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A B S T R A C T   

Through co-precipitation and post-heat processing, nanostructured Fe-doped Co3O4 nanoparticles 
(NPs) were developed. Using the SEM, XRD, BET, FTIR, TGA/DTA, UV–Vis, and techniques were 
examined. The XRD analysis presented that Co3O4 and Co3O4 nanoparticles that had been doped 
with 0.25 M Fe formed single cubic phase Co3O4 NPs with average crystallite sizes of 19.37 nm 
and 14.09 nm, respectively. The as prepared NPs have porous architectures via SEM analyses. The 
BET surface areas of Co3O4 and 0.25 M Fe-doped Co3O4 NPs were 53.06 m2/g and 351.56 m2/g, 
respectively. Co3O4 NPs have a band gap energy of 2.96 eV and an extra sub-band gap energy of 
1.95 eV. Fe-doped Co3O4 NPs were also found to have band gap energies between 2.54 and 1.46 
eV. FTIR spectroscopy was used to determine whether M–O bonds (M = Co, Fe) were present. The 
doping impact of iron results in the doped Co3O4 samples having better thermal characteristics. 
The highest specific capacitance was achieved using 0.25 M Fe-doped Co3O4 NPs at 5 mV/s, 
which corresponding to 588.5 F/g via CV analysis. Additionally, 0.25 M Fe-doped Co3O4 NPs had 
energy and power densities of 9.17 W h/kg and 472.1 W/kg, correspondingly.   

1. Introduction 

Energy storage systems for clean and renewable energy have been developed as a result of the energy crisis and environmental 
pollution. Global warming and severe energy difficulties are currently becoming important issues [46,77]. This predicament has 
sparked researchers’ efforts to create energy storage systems that are clean, green, sophisticated, and effective, like fuel cells, batteries, 
and supercapacitors [2,21]. In that case, batteries and electrochemical capacitors known as supercapacitors are the best candidates for 
the impending energy crisis. Rechargeable batteries are able to store electrical energy based on electrochemical redox reactions as 
positive and negative electrodes [60]. Moreover, after renewable energy generation, aqueous rechargeable cells are the practical and 
secure option for power storage [35,65,76]. As a result extensive analysis and researches are currently underway to develop a new, 
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environmentally friendly, high-specific capacity and energy density with improved cyclic ability for a cost-effective energy storage 
materials [21,23,75]. To date, supercapacitor is the most promising new energy storage technology due to its excellent charge and 
discharge capabilities, long cycle life, and potential to transfer more power than conventional batteries [5]. Additionally, these ad-
vantageous energy storage devices have high energy density for hybrid electric vehicles [28,42,48,57,67,84]. Due to their extraor-
dinary qualities, supercapacitors are excellent choices for usage in a variety of industrial, hybrid cars, mobile devices, electronic 
devices, and memory backup’s energy storage systems [15,80].There are two categories of supercapacitors: electric double-layer 
capacitors (EDLC) and pseudocapacitors [17,59]. These different categories differ on the basis of the charge storage mechanisms 
[30,43,69,86]. As a pseudocapacitors electrode materials, transition metal oxides mainly include RuO2, MnO2, and Co3O4 [13,49,79, 
82,85]. RuO2 is regarded as the best pseudocapacitors electrode material due to its high theoretical capacity and rapid Faraday redox 
reaction [34,44,51]. However, its high price and environmental toxicity seriously limit its application in supercapacitor application 
[32,55,64]. Recently, among different types of transition metal oxides,Co3O4 has been increasing interest in the use of as an elec-
trochemical material for pseudocapacitors due to its high theoretical capacitance value of 3650 F/g, excellent reversible redox re-
action, due to its environmental friendliness, low cost and special microstructure and morphology [4,47,72,73]. However, the 
capacitance in real-world applications differs greatly from that in theory. One of the causes is that Co3O4 poor capacitance and cycle 
efficiency result from the material’s significant volume expansion and contraction, low conductivity, and high particle aggregation 
[50,72,73]. Hence,Co3O4 nanoparticles (NPs) can be prepared via several approaches such as the hydrothermal [56], sol-gel method 
[61], thermal decomposition [25], co-precipitation [33,78], spray pyrolysis [11] and solvothermal methods [10].However, these 
methods are expensive, require complex equipment and take a long time to prepare [53,58]. Among these, co-precipitation approach, 
has the benefit of being quick, affordable, and simple to control throughout preparations [12,83]. Hence the nanoparticle properties 
and electrochemical performance may be varying with experimental parameters like synthesized method, concentration, precursor 
materials, reaction time, temperature and solvent. Numerous research have reported on the electrochemical activity of electrode 
materials based on transition metal oxides [45]. Reference [19] examined that Mn-doped Co3O4 microspheres using a solvothermal 
method and have obtained a good specific capacitance of 773 F/g in 2 M KOH aqueous solution at 1 A/g. Similarly, Ali and Khalid [7] 
examined that 6% Cr-doped Co3O4 nanoflower prepared using a hydrothermal method had a higher specific capacitance value of 1283 
F/g at a 5 mV/s scan rate, which is 67% higher than pure Co3O4 (860 F/g). Similarly, Ali, Khalid, and Nabi et al. [8,9], reported that 5% 
Ce (1–7%) doped Co3O4 nanostructures made of nano flakes synthesized via a simple hydrothermal method showed a superior specific 
capacitance value of 1309.6 F/g, which is 40% higher than pure Co3O4 another researchers, Uma Sudharshini et al. and Khalid et al. 
[39,81] the successful synthesis of 5% Mo-doped Co3O4 porous NPs with various molybdenum concentrations using a straightforward 
sol-gel process, which demonstrated excellent specific capacitance of 858.09 F/g at a scan rate of 5 mV/s and good conductivity. 
Hence, according to the above all findings, different doping material holds ideal input for practical application of supercapacitors. 

Fig. 1. Preparation of Fe-doped Co3O4 NPs using co-precipitation technique.  
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Recently, research has been published on the preparation of Co3O4 nanomaterials with metal dopants such as Ag, Sn, Sb, Cu, Fe, Cr, 
Mo, Ru, Ni, Mn, and Mo for different applications. Thus, according to the literature survey, it is found that Fe-doped Co3O4 NPs were 
mostly used as photocatalytic activity/electrolytes, biosensors, gas sensors [74]. Moreover, in the literature review, there are only a 
few reports on Fe-doped Co3O4 NPs for supercapacitor applications synthesized via co-precipitation technique. Hence, in this article 
Fe-doped Co3O4 NPs for supercapacitor applications were synthesized through a co-precipitation method with post-heat treatment. 

2. Materials and methods 

2.1. Materials 

All utilized chemicals and reagents were of analytical grade and were not further purified. From chemical markets, we received 
CoCl2. 6H2O, 99.9% (cobalt chloride hexahydrate), NH3, 99.2% (ammonia solution), and iron (II) nitrate hexahydrate (Fe 
(NO3)26H2O, 99.9%).To make the solutions, distilled water was used. 

2.2. Fe-doped Co3O4 NPs synthesis 

A simple co-precipitation method was used to create iron doped-Co3O4 NPs. Cobalt chloride (CoCl2 .6H2O) hexahydrate (0.3 M) and 
the desired mole of (0.05, 0.1, 0.15, 0.2, and 0.25 M) iron (II) nitrate hexahydrate (Fe (NO3)2⋅6H2O) were dissolved in 100 mL of 
distilled water for the usual production of Fe-doped Co3O4 NPs. The resultant mixture was then agitated for 3 h at 80 ◦C using a 
magnetic stirrer. By gradually adding 0.2 M NH3 solution to the mixture of Fe (NO3)2. 6H2O and CoCl2. 6H2O, the pH of the mixture 
was brought to 9. Following that, both items were filtered and repeatedly cleaned with distilled water and ethanol. Additionally, the 
samples were dried for 6 h in an oven at 100 ◦C to remove any remaining water and organic contaminants. The products were then 
calcined at 500 ◦C for 4 h in a muffle furnace. Un-doped Co3O4 was made using a similar technique. Fig. 1 provides a detailed schematic 
representation of the Co-precipitation developed Fe-doped Co3O4 NPs. 

2.3. Characterization 

Using a Fourier transform infrared spectrometer (FT-IR, 6660 (JASCO MODEL)) in the wavenumber range of 4000–500 cm− 1, the 
functional groups of nanoparticles were examined. The transmittance mode was used for the functional groups analysis, and KBr 
pellets were used for sample analysis. The nanoparticle dry powder was mixed with KBr, milled and pressed into disk. The crystal 
structure and the phase purity of the nanoparticles has been analyzed by powder X-ray diffraction (MAXima-X XRD-7000, SHIMADZU) 
technique. The advance Cu- Kα with wavelength of 0.154 nm, Bruker’s X-ray powder diffractometer was used for structural analysis. 
The nanoparticle powder samples were characterized in the 2Ɵ range of 10–60◦. SEM (INSPECT F50) were used to analyze the 
morphology of the produced nanomaterials at various magnification scales. TGA/DTA analysis was used to determine the thermal 
characteristics. The UV–Vis, Lambda35 (PerkinElmer) spectrophotometer was used to examine the optical properties of the created 
nanoparticles in the wavelength range of 250–500 nm. With Quanta chrome Nova Win, the Brunner-Emmet-Teller (BET) Surface Area 
of nanoparticles was calculated (Quanta chrome Instruments version 11.0). 

Fig. 2. XRD pattern of (a) Pure Co3O4 nanoparticles, and (b) 0.25 M Fe-doped Co3O4 NPs.  
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3. Results and discussion 

3.1. XRD analysis 

The crystal structures and phases of as-prepared pure Co3O4 and Fe-doped Co3O4 NPs were investigated using the XRD analysis 
(Fig. 2). The XRD technique was used to evaluate all of the as-prepared samples. The diffraction peaks at 19.68◦, 31.89◦, 37.47◦, 
39.29◦, 45.5◦, 55.89◦, and 59.11◦ correspond to the cubic Co3O4 crystalline planes (111), (220), (311), (222), (400), (422), and (511), 
respectively. As a result, the XRD peaks and the JCPDS data are in good agreement (JCPDS card no. 09–0418) [41,54]. 

Doping has no effect on the cubic structure of the as prepared material, however it affects the samples’ crystallinity by increasing 
the intensities and peak positions. The average crystal size of pure Co3O4 NPs and 0.25 M Fe-doped Co3O4NPs was found using the 
Debye-Scherer Equation (1) [24]. 

D=
kλ

β cos θ
(1)  

where, D, k, ʎ, and θ represents crystal size, Debye–Scherer constant, wavelength and diffraction angle, correspondingly [6]. For 0.25 
M Fe–Co3O4 NPs and pure Co3O4 it was discovered that the average crystal size was equal to 19.37 and 14.09 nm, correspondingly 
(Table 1). The outcome indicated that Fe doping reduced particle size. Because of their high surface-to-volume ratio and great capacity 
for charge storage, tiny crystals have a small value [8,9]. 

3.2. Morphology analysis 

SEM morphological analysis of pure Co3O4 and 0.25 M Fe-doped Co3O4 NPs at various magnification scales were illustrated in 
Fig. 3(a–b). At 20 μm, SEM morphologies in Fig. 3a revealed that the particles have a porous structure with tiny spherical grains. In 
contrast, Fig. 3b at a magnification of 10 μm, demonstrates more porous structure NPs. This implied that the presence of iron changed 
the surface morphology of Co3O4 NPs. The SEM data show a substantial difference in morphology between pure and Fe-doped Co3O4 
NPs, demonstrating that the concentration of Fe used for doping has a significant impact on the morphology of Co3O4 NPs. As a result, 
0.25 M Fe-doped Co3O4 NPs exhibit higher porosity and greater particle dispersion than Co3O4 NPs, which is a potential characteristic 
to improve the catalytic performance of the nanoparticles as generated [68]. 

3.3. Analysis of surface area 

The BET analysis was used to calculate the specific surface areas, pore volume, and pore radius of Co3O4 and Fe-doped Co3O4, as 
shown in Table 2 [3,31]. For Co3O4 and 0.25 M Fe-doped Co3O4 NPs, the BET specific surface were calculated to be 53.066 m2/g, and 
351. 560 m2/g, correspondingly. In addition, Co3O4 and 0.25 M Fe-doped Co3O4 NPs showed a pore radii of 13.85 Å and 13.24 Å, 
respectively. The 0.25 M Fe-doped Co3O4 NPs greater surface area and pore volume can create more room and improve electro-
chemical surface reactions. The outcome is a higher concentration of electrochemically active sites, a bigger area at the electrolyte-ion 
interface, and a shorter diffusion path enabling rapid ion diffusion, all of which contribute to excellent performance [20]. Hence, a 
greater BET surface area helps the electrode to store and transport electrons and ions, creating more active sites and a higher elec-
trochemical potential [62]. Through this study, it was discovered that the presence of iron ions caused changes in the Co3O4 NPs 
surface area, pore volume, and pore size [29]. 

3.4. FT-IR analysis 

Fe-doped and un-doped Co3O4 NPs FTIR spectra were captured in the 4000-500 cm− 1 region. The FTIR spectra of Co3O4 and Fe- 
doped Co3O4 NPs at various doping levels are shown in Fig. 4. The band at roughly 3427 cm− 1 corresponds to the O–H stretching 
vibration of water molecules, while the smaller band at approximately 1619 cm− 1 may be caused by the O–H stretching and bending 
modes of water molecules. The intensity of the OH stretching vibration absorption peak is reduced with adding iron ions, to Co3O4 NPs. 
The peaks between 3400 and 2900 cm− 1 were caused by carbonaceous chemicals and O–H stretching, respectively [66]. Additionally, 
the band roughly between 1379 and 1110 cm− 1 matches the O–H–Co stretching vibration. Due to the addition of iron ion, the band 
shifted slightly towards the higher wavenumber region. Finally, the characteristic peaks at 620 cm− 1 and 570 cm− 1 are connected to 
the stretching vibrations of the metal-oxygen(M–O) bond, which supports the spinel structure of Co3O4 NPs [26]. Moreover, the FTIR 
spectra investigation are well matching with others findings [63,70]. According to FTIR result the peak intensity raised with increasing 
iron doping levels, which also improved the crystallinity of the NPs. The existence of optical vibrational modes reveals the formation of 

Table 1 
XRD determination of pure Co3O4 and 0.25 M Fe-doped Co3O4 NPs.  

Nanoparticles 2θ FWHM D (nm) 

pure Co3O4 31.63799 0.42607 19.37945 
Fe-doped Co3O4 31.63568 0.58583 14.09445  
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cobalt oxide in NPs. 

3.5. UV–Vis analysis 

UV–Vis analyses were carried out to examine the optical characteristics of as-prepared nanoparticles. Fig. 5 shows the UV–visible 
spectra of Co3O4 and Fe-doped Co3O4 nanoparticles. The analysis displayed that Fe doping concentration affects the absorbance 
values in UV–Visible spectra [18]. Another notable aspect of the absorption spectrum is the presence of two pronounced absorption 
edges in the visible region in all observed spectra, which are ascribed to the ligand-to-metal charge transmission result of (O2− → Co2+) 
and (O2− → Co3+) in Co3O4 [52]. The absorption bands of Fe-doped Co3O4 vary with a change in the concentration of iron. The optical 
band gap of un-doped Co3O4 and Fe-doped Co3O4 (0.05–0.25 M) sample were calculated using Tauc relation from Eq. (2) [16,63]. 

(αһν)n
=A

(
һν − Eg

)
(2)  

Fig. 3. SEM pictures of (a) Pure Co3O4 nanoparticles at 20 μm (b) 0.25 M Fe-doped Co3O4 NPs at 10 μm.  

Table 2 
BET pore-volume, pore radius and specific surface area of Co3O4 and Fe-doped Co3O4 NPs.  

Samples BET Surface area (m2/g) Pore volume (cc/g) Pore radius (Å) 

Co3O4 53.066 0.07425 13.85 
0.25 M Fe–Co3O4 351.560 0.1191 1 3.24  

Fig. 4. FTIR spectra of Co3O4, Fe-doped Co3O4 (0.05 M), Fe-doped Co3O4 (0.1 M), Fe-doped Co3O4 (0.15 M), Fe-doped Co3O4 (0.2 M), Fe-doped 
Co3O4 (0.25 M) NPs. 
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where, hv is photon energy, A is constant, Eg is the bandgap energy α is absorption coefficient, and n is the constant [37]. Tauc plot of 
Co3O4, and Fe doped Co3O4 (0.05, 0.1, 0.15, 0.2 and 0.25 M) NPs were calculated by extrapolating the linear part of these plots of (αhν) 
2 axis to (hν) axis (Fig. 6). The bandgap energy variation is observed due to the addition Fe ions (Table 3). The maximum bandgap 
energy for Co3O4 NPs is assigned to the valence to conduction band excitation of (O2− → Co2+ charge transfer), while the minimum 
band gap is assigned to the O2− → Co3+ charge transfer at 0.25 M Fe-doped Co3O4 NPs where Co3+ ions are located below the con-
duction band; due to this impurity energy levels are created in the bandgap region. In contrast, Fe contributes to hole generation and 
increases its role with the number of charge carriers (holes) that contribute to conductivity of Co3O4 NPs. 

3.6. Thermal analysis 

Through the use of TGA and DTA, the thermal characteristics of un-doped Co3O4 and Fe-doped Co3O4 NPs were examined. The 
sample mass was approximately 10 mg, and it was heated in an environment of air at a rate of 20 ◦C per minute in a corundum crucible 
between 25 ◦C and 900 ◦C [36]. The TGA and DTA curves of Fe-doped Co3O4 and Co3O4 NPs are shown in Fig. 7, respectively. The TGA 
profiles of Co3O4 NPs and Fe-doped Co3O4 NPs show two stages of weight reduction. The first weight loss of 0.37 mg for Co3O4 NPs 
between 25 and 262 ◦C and the corresponding endothermic peak at 135 ◦C include the loss of absorbed water in the sample [83]. The 
degradation of the precursor materials or remaining organic ligands was associated to the second mass losses (1.54 mg) in the range of 
262–599 ◦C, with corresponding DTA curves at 342 and 506 ◦C [1]. The final mass loss of 8.09 mg from the initial weight of 10 mg at 
900 ◦C is comparable to a mass loss of 19.1% (Fig. 7a.) The endothermic peak that corresponds to this temperature may be due to the 
loss of physically adsorbed water as the first mass loss of 0.41 mg is observed on the 0.05 M Fe–Co3O4 NPs TGA curve between 25 and 
279 ◦C (Fig. 7b). The second range of mass losses (1.15 mg) in the range of 279–598 ◦C were attributed to the breakdown of leftover 
organic ligands and the DTA curves at 339 and 509 ◦C. The final mass loss of 8.44 mg from the initial weight of 10 mg at 900 ◦C is 
15.6% mass loss (Fig. 7b). Additionally, the endothermic peak that corresponds to the first mass loss of 0.89 mg between 25 and 300 ◦C 
on the 0.1 M Fe–Co3O4 NPs TGA curve may be produced by the loss of physically adsorbed water (Fig. 7c). The second range (0.19 mg) 
mass losses in the range of 300–475 ◦C, with corresponding DTA curves at 507 and 574 ◦C, were linked to the breakdown of the 
remaining organic ligands. The final mass loss from the starting weight of 10 mg is 8.92 mg, or 10.8%, when heated to 900 ◦C (Fig. 7c). 
The endothermic peak at 106 ◦C that it corresponds to the loss of physically adsorbed water, as shown by the first mass loss of 0.9 mg 
between 25 and 296 ◦C on the 0.15 M Fe-doped Co3O4 NPs TGA curve (Fig. 7d) [38]. The breakdown of lingering organic ligands was 
linked to the second range of mass losses (0.14 mg), which occurred in the range of 296–486 ◦C, using matching DTA curves at 415 and 
458 ◦C. However, after 495 ◦C, there is no change in the TGA/DTA patterns of 0.15 M Fe–Co3O4 NPs. The final mass loss of 8.96 mg 
from the initial weight of 10 mg at 900 ◦C is comparable to a mass loss of 10.4% (Fig. 7d). Thermal testing demonstrates that the 
interaction between the Fe and Co3O4 NPs gives rise to the material’s noticeably different thermal characteristics. As a result, Fe-doped 
Co3O4 NPs display significantly higher thermal stability as the dopant concentration increases (Table 4) [14]. 

3.7. Cyclic voltammetry (CV) analysis 

Cyclic voltammetry (CV) was used for electrochemical investigations. To evaluation the capacitance of un-doped Co3O4 and 0.25 M 
Fe-doped Co3O4 NPs used this analysis. Fig. 8a–c shows the findings of the CV curve that was recorded in the potential range of − 0.1 to 
+ 0.6 V vs Ag/Ag Cl at scan rates of 5, 10, 20, 50, and 100 mV/s in 0.1 M KOH. Wide and distinct redox peaks seen from nonlinear CV 
curves which support the Fe-doped Co3O4 NPs pseudo-capacitance property. When the scanning rate was increased from 5 to 100 mV/ 
s, the strong redox peaks were still visible, showing good reversibility of redox reactions [22]. 

Fig. 5. UV–Visible spectrum of Co3O4, Fe-doped Co3O4 (0.05 M), Fe-doped Co3O4 (0.1 M), Fe-doped Co3O4 (0.15 M), Fe-doped Co3O4 (0.2 M) and 
Fe-doped Co3O4 (0.25 M) NPs. 
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Fig. 6. Tauc plot of (a) pure Co3O4, (b) Fe-doped Co3O4 (0.05 M), (c) Fe-doped Co3O4 (0.1 M), (d) Fe-doped Co3O4 (0.15 M), (e) Fe-doped Co3O4 
(0.2 M), (f) Fe -doped Co3O4 (0.25 M) nanoparticles. 
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Hence, Eq. (3) was used to estimate the specific capacitance of pure Co3O4 and 0.25 M Fe-doped Co3O4 nanoparticles determined 
from CV curves [8,9]. 

Cs=

∫V2

v1

IdV

mvΔV
(3)  

where Cs, I, V1, V2, v, and m represents specific capacitance (F/g), oxidation/reduction current for a given voltage V (v), lower po-
tential limit, upper potential limit, scan rate (v/s) and mass of the electrode (g), respectively. At a scan rate of 5 mV/s, the Co3O4 
electrode only displays a high specific capacitance value of 393.6 F/g. These values are comparable with literature-reported values 

Table 3 
Co3O4 and Fe-doped Co3O4 NPs optical band gap values.  

Samples Eg1 (eV) Eg2 (eV) 

Co3O4 1.95 2.96 
Fe-doped Co3O4 (0.05 M) 1.93 2.54 
Fe-doped Co3O4 (0.1 M) 1.87 2.52 
Fe-doped Co3O4 (0.15 M) 1.54 2.51 
Fe-doped Co3O4 (0.2 M) 1.52 2.50 
Fe-doped Co3O4 (0.25 M) 1.46 2.40  

Fig. 7. TGA and DTA curve of (a) Co3O4 nanoparticles, (b) Fe-doped Co3O4 (0.05 M) nanoparticles, (c) Fe-doped Co3O4 (0.1 M) nanoparticles, (d) 
Fe-doped Co3O4 (0.15 M) nanoparticles. 
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Table 4 
Summary of TGA-DTA analysis results.  

Samples Temperature 
range (◦C) 

Endothermic 
peak (◦C) 

1st stage weight 
loss (TGA)  

2nd stage 
weight loss 
(TGA)  

Total 
weight 
loss (%) 

Decomposition 
temperature (◦C) in the 
DTA curve    

Temperature 
range ◦C 

weight 
loss (mg) 

Temperature 
range ◦C 

Weight 
loss (mg)   

Co3O4 25–900 135 25–262 0.37 262–599 1.54 19.1 342 and 506 
Fe–Co3O4 

(0.05 
M) 

25–900 132 25–279 0.41 279–598 1.15 15.6 339 and 509 

Fe– Co3O4 

(0.1 M) 
25–900 95 25–300 0.89 300–475 0.19 10.8 507 and 574 

Fe–Co3O4 

(0.15 
M) 

25–900 106 25–296 0.9 296–486 0.14 10.4 415 and 458  

Fig. 8. CV Curve of (a) Co3O4 and 0.25 M Fe-doped Co3O4 nanoparticles at 50 mV/s nanoparticles at different scan rates, (b) Co3O4 nanoparticles at 
different scan rates, and (c) 0.25 M Fe-doped Co3O4 nanoparticles at different scan rates. 
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[40]. However, 0.25 M Fe-doped Co3O4 nanoparticles electrodes exhibits a high Specific Capacitance value of 588.5 F/g at a scan rate 
of 5 mV/s (Table 5). Notably, this particular capacitance value is higher than values previously reported in the literature. 

3.8. Power density and energy density analysis 

The power and energy density of the as-prepared materials were obtained according to Eqs. (4) and (5) [27,71]. 

E=
1
2

C(ΔV)2
/

3.6 (4)  

P= 3600 E/Δt (5)  

where C is the capacitance of the electrode (F/g), E is the energy density (Wh/kg), and ΔV (V), is the potential window of device, P is 
the power density (W/kg), Δt (s) is the discharge time. At a power density of 160.4 W/kg, the Co3O4 NPs had a maximum energy 
density of 6.69 W h/kg. In contrast, 9.17 W h/kg of 0.25 M Fe doped Co3O4 NPs had a power density of 472.1 W/kg. In this study, 
Co3O4 and 0.25 M Fe-doped Co3O4 NPs had a greater power density than those previously reported in the literature [29]. 

4. Conclusion 

Using a co-precipitation synthesis technique by varying the concentrations of iron, Fe-doped Co3O4 NPs for supercapacitor ap-
plications were investigated. Through the use of FTIR, XRD, TGA/DTA, SEM, UV-VIS, BET and CV analyses, the as-prepared materials 
were characterized. XRD analysis showed that an average particle size of 19.37 and 12.98 nm for Co3O4 and Fe-doped Co3O4 NPs, 
respectively. Morphological analysis of Co3O4, and 0.25 M Fe-doped Co3O4 showed porous structures. The BET surface areas of Co3O4 
and 0.25 M Fe-doped Co3O4 NPs were 53.06 m2/g and 351.56 m2/g, respectively. Co3O4 NPs have a band gap energy of 2.96 eV and an 
extra sub-band gap energy of 1.95 eV. Additionally, the band gaps of Fe-doped Co3O4 NPs were between 2.4 and 2.54 eV for all 
samples, with a second sub-band with an energy range between 1.46 and 1.93 eV. FTIR spectroscopy was used to examine the for-
mation of M–O bonds. The doping impact of iron results in the Co3O4 samples having better thermal characteristics. In order to conduct 
the electrochemical measurements, a CV analysis in a 0.1 M KOH electrolyte solution was used. The CV test showed that, at a scan rate 
of 5 mV/s, the samples of Co3O4 and 0.25 M Fe-doped Co3O4 NPs displayed the greatest specific capacitance values of 393.6 F/g and 
588.5 F/g, respectively. Additionally, the Co3O4 NPs and 0.25 M Fe-doped Co3O4 NPs energy and power densities were 6.69 W h/kg, 
160.4 W/kg, and 9.17 W h/kg, 472.1 W/kg, respective. These findings point to its possible use in energy storage technology. 
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Table 5 
The specific capacitance values of pure Co3O4 and Fe-doped Co3O4 NPs.  

Scan rate (mV/s) Specific capacitance(F/g) (Co3O4) Specific capacitance (F/g) (0.25 M Fe-doped Co3O4) 

5 393.6 588.5 
10 328.7 523.1 
20 230.6 395.7 
50 143.1 329.4 
100 109.8 261.6  
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