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Abstract: The stability of wheat production is closely related to national food security and agricultural
sustainable development, and it has been a major policy concern for China. By analyzing the
spatiotemporal factors and causes of wheat production, we can grasp the spatiotemporal distribution
law of wheat production to rationally allocate agricultural resources. To this end, this study first
conducted a quantitative analysis of the yield differentiation patterns in Huang-Huai-Hai (HHH)
wheat based on the 2010–2020 wheat agricultural data, comprehensively using the Theil index and
exploratory spatial data analysis. Second, to eliminate the spatial heterogeneity and multicollinearity
of the modeling variables, a local model of SCA-GWR combining Spearman correlation analysis (SCA)
and geographically weighted regression (GWR) was established. Compared with the traditional
global regression model, the superiority and applicability of the SCA-GWR model are proved, and
it is a simple and effective new method to detect spatial data nonstationarity. Finally, the factors
influencing wheat production in the HHH region were detected based on the SCA-GWR local
model, and relevant policy recommendations were put forward. The results show that: (1) The yield
difference in different farming areas gradually narrowed, and the wheat production had a significant
High-High aggregation trend. The center of gravity for wheat production lies in the southwest of
the HHH region. (2) Wheat production still has a strong dependence on irrigation and fertilizer.
Effective irrigated areas and temperature are the main driving forces for its production. The inhibitory
effect of the proportion of nonagricultural employment on wheat production gradually weakened.
Radiation and rainfall were only significantly positively correlated with wheat production in the
central and southern HHH region. In response to the findings of the study, corresponding policy
recommendations are made in terms of optimizing the allocation of resources, increasing investment
in agricultural infrastructure, and vigorously researching and developing agricultural science and
technology, and the results of the study can provide a basis for decision-making and management by
relevant departments.

Keywords: wheat production; spatio-temporal differentiation; SCA-GWR; influencing factor;
Huang-Huai-Hai

1. Introduction

Wheat (Triticum aestivum L.) is one of the oldest cultivated crops in the world and is
the staple food for about 40% of the world’s population [1]. From 2010 to 2020, the yield of
HHH wheat accounted for more than 60% of the total national grain inventory for eleven
consecutive years [2,3]. As the largest wheat-producing area in China, the HHH region has
an increasingly prominent status as a food hub and plays a pivotal role in ensuring national
food security. However, in recent years, the excessive input and unreasonable distribution
of agricultural production factors such as pesticides and fertilizers in the region have
severely restricted food security and have become a bottleneck for sustainable agricultural
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development [4]. It can be seen that clarifying the spatial pattern of wheat production in the
HHH, detecting the major and minor factors affecting its yield, and reasonably allocating
the factors of agricultural production are of great significance for the formulation of a
reasonable scientific wheat production policy and sustainable agricultural development.

Regarding the research on the spatiotemporal differentiation patterns of wheat produc-
tion, Gini coefficient, industrial concentration index, Theil index, etc. are widely used [5–7].
Wu et al. [8] believed that China’s wheat production fluctuate once every 7 years on average.
Feng et al. [9] and Li et al. [10] quantified the spatiotemporal pattern of wheat production
from the perspective of wheat yield increase and the evolution of wheat production effi-
ciency, respectively. Guo et al. [11] analyzed the spatial pattern of wheat yield using cluster
analysis and found that while wheat production is improving in the time dimension, it
is also necessary to pay attention to the gap in the space dimension. In the detection of
factors affecting wheat production, research techniques mainly include the spatial Durbin
model [12], stepwise regression analysis [13], farmer field surveys [14], and machine learn-
ing [15]. A more consistent conclusion is obtained: the impact of a crop yield is multifaceted
and three-dimensional [16]; Climatic factors are the most direct factors affecting wheat
yield and causing its regional differences [17,18]. Most of the results obtained with the
crop simulation model show that chemical fertilizer application and irrigation level have
positive effects on wheat production, while mechanical input and technical level have
negative effects [19]. Wang and Xiao [20] used a model of seemingly irrelevant equations
and found that factor input and social economy are the driving factors affecting the spatial
pattern of wheat production. Hao et al. [21] and Li [22] both used the spatial Durbin model
and found that the optimization of wheat production layout is a fundamental guarantee
for consolidating the foundation of sustainable agricultural development. Zhang et al. [23]
revealed the main factors for the increase in winter wheat yield in different regions of the
Loess Plateau. It can be seen that the formation of the spatial pattern of wheat is the result
of the comprehensive effect of various conditions.

The research results of scholars are significant, and they serve as a good reference
for the development of this research. However, domestic and foreign scholars have not
considered the spatial dependence of wheat production layout, and it is rare to analyze
the production patterns and driving factors together. Related studies have stopped at the
quantitative analysis of the whole field. Due to differences in geographical environment
and natural conditions, the same factor often produces different effects in different regions.
How to overcome the non-equilibrium of geospatial data and analyze the regional limiting
factors affecting the yield of winter wheat, the existing research has rarely reported on
this aspect.

In addition, the inequitable allocation of social resources caused by the imbalance
of natural resource endowments and socioeconomic conditions often leads to spatial het-
erogeneity [24]. The spatial correlation of factors such as economic development and
population mobility often leads to strong correlations between cross-regional wheat pro-
duction. However, the traditional ordinary least squares (OLS) regression model ignores
the spatial factors of wheat production, so its results cannot explain the spatial evolution
of wheat production [25]. Furthermore, although local regression models such as spatial
error and spatial lag models consider spatial factors, they often only consider the correla-
tion of spatial factors and fail to examine the spatial variation in the influencing factors
in different regions from the perspective of spatial heterogeneity [26]. These facts fully
explain the necessity of detecting the influencing factors of the HHH wheat based on
spatial heterogeneity.

Geographical weighted regression (GWR) was proposed by British scholar Fother-
ingham in 1996 as an effective modeling technique for addressing the phenomenon of
nonstationarity of data in regression analysis, and it is an important spatial statistical
method to quantify spatial heterogeneity [27]. This method introduces the varying spatial
position coordinates into the regression model, and the estimated value of the variable
coefficient changes with changes in spatial position. Compared with OLS regression, the
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GWR model fully considers spatial heterogeneity and spatial dependence. In fact, this
model has been widely studied in ecological land use [28], disaster management [29], and
food security [30], but it is rarely used to detect the influencing factors of wheat production.
To avoid multicollinearity in the model and instability of the analytical results, and to im-
prove the simplicity of the model, Spearman correlation analysis and GWR were combined
to construct an SCA-GWR local model based on the GWR model. This model effectively
improves the generalization ability of the GWR model, taking into account the stability of
regression parameters and the nonstationarity of spatial data. The validity of the model
will be further verified by comparative analysis with global models such as traditional OLS.

In view of this, this study focuses on exploring the issue of spatial differentiation
pattern in wheat production in conjunction with the Thiel index and exploratory spatial
data analysis. The SCA-GWR local model was developed to reveal the main factors limiting
wheat yield improvement in different regions of the HHH under present-day management
conditions and the spatial and temporal variability of their influences. The study proposes
the following hypotheses: There is multicollinearity among the explanatory variables in
the regression model; there is a certain spatial heterogeneity in the influencing factors of
wheat production. The aim of the study is to provide a theoretical basis for the scientific
management of winter wheat production in the HHH, to provide basic information for food
security and sustainable regional agricultural development, and to provide new methods
to explain the spatial and temporal mechanisms of factor action.

2. Materials and Methods
2.1. Overview of the Study Area

The HHH plain is an important grain-producing area in China, being the “golden
area” for winter wheat in China (Figure 1) [31]. The HHH agricultural area is located in
eastern central China, with an area of about 3.2× 103 km2. This area belongs to the warm
temperate semi-humid climate, with sufficient sunlight and fertile land [32]. Its unique
geographic location, climate, and soil conditions provide the best environment for wheat
growth. The perennial wheat sowing area is about 1.3× 107 hm2, accounting for about 56%
of the national winter wheat area, and the total yield is about 7.375× 108 tons, accounting
for more than 67% of the national total [33]. It can be seen that the stability of wheat
production in the HHH plain is directly related to national food security and sustainable
social development.

2.2. Data Sources and Processing

Wheat yield is the result of the combined action of natural factors and socioeco-
nomic factors. The data types chosen therefore include climatic meteorological data
(natural attributes), socioeconomic data (social attributes), and some map vector data
(spatial attributes). The data range is 2010–2020. Among them, the geographic data were
1:800,000 HHH municipal administrative divisions. Taking full consideration of the avail-
ability of data, the selection of natural attribute and social attribute data is as follows.

2.2.1. Natural Attribute Data

The meteorological data came from the China Meteorological Data Network (http:
//data.cma.cn/, accessed on 1 December 2021), from which 15 agricultural meteorological
observation stations with continuous meteorological observation data, typical represen-
tatives, and uniform spatial distribution were selected. Due to the huge amount of me-
teorological data, we use Origin software to calculate the descriptive statistics for each
variable by month (Figure 2) and through the inverse distance weight method for spatial
interpolation. Among them, T1, T2, T, W, and I have obvious distribution characteristics in
different growth periods of wheat. Since P is mostly concentrated in a specific period of the
year, and there is no specific law in the same period, the distribution of P is mostly points
of the discrete state.

http://data.cma.cn/
http://data.cma.cn/
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2.2.2. Social Attribute Data

Total wheat yield was used to characterize wheat production. In addition to the factors
that cannot be determined, according to the basic principles of the feasibility, comprehen-
siveness, and quantitative and qualitative combination of index selection, 8 social factors
including weighted agricultural machinery total power are selected as economic condition
factors. The weighted variable weight is ω (current wheat sown area/current crop sown
area). Data of relevant indicators were obtained from the statistical yearbooks of the HHH
provinces and the National Bureau of Statistics (http://www.stats.gov.cn/, accessed on
1 December 2021) from 2011 to 2021. Table 1 presents statistical information on the variables

http://www.stats.gov.cn/
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represented by the years 2010 and 2020, in the same units as the corresponding variables,
and the statistical results are reported and accounted for the study data.

Table 1. Variable descriptive statistics.

Year Variable Unit Average Maximum Minimum Upper
Quartile

Lower
Quartile Median

2010

TWY 104 ton 155.20 1098.46 107.04 221.68 66.52 131.85
WTP 104 kw 33,561.61 143,419.54 1987.59 44,264.45 15,090.82 27,522.41
WEI 107 m2 15,672.03 45,851.22 694.89 22,451.03 6730.75 12,639.72
WFA 104 ton 1528.18 4207.60 70.23 2202.16 713.55 1204.01
NRL 104 70.68 319.98 1.08 113.87 9.90 27.47

GDPP yuan 40,072.60 155,892.37 3648.24 49,575.96 17,799.53 33,679.70
ECO / 1.50 34.86 0.25 10.35 0.30 2.33
PNO % 84.14 160.40 84.30 95.30 96.15 120.30
PNE % 81.37 119.90 50.80 101.75 60.65 61.03

2020

TWY 104 ton 190.98 1289.12 202.00 255.77 70.24 159.10
WTP 104 kw 33,881.96 121,197.22 1259.43 47,352.48 15,726.14 32,028.60
WEI 107 m2 18,812.90 54,031.37 1052.95 26,056.74 8197.97 15,171.26
WFA 104 ton 1628.59 3676.66 80.19 2502.11 763.71 1343.38
NRL 104 90.35 880.81 1.41 115.97 10.10 61.30

GDPP yuan 46,550.22 19,1173.06 894.77 66,501.80 4234.95 43,065.25
ECO / 1.18 29.60 0.14 0.30 0.24 0.27
PNO % 81.38 102.76 20.38 93.42 83.23 90.57
PNE % 77.20 126.64 53.19 89.39 64.16 70.67

Note: TWY: total wheat yield; WTP: weighted total power of agricultural machinery; WEI: weighted effective
irrigated area; WFA: weighted fertilizer application scalar; NRL: number of rural labor force; GDPP: GDP per
capita; ECO: Engel coefficient; PNO: proportion of nonagricultural industry output value; PNE: proportion of
non-agricultural industry employment.

2.3. Research Methods
2.3.1. Theil Index

The Theil index is often used to measure regional differences in the context of multiple
research units. Its advantage lies in that it can effectively reflect the spatial differences
of wheat yield within and between regions and clarify its contribution to the overall
difference [34]. The formula is as follows:

Ttheil = ∑
ym

Y
× lg((ym/Y)/(xm/X)) (1)

Tinter = ∑
yj

Y
× lg

((
yj/Y

)
/
(

xj/X
))

(2)

Ti = ∑
ym

Y
× lg

((
ym/Yj

)
/
(
xm/Xj

))
(3)

where Ttheil ∈ [0, 1] is the Theil index; xm and ym respectively represent the yield level of
m city in the i wheat planting division; X and Y are the sown area and yield of wheat in
the HHH region, respectively; Xj = ∑ xm and Yj = ∑ ym are the sown area and yield of
the i wheat planting division, respectively; Tinter represents the interval difference; and
Ti represents the intra-regional difference of the i wheat planting division.

2.3.2. ESDA

Exploratory spatial data analysis (ESDA) can effectively diagnose the spatial distri-
bution patterns of wheat yield [35]. ESDA is used here to explore the spatial differences
between different cultivation zones in the HHH. The spatial correlation of regional wheat
yield is reflected by Moran’ s I . The formula is expressed as follows:

I = n∑n
i=1 ∑n

j 6=i Wijηiηj/
((

∑n
i=1 ∑n

j=1 ωij

)
∑n

i=1 η2
i

)
(4)
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Ii = ηi∑n
j 6=i ωijηj/

(
∑n

i=1 η2
i /n

)
(5)

In Equation (4), n is the number of city areas; ηi = di− d,ηj = dj− d, di and dj represent
the wheat yield of the i city and the j city unit, respectively; d is the average yield of all
cities; ωij is the spatial weight value, and ωij is determined by the spatial weight matrix
W. In Equation (5): Ii represents the local Moran’s I of i region, which quantifies the spatial
aggregation relationship of the city area unit and can cluster the spatial data into four
aggregation forms: High-High, High-Low, Low-Low, and Low-High.

2.3.3. SCA-GWR

Regression analysis is the most basic and important tool in data analysis. Identifying
important variables, judging the degree and direction of correlation, and using regression
coefficients to estimate weights are the three important missions of regression analysis [36].
Here, the size and direction of the regression coefficients of the geographically weighted
regression (GWR) model are mainly used to diagnose the influencing factors. Compared
with the traditional OLS model, the GWR model considers spatial factors, and its results
can better reflect local characteristics [37]. In addition, the test results show that regression
models involving all the above variable combinations will lead to severe collinearity
problems, and the estimated results may lose their explanatory significance [38]. Due to the
strong correlations between socioeconomic factors, improper selection of variables will lead
to multicollinearity, which not only increases the complexity of the model but also leads
to unstable analysis results. Therefore, the Spearman correlation analysis and the GWR
model are comprehensively applied here, and the SCA-GWR local model is constructed
and applied to the diagnosis of wheat production problems in HHH. The modeling steps
of the SCA-GWR model are as follows:

• Step 1. Screen variables from the SCA.

Spearman’s correlation coefficient was used to quantify the degree and direction of
the linear relationships between variables. The formula for calculating the Spearman
correlation coefficient is:

rs = 1− 6∑n
i=1 d2

i /n (n2 − 1) (6)

Among the variables, rs ∈ (−1, 1), di is the grade difference between Xi, and the rank
of a number is defined as the position of the number after the variable sequence where the
number is located is sorted from small to large.

• Step 2. Establish the GWR model.

The GWR model incorporates spatial factors, and the standard errors of the model co-
efficients measure the reliability of the estimates for each coefficient. The model structure is:

yi = β0(ui, vi) + ∑p
k=1 βk(ui, vi)xik + εi (7)

In the equation, yi refers to the fitting value of region i; k is the number of independent;
variables; xik is the value of the k independent variable in area i; (ui, vi) is the geographic
center coordinates of area i; βk(ui, vi) is the value of continuous function βk(u, v) in region
i; and εi is the random error term for region i.

• Step 3. Estimate the parameters.

The parameter estimates for sample i are given by the decay function:

β̂(ui, vi) =
(

XTW(ui, vi)X
)−1

XTW(ui, vi)Y (8)

In the equation, W(ui, vi) is the spatial weight matrix [39], which is the conceptualiza-
tion of the spatial relationship. The spatial weight function generally adopts the double
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square function, which is a combination of the distance threshold method and the Gaussian
function. The formula is:

Wij =

{ (
1−

(
dij/b

)2
)2

, dij ≤ b
0 , dij > b

(9)

The choice of bandwidth is particularly important. Cross-validation (CV) is used
to determine the size of the bandwidth, as shown in Equation (10), when the minimum
corresponds to the best bandwidth.

CV = ∑n
i=1

[
yi − y 6=i(b)

]2 (10)

• Step 4. Inspect accuracy.

The accuracy of the model was evaluated using the determination coefficient R2 and
the Akaike information criterion (AIC) at the same time. R2 is expressed as:

R2 = 1−
∑n

i=1
(
yj − dj

)2

∑n
i=1
(
yj − yj

)2 (11)

AIC is a standard to measure the goodness of model fitting, and it can also estimate the
complexity of the model, taking into account the simplicity and accuracy when evaluating
the model [40]:

AIC = 2k + n ln(RSS/n) (12)

where n is the sample size, RSS is the residual sum of squares, and k is the number of
variables in the model.

The SCA-GWR model quantifies spatial heterogeneity and is an extension of tradition
OLS. It not only eliminates the hidden danger of multicollinearity but also embeds the geo-
graphic location coordinates (ui, vi) of the sample point data into the regression parameters,
so that each sample space unit corresponds to a coefficient value and the model results can
better reflect the local characteristics. Based on variable screening, SCA-OLS, SCA-SEM,
and SCA-SLM models can be established in the same way, and the superiority of the
SCA-GWR model can be verified by establishing the HHH wheat production factor model.

3. Results
3.1. Temporal and Spatial Differentiation of Wheat Production in the HHH
3.1.1. Time Distribution

According to the Theil index Equations (1)–(3), the overall difference in the HHH
wheat production from 2010 to 2020 gradually narrowed, and the regional differences
kept pace and gradually narrowed, and the difference increased sharply in 2017 (Figure 3).
The overall difference of the HHH wheat is composed of the differences between the four
secondary farming areas and the differences within the secondary area (Figure 4).
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Figure 4. Evolution and decomposition of wheat yield differences in different cultivation areas in
the HHH region. (I) Hebei, Shandong, and Henan low-lying plains. (II) pre-mountain plain area in
Yanshan and Taihang Mountains. (III) Huang-Huai plain area. (IV) Shandong hilly area.

Figure 4 shows that the differences in wheat production in zones II, III and IV are
consistent, and they all experienced a process of gradually narrowing. Only the wheat
difference in zone I showed a V-shaped trend with 2017 as the lowest point. Contributions
to the overall variance vary by district: From a lateral perspective, zone I contributed
the most to the overall difference in the HHH, with an average contribution of 54.47%,
followed by zones IV and III, and zone IV had the lowest contribution rate (below 15%).
From a longitudinal perspective, the internal differences between zones I and II gradually
increased, which together led to an increase in the contribution of regional differences to the
overall differences from 70.79% to 74.10%. The internal differences between zones III and
IV gradually decreased, which together led to an increase in the contribution of regional
differences to the overall differences from 29.21% to 25.90%.

3.1.2. Spatial Distribution

According to Equations (4)–(5), the spatial agglomeration of wheat yield was visually
analyzed. In Figure 5, Moran’s I > 0, all years pass the significance test, and the two changes
largely coincide with each other compared to Figure 4. The Moran scatter plot in Figure 5
is an initial determination of the quadrant to which the sample points belong, while the
LISA aggregation plot enables an overall determination of the type of local correlation in
each region and whether its areas of aggregation are statistically significant. Analysis of the
four aggregation types High-High (HH), Low-Low (LL), High-Low (HL) and Low–High
(LH) of the spatial pattern of wheat yields revealed that: HH types are mainly concentrated
in zone I, radiating out to surrounding counties and cities from Zhumadian, which is a
“hot spot” for grain production. The LL type is concentrated in the areas of Hengshui
and Cangzhou in zone III. With the improvement of agricultural inputs and the vigorous
transformation of saline-alkali land, it is believed that the situation of low wheat yield
will be gradually eliminated in the future. HL and LH are the least distributed and not
concentrated. Among them, the wheat yields in Linyi and Xinyang have been clustered
in HL and LH, respectively, in the study year. The wheat yields in these regions are quite
different from their surrounding areas, and the reason is that the economic conditions
are uneven.
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Figure 5. Moran scatter plot and LISA aggregation plot for wheat production in the HHH: (a–d) cor-
respond to Moran scatter plots of wheat production in 2010, 2013, 2016, and 2020, respectively;
(e–h) correspond to LISA aggregation maps for wheat production in 2010, 2013, 2016, and 2020,
respectively. HH, LL, HL, and LH indicate that wheat yields show a clustering pattern of High-Low,
Low-Low, High-Low and Low-High, respectively.

Using ArcGIS’s Geostatistical Analyst ArcToolbox, the spatial distribution trend of
wheat yield in the HHH cities in 2010 and 2020 was obtained as shown in Figure 6. Each
vertical line in Figure 6a,b represents the wheat yield information of a city. The X-axis and
Y-axis represent the east-west and north-south geographic directions respectively, that is,
the longitude and latitude of spatial geographic coordinates, and the Z-axis represents the
wheat yield. The green and orange curves in Figure 6c,d represent the fitting trend of wheat
yield in the X-axis and Y-axis directions in the HHH cities. The fitted curve shows that the
HHH wheat yield has not changed significantly in the past two years, but the average yield
in the eastern part of the HHH is slightly higher than that in the west, and the average
wheat yield in the western part is gradually higher than that in the eastern part, which was
consistent with the research result that the yield center of the HHH wheat was in Henan
Province [41]. It can be seen that the current wheat production areas are more often located
in less economically developed areas, these areas have a certain gap between agricultural
inputs, infrastructure construction, farmers’ education level, and economic development;
wheat production is weak, which is not conducive to the sustainable development of the
wheat industry.
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3.2. HHH Wheat Production Factor Model Establishment
3.2.1. Variable Filtering

Although the spatial pattern of wheat production is the result of the interaction of
multiple factors, modeling all the selected variables will not only increase the complexity
of the model but also lead to unstable analysis results and insignificant results of mul-
ticollinearity. Therefore, according to Equation (6) and with the help of SPSS software,
the Spearman correlation test was performed on all variables, and variables with strong
correlations were excluded. Considering the weak correlation between meteorological
factors and socioeconomic conditions, the Spearman correlation test was carried out for
both, separately for different farming areas, which made the test results more convincing
(Figures 7 and 8).

It can be seen from the figures that among the socioeconomic conditions, the pairs
of variables with strong correlation are: WFA~WTP, NRL~WEI, NRL~GDPP, PNE~PNO,
GDPP~WEI, WTP~WEI, WEI~PNO, PNO~GDPP, PNE~GDPP, GDPP~WFA, ECO~PNE,
and ECO~GDPP (Figure 7). Among the meteorological conditions, the pairs of variables
with strong correlation are: T1~T, T2~T, T1~T2, W~P, and T2~I (Figure 8). Based on
previous research results and variable correlation results, six variables, WEI, WFA, PNE, T,
W and I, were finally determined as the agricultural factors affecting winter wheat yield.
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3.2.2. Model Filtering

The HHH wheat production has entered a period of stable production since 2010,
so 2010 and 2020 were appropriately selected as the comparison years. One task is to
consider the availability and accuracy of the data, and the other is to facilitate spatial
and temporal comparative analysis. Let the geographic center coordinate of the city i be
(ui, vi); according to the variable screening results in Section 2.2.1 and Equations (7)–(10),
the following SCA-GWR model is constructed:
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TGYi =β0(ui, vi) + ∑k
j=1 β1(ui, vi)xi1(WEI) + ∑k

j=1 β2(ui, vi)xi2(WFA) + ∑k
j=1 β3(ui, vi)xi3(PNE)

+∑k
j=1 β4(ui, vi)xi4(T) + ∑k

j=1 β5(ui, vi)xi5(P) + ∑k
j=1 β6(ui, vi)xi6(I) + εi

(13)

Among the variables, TGYi, xi1(WEI), xi2(WFA), xi3(PNE), xi4(T), xi5(P) and xi6(I)
are the measured values of variables TGY, WEI, WFA, PNE, T, P and I at (ui, vi), and εi is
the error term.

The calculation of the regression coefficient is implemented in ArcGIS, the AICc method
is selected for the model bandwidth calculation, and the Gaussian function is selected for
the kernel function. The model parameters are shown in Table 2:

Table 2. SCA-GWR model parameter estimation and test results.

Model Parameters 2010 2020

Bandwidth 41.665 10.867
Residual Squares 50.44 66.12
Effective Number 16.297 17.021

Sigma 0.573 0.624
Degree of freedom 291.113 282.998
Residual Moran’s I 0.217 * 0.113 *

Note: “*” indicates that it passed the 1% significance test.

The SCA-GWR local model regression coefficient value varies from region to region,
and it corresponds to a coefficient value for each prefecture-city unit variable in HHH.
Table 3 is the descriptive statistics of the regression coefficients for variables in different
cities at HHH in 2010 and 2020.

Table 3. SCA-GWR model regression coefficient descriptive statistics.

Factor Average Maximum Minimum Upper
Quartile

Lower
Quartile Median

2010 WEI 14.38 30.50 2.05 18.73 8.69 14.10
WFA 4.17 7.09 2.45 6.65 3.85 5.25
PNE −68.14 12.18 −110.35 −39.64 −97.81 −85.32

T 2.01 3.21 −0.24 2.35 0.62 1.48
P 0.41 0.83 −1.78 0.18 −1.12 −0.47
I 0.39 2.23 −2.48 2.05 −1.30 −0.125

2020 WEI 30.01 58.11 16.00 34.97 21.58 29.04
WFA 0.06 5.09 0.03 0.07 0.05 0.06
PNE 8.09 19.04 −3.11 3.12 −3.42 2.00

T 1.35 3.22 −0.23 2.33 0.39 0.86
P 0.48 1.83 −0.64 1.10 −0.24 0.48
I 0.97 3.33 −1.18 1.55 −0.03 1.10

To verify the necessity of using the SCA-GWR model and the spatial variability of
the influencing factors of wheat production, according to the principle of the SCA-GWR
model combined with the OLS, spatial residual model (SEM), and spatial lag model (SLM)
related content [42], three global regression models, SCA-OLS, SCA-SEM, and SCA-SLM
are constructed on the basis of correlation analysis. Considering that R2 and adjusted R2

can better characterize the fit of the regression equation, AIC and AICc can balance the
complexity of the estimated model and the goodness of the fitted data. Therefore, the
evaluation criteria R2, adjusted R2, AIC, AICc, and standard deviation are selected here
for comparison analysis with the SCA-GWR model. The global regression analysis results
(SCA-OLS, SCA-SEM, SCA-SLM) were obtained with the help of GeoDa software modeling
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(Table 4), and Table 3 is the output results of the local regression analysis. In addition, to
verify the rationality of the relevant analysis, four traditional models, OLS, GWR, SLM,
and SEM, are also included in the comparison range. Combined with Equations (11)–(12),
the calculation results are shown in Figure 9.

Observing Tables 2 and 4, it is found that the parameter estimates of the global regres-
sion analysis fluctuate greatly in different years, and the SCA-GWR model has a smaller
standard deviation than the three global regression models, indicating that the parameter
estimates of the SCA-GWR model are more stable. Although the global regression anal-
ysis in Table 4 eliminated variable multicollinearity, most parameter estimates failed the
significance test.

Figure 9a,b confirm that the spatial regression is significantly better than the traditional
nonspatial regression method. At the same time, the SCA-GWR model has the best fit, and
the fitness indices are all above 0.8; the fit is relatively stable from 2010 to 2020. Since the
input variables were screened for correlation analysis before the regression analysis, AIC
and AICc of the SCA-GWR, SCA-OLS, SCA-SEM, and SCA-SLM models in Figure 9c,d were
relatively low. Among them, the SCA-GWR model considers the spatial heterogeneity of
variables based on optimizing the input variables, contains the fewest free parameters, and
improves the simplicity of the model. Therefore, the AIC and AICc values of the SCA-GWR
model are the smallest, both below 20.

Table 4. Global regression analysis in 2010 and 2020.

SCA-OLS

2010 2020

Variable Coefficient Standard
Deviation t/z Value p-Value Coefficient Standard

Deviation t/z Value p-Value

intercept −8.476 5.976 −1.419 0.162 −4.659 9.946 −0.468 0.641
WEI 2.976 21.319 0.139 0.889 71.940 43.701 1.646 0.006
WFA 0.063 0.017 3.577 0.000 0.074 0.044 1.670 0.001
PNE 48.810 52.445 1.898 0.043 50.910 55.460 0.034 0.072

T 3.001 23.363 4.832 0.000 20.070 60.888 0.770 0.444
P 1.677 17.187 0.938 0.352 7.281 73.314 1.009 0.317
I 4.556 66.953 0.966 0.038 8.802 41.648 0.160 0.873

2010—F Statistics: 31.675, p-value: 0.023; 2020—F Statistics: 23.876, p-value: 0.876.

SCA-SEM

intercept −8.587 5.336 −1.610 0.107 −7.291 7.266 −1.004 0.314
WEI 3.570 19.363 0.184 0.853 69.755 34.236 2.037 0.041
WFA 0.063 0.016 3.956 0.000 0.084 0.033 2.517 0.011
PNE 19.87 46.566 2.134 0.032 −22.193 42.458 −0.544 0.586

T 9.578 59.767 5.530 0.000 23.564 61.471 1.694 0.000
P 4.274 72.241 1.080 0.279 9.351 56.112 1.811 0.070
I 3.366 29.339 1.100 0.271 2.230 48.950 0.483 0.028

2010—Lambda: −0.045, Lagrange multiplier test: 10.987; 2020—Lambda: −0.675, Lagrange multiplier test: 19.013.

SCA-SLM

intercept −7.356 5.606 −1.313 0.188 −5.129 8.950 −0.572 0.567
WEI 1.582 19.248 0.082 0.934 76.857 39.676 1.937 0.052
WFA 0.064 0.016 4.017 0.000 0.072 10.039 1.811 0.070
PNE 17.73 99.227 2.038 0.001 −52.761 18.150 −0.040 0.007

T 80.404 91.783 3.895 0.000 4.280 29.138 1.021 0.307
P 35.078 77.415 0.940 0.346 4.113 68.385 1.237 0.215
I 3.063 38.180 0.887 0.374 2.215 86.861 0.170 0.864

2010—Rho: 0.062, Lagrange multiplier test: 21.987; 2020—Rho: 0.591, Lagrange multiplier test: 30.013.
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The above analysis shows that the SCA-GWR local regression model is better than the
traditional local regression model in explaining the influencing factors of the HHH wheat.
Therefore, the following content will detect and analyze the influencing factors of the HHH
wheat based on the results of the SCA-GWR model.

3.3. Detection of Influencing Factors for Wheat Production in the HHH Based on the
SCA-GWR Model

To further explore the spatiotemporal influence mechanism of explanatory variables,
we combined ArcGIS software to visualize the regression coefficients of explanatory vari-
ables in 2010 and 2020. The darker the color in the figure, the closer the corresponding
variable is to wheat production in this area, and the red symbol represents the significant
situation of the climatic tendency rate at each site (Figures 10 and 11). In general, the
spatial distribution of the regression coefficients of the 6 variables follows a certain law and
is not random. The distribution patterns mainly include spatial clustering and gradient
directionality. The specific analysis follows.

In 2010, the variable coefficients all passed the 1% significance test, that is, all regional
local coefficients could explain the evolution of wheat production (Figure 10). The spatial
distribution of the coefficients WEI, WFA, and PNE presents a spatial gradient pattern that
gradually decreases from a certain direction. The effect of WEI on wheat decreased from
south to north. WFA and PNE had a greater positive impact and inhibitory effect on wheat
in northern HHH, respectively. Chu et al. used the geographic detector method to reach
similar conclusions [43]. The spatial distribution of the regression coefficients of T, I, and P
showed a certain clustering. The variables T and P both had a strong promoting effect on
wheat production in Hebei Province, while the positive effect of the variable I was scattered
mainly in the central and southern part of the HHH plain.

In 2020, the maximum WEI regression coefficient appeared in the mountainous and
hilly areas of southwestern Henan province, and the minimum appeared in Zhangjiakou
City, Baoding City, Shijiazhuang City, and other places in northwestern Hebei province
(Figure 11). WEI and WFA in the HHH region were positively correlated with wheat
production. PNE showed the distribution characteristics of “high in the middle and low
in the north and south”. Meteorological factors T, I, and P have different effects on wheat
production in different regions, and the direction of action is also different. The regression
coefficients also have temporal and spatial differences and spatial agglomeration. This
result verifies the research results of Wang et al. [44].
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Combined with Equations (4)–(5), the spatial correlation test of the influencing factors
of wheat production in HHH was further conducted (Table 5). In 2010 and 2020, most
of the influencing factors of wheat yield in the municipal area had a significant positive
correlation. Influenced by the topography of the HHH region and other natural geographic
conditions, only P is not significantly correlated in space. The Moran’s I test results echo the
distribution of the regression coefficients in Figures 10 and 11.

Table 5. Global Moran’s I test of influencing factors for wheat production in the HHH from 2010
to 2020.

2010 2020

Factor Moran’s I Z Value p-Value Spatial
Correlation Moran’s I Z Value p-Value Spatial

Correlation

WEI 0.222 9.001 0.000 + 0.232 9.897 0.000 +
WFA 0.155 6.145 0.003 + 0.183 7.563 0.001 +
PNE 0.214 8.675 0.000 + 0.201 8.564 0.000 +

T 0.109 4.768 0.007 + 0.229 9.023 0.000 +
P 0.008 0.758 0.167 / 0.013 1.003 0.134 /
I 0.164 6.453 0.001 + 0.198 7.980 0.001 +

Note: “+” indicates a significant positive correlation, “/” indicates no significant correlation.

In terms of socioeconomic conditions, the overall impact of WEI and WFA on wheat
production in the HHH in 2020 increased compared with 2010. The regions with high
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WFA happened to have higher positive regression coefficients, which further indicated that
the application of chemical fertilizers was very important for wheat cultivation. Within a
certain range, increasing the number of chemical fertilizers can improve wheat yield [45].
During the study period, PNE was negatively correlated with wheat production in most
of the central and northern regions of the HHH area. As an industrial province, Hebei
province has a high PNE, and the industrialization and urbanization of rural villages and
towns have hindered wheat production to a certain extent.

In terms of meteorological conditions, the average regression coefficient of T (1.35) is
the highest (Table 3). Unlike 2010, T in 2020 has the opposite effect in the northern part of
the HHH south (Figure 11). Winter wheat is a cool-loving crop. Combined with the climatic
tendencies, there is a certain inhibitory effect on the growth of wheat in areas with high
T. The low temperature in northern HHH provides the best conditions for winter wheat
to overwinter. The distribution of the regression coefficients of I in 2010 was relatively
uniform, but the regression coefficients in 2020 showed a spatial agglomeration trend, and
the distribution state again verified the Moran’s I test results in Table 5. With time, the
influence of P on wheat production increased, and gradually increased in northern HHH,
mainly due to the drought trend in northern China in the past 10 years [46].

4. Discussion

Scientific and reasonable grain production patterns and correct regulation and control
of production input are effective ways to ensure food security. Wheat is an important part
of grain production. Exploring the spatial differentiation patterns of wheat production
and the influencing factors can provide the decision-making basis for the adjustment of
production structure and the allocation of factor resources. In this study, spatial analysis
and SCA-GWR local modeling were used to quantify the spatial layouts and influencing
factors of wheat. The main finding is that the contribution of different wheat producing
areas to yield varies greatly, and the effects of different influencing factors on wheat vary
from place to place.

In terms of the distribution of temporal and spatial differentiation patterns of wheat
production, the study found that regional differences and inter-regional differences were
consistently low in different farming areas (Figure 4). With the progress of science and
technology, the popularization of agricultural mechanization has gradually expanded, and
agricultural infrastructure in different farming areas has been constantly improved, so
that the level of wheat farming in different regions has been synchronous improvement.
Zhang et al. also found that the variation law of regional and interval differences was
synchronous in time [47]. Due to regional differences and uneven resource allocation,
wheat production in different regions presents a certain spatial agglomeration trend. In
the study year, wheat production hotspots were concentrated in the southern part of the
HHH and radiated to several surrounding municipalities, maintaining a “parallel” wheat
production pattern (Figure 5). Hengshui city in the north of HHH maintained a high
level of wheat production in 2013 and 2016, but the radiation effect on the surrounding
area was not reflected. Zhang et al., by constructing a spatial weight matrix, found that
wheat production in some areas of HHH has obvious spatial clustering characteristics,
which is consistent with the results of this study [48]. Figure 6 depicts the overall spatial
layout of wheat production. The center of gravity of wheat production in 2010 and 2020 is
located in Henan province, and similar conclusions were reached by Li et al. [49]. Ji et al.
also considered Henan province an important national grain production base, and the
stability of wheat production in Henan province is of great significance to guarantee grain
production in the central plains [50].

In terms of the detection of factors affecting wheat production, through the compara-
tive analysis of regression coefficients in 2010 and 2020, it is found that among meteoro-
logical factors, T has the greatest impact on wheat production (Figures 10 and 11). Light
and temperature are the basis for photosynthesis and seed formation in winter wheat, and
Jing et al. similarly identified T as the main force affecting crop variability and as being
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closely related to wheat growth and development [51]. The overall effect of P is small,
mainly because the effect of precipitation is masked by irrigation conditions in most areas,
which corroborates the findings of Luan et al. [52]. P has a greater impact on wheat produc-
tion in the northern and southwestern parts of HHH, which are mountainous and hilly and
not conducive to wheat cultivation, resulting in P being an important pathway for wheat
to extract water. Cheng et al., have similar findings [53]. The regression coefficients were
negative in regions where I was lower, indicating that lower I had a negative effect on wheat
production, which is consistent with the findings of Xiao et al. [54]. Zhao et al. similarly
concluded that I is positively correlated with wheat yield [55]. Among the socioeconomic
conditions, WEI had the greatest impact on wheat, and WEI also compensated for the
negative effect of the P deficiency. Wu et al. found that WEI will no longer be the limiting
factor for yield if water supply is sufficient during the growing season [56]. The maximum
value of the PNE coefficient occurs within the southwest, which has a high proportion
of people employed in agriculture. The dense population and the large share of arable
land in Henan province led to a strong correlation between PNE and grain production.
WFA had a strong contribution to wheat production in both 2010 and 2020 in northern
and northwestern HHH; however, Chen et al. found that WFA had the greatest effect on
wheat production in central HHH through field experiments in 2014 [57]. In the present
study, there was a gradual southward shift in the impact of fertilizer application on wheat
production during the study period, a result that corroborates Chen et al. and reflects the
dynamic changes in the impact of WFA on wheat production.

Wheat production is a complex process of multiple factors acting in response to
time and place. Sustainable agriculture requires continuous institutional innovation. It
is necessary to formulate different wheat production management policies and take dif-
ferent specific technical measures in accordance with the principles of adapting measures
to local conditions and featuring prominent features. The research has the following
policy implications:

(1) Zones I, II, and III were were the main contributors to the overall differences in
HHH wheat. For wheat production, attention should be paid to the control of these
regional differences, and measures should be taken according to local conditions,
while strengthening the management of water and fertilizer to control and ultimately
prevent agricultural endogenous pollution. The spatial agglomeration of wheat
production is relatively strong (Figure 6). It is necessary to give full play to the
learning and imitation abilities of farmers in neighboring regions, improve the techni-
cal efficiency of wheat production, and give full play to the planting advantages of
different regions.

(2) Since PNE has an inhibitory effect on wheat in most areas (Figure 11), attention should
be paid to the fluctuation in wheat planting areas caused by the transfer of agricultural
labor in wheat production so as to effectively protect farmers’ income. According to
the different effects of T, I, and P in the same area (Table 3), when optimizing the layout
of wheat production, the spatial interaction of factors such as economic development
and factor input should be fully utilized according to natural climatic conditions.

(3) Compared with 2010, wheat still relies heavily on WEI in 2020, while the demand for
WFA is gradually weakening (Figures 10 and 11). The rational use of water and fertil-
izer is the key factor in improving the utilization rate of water and fertilizer, which is
related to the sustainable development of agriculture. Relevant management depart-
ments need to increase investment in agricultural infrastructure and high-standard
farmland construction and promote the efficient and sustainable use of water and
fertilizer resources. The scope of influence for PNE is gradually expanding. Against
the background of continuous improvement in the nonagricultural labor force, the
shortage of labor supply caused by the transfer of rural labor can be effectively dealt
through the acceleration of agricultural mechanization and intelligent development.

(4) Over time, T has an inhibitory effect in some areas. With the gradual warming of
the climate, it can delay the sowing time of wheat and slow down the growth and
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development rate before winter. In response to the problem of insufficient I, scientific
and technological departments can vigorously develop radiation breeding technology
based on environmental factors and wheat varieties to ensure the smooth progress of
wheat photosynthesis. The previous analysis shows that P is only a part of the water
supply for wheat, and irrigation is still needed to ensure the smooth growth of wheat.
It is necessary to grasp the best irrigation period and amount of irrigation for wheat,
improve the water use efficiency of wheat, and achieve sustainable development of
high-yield, high-efficiency wheat.

To sum up, the formation process of wheat from seed germination to maturity to
final yield is complex as the result of the combined effects of natural conditions and social
and economic conditions. However, this paper assumes that technological progress and
farmers’ behaviors are close to synchronization in various regions, which can be ignored.
In addition, the study did not take into account natural conditions such as soil texture. We
will comprehensively consider whether these factors can be ignored in follow-up research.

5. Conclusions

From the perspective of time, the overall level of wheat production tends to be the
same, and the Hebei, Shandong, and Henan low-lying plains are the largest contributors
to wheat production in HHH. From a spatial point of view, the center of gravity of wheat
production is concentrated within Henan province and shows a high agglomeration. From
the perspective of driving factors, WEI plays an important role in wheat production in
different regions. The meteorological factors T, I, and P are also the basic necessities for
wheat production.

In this paper, the Theil index, ESDA, and other methods were used to explain the
spatial-temporal distribution characteristics of wheat production. The SCA-GWR local
model was constructed on the basis of screening out six main factors, and its regression
coefficients were expressed spatially differentially. Compared with the SCA-OLS, SCA-
SEM, and SCA-SLM global models, the SCA-GER local model introduces a spatial matrix
(ui, vi) that overcomes the nonstationarity of the spatial data and obtains regionalized
regression coefficients. Compared with the traditional global models, OLS, SEM, and SLM,
SCA-GER effectively avoids multicollinearity, improves model simplicity, and achieves the
best fit. Through the comparison of the models, the superiority of the SCA-GWR model
in explaining the spatial variation characteristics and laws of factors is verified, and new
approaches are provided for explaining the spatial-temporal action mechanism of factors.
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