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A B S T R A C T   

The cancer stem cell (CSC) hypothesis postulates that cancer originates from the malignant transformation of 
stem cells and is considered to apply to a variety of cancers. Additionally, cancer cells alter metabolic processes 
to sustain their characteristic uncontrolled growth and proliferation. Further, microRNAs (miRNAs) are found to 
be involved in acquisition of stem cell-like properties, regulation and reprogramming of cancer cells during 
cancer progression through its post-transcriptional-regulatory activity. In this concise review, we aim to integrate 
the current knowledge and recent advances to elucidate the mechanisms involved in the regulation of cell 
reprogramming and highlights the potential therapeutic implications for the future.   

Introduction 

Cancer remains the most lethal disease although high response rates 
to initial treatments including chemotherapy, radiotherapy or some-
times even after combinational chemotherapies. Despite immuno-
therapy and targeted therapy have emerged as effective strategies in the 
past few years, their effects have been partially impeded due to cancer 
heterogeneity and the existence of CSCs. CSCs represent a small and 
elusive subpopulation of cancer cells within a tumor mass with stem cell 
properties. The concept of CSCs indicates that transformed stem cells 
within a tumor are able to self-renew, promote growth capabilities of 
cancer and are responsible for drug/treatment resistance, tumor recur-
rence and metastasis, and differentiate into a heterogeneous tumor 
population [1]. This small subset of cancer cells acts as tumor initiating 
cells. 

Even in the presence of ample oxygen, cancer cells demonstrate a 
distinctive form of cellular metabolism characterized by high levels of 
glucose uptake and increased conversion of glucose to lactose 
(fermentation) via the glycolytic pathway. This phenomenon, called the 
“Warburg effect” and also known as aerobic glycolysis, has been 
recognized for many years [2]. “Warburg effect” and lipid metabolism 
(β-oxidation) are characteristic features of CSCs [3], and determine the 
fate of their progression and self-renewal. Therefore, this altered 
metabolism has emerged as an important hallmark of CSCs and targeting 

cancer metabolism is considered as a crucial therapy. 
MiRNAs belong to the family of non-coding RNAs with a length of 

21–25 nucleotides, and emerged as a new class of small RNAs with a 
critical role in the regulation of gene expression ever since their dis-
covery in 1993 [4,5]. It is well known that miRNAs are cell regulators 
capable of controlling the expression of several genes at the same time 
[6]. MiRNAs are dysregulated in almost all solid and hematological 
malignancies, and specific miRNA expression signatures allow the 
characterization of different tumors and stages. MiRNAs have been re-
ported play a critical role in a wide range of biological and cellular 
processes, such as development, proliferation, and apoptosis. Recently, 
studies indicate that miRNAs may also control other properties of CSCs 
[7]. 

Here, we will discuss the cancer cells reprogramming into CSCs, 
metabolic reprogramming and miRNA mediated cancer cell reprog-
ramming in this concise review (Fig. 1). We will focus on the biological 
landscape and consider therapeutic implications and challenges of 
cancer. 

Reprogramming into CSCs 

CSC is a type of malignant cell endowed with limitless self-renewal 
and tumorigenicity which shares many features with normal stem 
cells, such as pluripotency, tumor formation and drug resistance [8,9]. It 
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is responsible for tumor maintenance and propagation. Since J. Dick’s 
initial CSC hypothesis proposed for leukemia, thousands of studies have 
shed light on CSCs [10,11]. The CSC hypothesis postulates that cancer 
originates from the malignant transformation of stem/progenitor cells. 
Increasing evidences have claimed that many tumors rely on sub-
populations of CSCs with the ability to propagate malignant clones 
indefinitely and to produce an overt cancer. CSCs can originate from 
normal committed cells which undergo tumor-reprogramming processes 
and reacquire a stem cell-like phenotype. Accumulating evidences also 
show how tumor homeostasis and progression strongly rely on the ca-
pacity of nontumorigenic cancer cells to dedifferentiate to CSCs. CSCs 
have also been indicated to adopt several mechanisms, driven by cellular 
plasticity, senescence and quiescence, to maintain their self-renewal 
capability and to resist tumor microenvironmental stress and treat-
ments. CSCs have been shown to be the main cause of therapy resistance 
and cancer recurrence. It has been revealed that CSCs have a particular 
metabolism that differs from non-CSCs to maintain their stemness 
properties. 

However, CSCs normally constitute a small subset of the cancer cells 
in a heterogeneous tumor, and they are difficult to be isolated and 
characterized [12]. Thus, the molecular mechanisms of how CSCs cause 
varied malignancies remains poorly understood [13]. Cancer cell 
reprogramming can provide a useful platform to comprehensively 
explore CSC-associated mechanisms, including the origin and molecular 
functions [14]. 

The primary strategy is to enrich classical stem cell markers such as 
CD13, CD24, CD44, CD47, CD90 and CD133, in the cells, and follow 
other techniques including side-population analysis, sphere formation, 
and so on, to induce CSCs [15–18]. It has been confirmed that mouse and 
human fibroblasts could be reprogrammed into induced pluripotent 
stem cells (iPSCs) by virus-mediated transduction of Kruppel-like factor 
4 (KLF4), Octamer-binding transcription factor 3/4 (Oct-3/4), 
Sex-determining region Y-box 2 (SOX2) and c-Myc, which are often 
called the OSKM Yamanaka factors [19,20]. The invention of methods 
for the induction of human iPSCs derived from somatic cells opened a 
new era of research. 

The successful process of somatic reprogramming into a stem cell- 
like state has paved the way to reprogram malignant cells back to 
their original state well before oncogenic transformation occurs. The 
generation of pluripotent cancer cells (iPCCs) from cancer cells may 
provide tools for exploring the mechanisms of tumor initiation and 
progression in vitro to investigate the plasticity of cancer cells and origin 

of CSCs, and achieve cancer type-specific drug discovery. Cancer cells 
derived from almost all tissues can be transferred with an identical set of 
reprogramming factors, Yamanaka factors, to generate induced iPCCs 
[21–23]. Such iPCCs appear to have a CSC-like state after the reprog-
ramming process [22,24,25]. Recently, many studies have reported that 
other transcription factors can drive CSC generation. It has been verified 
that both an ovarian cancer cell line and fallopian tube epithelial cells 
can be reprogrammed and Glis family zinc finger 1 (GLIS1) can suc-
cessfully replace MYC as a transcription factor [26]. Furthermore, it has 
been indicated that Methyl-CpG binding domain protein 3 (MBD3) in-
hibits the formation of liver CSCs. The results also suggest that expres-
sion and activity of the transcription factor c-JUN are increased in 
induced CSCs, and are essential for stemness and CSCs properties, 
indicating that c-JUN might serve as a target for liver cancer therapy 
[27]. 

The selective targeting CSCs is a promising therapeutic strategy to 
prevent or slow cancer growth of human cancer and reduce the risk of 
recurrence [28]. Therapeutic strategies include disrupting the central 
regulating signaling pathways important for the cell type, targeting 
specific markers, inhibition of the ATP-binding cassette (ABC) trans-
porters, manipulating miRNA expression, or inducing the differentiation 
and apoptosis of CSCs. 

Signaling pathways that underlie CSC biology and have been iden-
tified as potential targets, such as Notch/Delta-like ligand (DLL), CXC 
chemokine receptor 1–2/CXCL8/FAK, and Wnt pathways [29]. Since 
CSCs and normal stem cells share the expression of many genes and 
signaling pathways, the redundancy of the regulatory pathways may 
effectively limit the efficacy and clinical impact of the therapeutic ap-
proaches. Meanwhile, the high-throughput drug screening using 
patient-specific iPCCs has been receiving growing attention. For 
instance, chemotherapy takes a huge toll on patients with cancer 
because of its undesirable side-effects. In addition, a differentiated 
cytotoxicity screen could lead to the development of drugs that are more 
specific to their target cells [29]. 

However, these reprogramming methods remain challenges, such as 
to break through the efficiency threshold due to insufficient gene de-
livery and limitations in cellular uptake, the cancer-specific epigenetic 
state and chromosomal aberrations of cancer cells [30–32]. 

Metabolic reprogramming 

Metabolic reprogramming is a hallmark of malignancy and refers to 

Fig. 1. A simplified overview of cancer cells reprogramming into CSCs, metabolic reprogramming and miRNA mediated cancer cell reprogramming.  
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the ability of cancer cells to alter their metabolism in order to support 
the increased energy request due to continuous growth, rapid prolifer-
ation, and other characteristics typical of neoplastic cells. The altered 
cancer cell metabolism hypothesis initially proposed by Dr. Otto War-
burg’s discovery in 1930 is now accepted. Cancer cells rewire their 
metabolism to promote growth, survival, proliferation, and long-term 
maintenance. The common characteristic of this altered metabolism is 
that cancer cells preferentially utilize glucose through aerobic glycol-
ysis, which is an increase in glycolysis with concomitant lactate pro-
duction. This phenomenon is observed even in the presence of 
completely functioning mitochondria and together is so-called Warburg 
Effect. The Warburg Effect has been documented for over 90 years and 
extensively studied over the past 10 years with numerous papers 
reporting to have established either its causes or its functions [33]. 
While metabolic reprogramming of cancer cells has long been consid-
ered from the standpoint of how and why cancer cells preferentially 
Warburg Effect, the progress during the past several years has substan-
tially advanced our understanding of the rewired metabolic network in 
cancer cells that is intertwined with oncogenic signaling and metastatic 
cascade. 

The glycolytic pathway and its regulation have been detailed 
explained in previous description [34]. In other words, altered meta-
bolism is the fundamental difference between normal and cancer cells 
that to sustain their characteristic uncontrolled growth and prolifera-
tion. These metabolic alterations include (1) a shift from oxidative 
phosphorylation to aerobic glycolysis to support the increased need for 
ATP, (2) increased glutaminolysis for nicotinamide adenine dinucleo-
tide phosphate (NADPH) regeneration, (3) altered flux through the 
pentose phosphate pathway and the tricarboxylic acid cycle for 
macromolecule generation, (4) increased lipid uptake, lipogenesis, and 
cholesterol synthesis, (5) upregulation of one-carbon metabolism for the 
production of ATP, nicotinamide adenine dinucleotide (NADH) 
/NADPH, nucleotides, and glutathione, (6) altered amino acid meta-
bolism, (7) metabolism-based regulation of apoptosis, and (8) the uti-
lization of alternative substrates, such as lactate and acetate [35]. 

Meanwhile, the constitutive activation of signaling pathways 
involved in cell growth because of most tumor cells reprogram their 
glucose metabolism as a result of mutations in oncogenes and tumor 
suppressors. Glucose metabolism can be modulated through both on-
cogenes and tumor-suppressor genes which are downstream of many 
signaling pathways. For instance, the extracellular signal-regulated ki-
nase (ERK)- mitogen activated protein kinase (MAPK) signaling 
pathway, which is activated by the RAS oncoproteins (HRAS, KRAS, and 
NRAS) and positively associated with cell proliferation and survival [36, 
37], has been shown to promote the Warburg effect [38]. Constitutive 
activation of ERK and MAPK signaling is frequently observed in human 
cancers. ERK1/2-dependent phosphorylation and nuclear translocation 
of pyruvate kinase isoenzyme type M2 PKM2 has been confirmed to 
promote the Warburg effect [38]. TGIF2 has been found to promote the 
progression of lung adenocarcinoma by bridging EGFR/RAS/ERK 
signaling to cancer cell stemness [39]. The transcription factor, c-Myc, 
has been found to increase the expression of GLUT1, LDHA, and a 
number of enzymes in the glycolytic pathway, as well as 
hypoxia-inducible factor 1α (HIF-1α), which also upregulates LDHA and 
cooperates with c-Myc in the induction of HK2 [40–42]. Stiffer Matrix 
has also been found to accelerate migration of hepatocellular carcinoma 
cells through enhanced aerobic glycolysis via the MAPK-YAP signaling 
[43]. Recently, glycans and glycosylation have also been found to be 
involved in cancer cell reprogramming[44]. 

Numerous directions are being investigated to harness energetic 
processes as therapeutic strategies for cancer. Attempts to target the 
glucose metabolism, especially on Warburg effect, for cancer diagnosis 
and therapy emerges in the past decades and is still in developing, 
including application of glucose metabolism in cancer diagnosis and 
treatment. For example, one of the most impressively clinical utility of 
the Warburg effect is positron emission tomography (PET) with a 

radiolabeled analog of glucose (18F-fluorodeoxyglucose, FDG) per-
formed to non-invasively visualize glucose uptake in human body since 
1976 [45,46]. PET scanner detects the radioactive decay of 18F-FDG-6-p 
and the body images were generated to show distribution of 18F-FDG. 
Therefore, the accumulated amounts of 18F-FDG-6-p the presence of 
living malignance [47,48]. Currently, various agents involved in glucose 
metabolism are actively investigated as novel targets with therapeutic 
potential, such as glucose transporter (GLUT)− 1 inhibitory agents, 
Galloflavin, the analogs of Gossypol, and so on [2]. Despite the emerging 
of metabolic enzymes or transporters inhibitors, the efficiency of tar-
geting tumor glucose metabolism is still under challenge. If we will 
uncover many other unknown aspects of glucose metabolism in cancer, 
then we can use them to benefit patient care more in the future. 

MiRNA mediated cancer cell reprogramming: emerging 
alternatives 

MiRNAs are a class of endogenous small non-coding RNAs with 
19–25 nucleotide in length. MiRNAs function as major players in post- 
transcriptional regulation and numerous biological processes such as 
proliferation, survival, apoptosis and stem cell physiology [49–51], 
through base pairing between seed sequences in miRNA and comple-
mentary sequences within the open reading frame or an untranslated 
region of the target messenger RNAs (mRNAs), thereby destabilizing 
mRNA and/or inhibiting protein synthesis [6,52]. Each miRNA can 
target hundreds of transcripts and proteins directly or indirectly, and 
more than one miRNA can converge on a single transcript target. 
Therefore, the potential regulatory circuitry afforded by miRNA is 
enormous. Recent studies indicate that miRNAs undergo a complex, but 
finely tuned regulation in cell reprogramming [53]. 

MiR-302 s, miR-200c, miR-369, miR-34a, and miR-30b have been 
reported to be crucial in enhancing the expression of pluripotency- 
associated genes [22,54-61]. MiR-302 has been found to reprogram 
human skin cancer cells into pluripotent ES-cell-like state [59]. The 
miR-302 family (miR-302 s) is expressed most abundantly in 
slow-growing human embryonic stem (ES) cells, and quickly decreases 
after cell differentiation and proliferation. Thus, miR-302 s was inves-
tigated as one of the key factors essential for maintenance of ES cell 
renewal and pluripotency in this study [59]. Previous study has 
demonstrated that miRNAs let-7, miR-125, miR-9, and miR-30 directly 
repress LIN28 expression in embryonic stem and cancer cells. LIN28 is a 
homologue of the Caenorhabditis elegans lin-28 gene. In human tumors, 
LIN28 is a reprogramming factor and up-regulated and functions as an 
oncogene promoting malignant transformation and tumor progression 
[62]. It has also been validated that miR‑34a inhibits liver cancer cell 
growth by reprogramming glucose metabolism [63]. In addition, it has 
been confirmed that miR-33b is an anti-oncogenic miRNA, which in-
hibits non-small cell lung cancer (NSCLC) cell growth by targeting LDHA 
through reprogramming glucose metabolism [64]. Moreover, 
down-regulated miR-125a-5p has been revealed to promote the 
reprogramming of glucose metabolism and cell malignancy by 
increasing levels of cd147 in thyroid cancer [65]. Furthermore, Let-7a 
has been found to induce metabolic reprogramming in breast cancer 
cells via targeting mitochondrial encoded NADH dehydrogenase subunit 
4 (ND4) [66]. 

Therefore, miRNA can be used for cancer reprogramming based 
therapeutic agents, such as miR-22 to target TET2 in leukemia (AML and 
MDS) in breast cancer, Let-7 to target RAS and HMGA2 in breast cancer, 
miR-128 to target BMI-1 in brain cancer, miR-200 to target ZEB1/ZEB2, 
BMI-1, and SUZ12 in breast cancer, and some other miRNA in the colon 
cancer and prostate cancer have been reported to reduce cancer ma-
lignancy [67–77]. 

HIF1α and c-Myc are onco-proteins which are main regulators 
responsible for metabolic reprogramming in cancers. The miRNAs may 
also regulate glutamine metabolic enzymes in cancer cells. For instance, 
30–50% of invasive breast tumors have reported increased c-Myc [78]. 
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High expression of c-Myc caused increased requirements of glutamine 
for proliferation in breast cancer cells. It has been verified that c-Myc 
enhanced glutamine metabolism through increased mitochondrial 
glutaminase expression through repression of miR-23 in P-493 B cells 
[79]. Inhibition of c-Myc can decrease glutaminase activity, reduce 
uptake of both glucose and glutamine, and reduce cell growth [80]. 
Upregulation of c-Myc could induce mammary cancer in transgenic 
mice. MiR-20a, miR-20b, miR-9, and miR-222 have been validated to 
contribute to c-Myc-induced mammary carcinogenesis [81]. In the 
recent studies, miR-210 have been reported to interact with HIF-1α 
whose correlation with hypoxia is a biological phenomenon associated 
with tumor aggressiveness. MiR-210 is an oncogenic miRNA and a target 
of HIF-1 and − 2 [82]. It has also been observed that miR-210 targets the 
mRNA that encodes the mitochondrial electron transport chain 
component protein succinate dehydrogenase complex subunit D 
(SDHD). Decreased expression of SDHD results in an increased stabili-
zation of HIF1α and cancer cell survival [83,84]. 

In brief, miRNAs have been identified to act as tumor suppressor 
miRNAs and oncogenic miRNAs based on their modulating effect on the 
expression of their target genes. It has been summarized that miR-34a 
can be functional as potent tumor suppressor, CSC cell inhibitor, and 
potential anticancer therapeutic [85]. MiR-138 has also been reported to 
suppress glioblastoma proliferation through downregulation of CD44 
[86]. While miR-21 is one of the mRNAs displaying oncogenic property 
and is upregulated in most of the cancers. MiR-21 can be 
down-regulated to prevent oncogenic transformation of normal gingival 
fibroblasts in oral cancer malignancy [87]. MiR-9–5p has been observed 
as an oncogenic miRNA associated with poor prognosis in many ma-
lignancies. For instance, NUMB suppression by miR-9–5p enhances 
CD44+ prostate cancer stem cell growth and metastasis [88]. 

Although there are many studies and improvement, the drug design 
and efficacy are still complicated because of the features of RNA oligo-
nucleotides. Challenging characteristics include: (i) degradation by nu-
cleases upon addition into biological systems. (ii) poor cell membrane 
penetration. (iii) entrappment in the endosome (iv) poor binding affinity 
for complementary sequences. (v) poor delivery to desired target tissues. 
(vi) off-target and unwanted toxicities and (vii) activation of innate 
immune responses [89–92]. Once these potential obstacles discussed 
here are resolved, miRNA therapeutics should show continuing promise 
as therapeutic molecules for various types of cancers. 

Conclusions 

Despite the extensive study on CSCs, cancer metabolism and miRNAs 
with interesting results accumulated in the last decades, questions are 
still arising. Nevertheless, with technological advances, it is expected 
that we will uncover many other unknown aspects of CSCs, glucose 
metabolism and miRNA mediated cancer cell reprogramming in cancer 
and use them to benefit patient care in the future. 
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