

This study did not generate new unique reagents. 
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