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Abstract

Facioscapulohumeral muscular dystrophy (FSHD), a common hereditary myopathy, is

caused either by the contraction of the D4Z4 macrosatellite repeat at the distal end

of chromosome 4q to a size of 1 to 10 repeat units (FSHD1) or by mutations in D4Z4

chromatin modifiers such as Structural Maintenance of Chromosomes Hinge Domain

Containing 1 (FSHD2). These two genotypes share a phenotype characterized by pro-

gressive and often asymmetric muscle weakening and atrophy, and common epige-

netic alterations of the D4Z4 repeat. All together, these epigenetic changes converge

the two genetic forms into one disease and explain the derepression of the DUX4

gene, which is otherwise kept epigenetically silent in skeletal muscle. DUX4 is consis-

tently transcriptionally upregulated in FSHD1 and FSHD2 skeletal muscle cells where

it is believed to exercise a toxic effect. Here we provide a review of the recent litera-

ture describing the progress in understanding the complex genetic and epigenetic

architecture of FSHD, with a focus on one of the consequences that these epigenetic

changes inflict, the DUX4-induced immune deregulation cascade. Moreover, we

review the latest therapeutic strategies, with particular attention to the potential of

epigenetic correction of the FSHD locus.
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1 | INTRODUCTION

Facioscapulohumeral dystrophy (FSHD) is a prevalent inherited myopa-

thy1 characterized by slowly progressive, often asymmetric, dysfunction

of facial, upper and lower extremity muscles.2 Extramuscular manifesta-

tions occur mostly in early onset FSHD3 and include high-frequency

hearing loss and retinal vascular tortuosity which can progress into a

treatable symptomatic condition known as Coats syndrome.4 Disease

onset is typically in the second decade of life, but can occur at any age

from infancy to adulthood. The clinical phenotype varies among mutation

carriers, ranging from asymptomatic to wheelchair dependent.5

Considerable progress has been made in our understanding of the

complex (epi)genetic architecture of the FSHD locus on chromosome

4.6,7 Consensus has been reached with respect to a plausible disease

mechanism involving the loss of epigenetic control over the sub-

telomeric D4Z4 macrosatellite repeat, situated at chromosome 4q35Anna Greco and Remko Goossens contributed equally to this study.
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in arrays of up to 100 units.8,9 Chromatin relaxation of the D4Z4

repeat occurs as a consequence of repeat contraction to 1 to

10 repeats (FSHD1) or because of mutations in epigenetic modifiers

of the locus (FSHD2).10-12 This results in the aberrant expression of

the retrogene encoding the transcription factor Double Homeobox

4 (DUX4) in skeletal muscle.13

DUX4 is expressed in testes and cleavage stage embryos, and epi-

genetically repressed in most somatic tissues,14 possibly through a

repeat-mediated epigenetic silencing pathway.7 Incomplete D4Z4

chromatin repression in FSHD muscle results in high levels of DUX4

expression in a small number (between 1:200 and 1:1000) of myo-

nuclei.15,16 Ectopic DUX4 expression in muscle cells activates various

molecular pathways, which potentially result in cell death by apopto-

sis.17 However, it remains enigmatic what initiates these bursts of

DUX4 expression and how they might drive the pathophysiology.18

Many studies have investigated the events that occur down-

stream of DUX4 activation. Induced DUX4 expression in cultured

myoblasts initiates an abnormal transcriptional cascade, including dys-

regulation of MyoD/MYOD1 and downstream targets, resulting into

defects in myogenic differentiation.19,20 DUX4 also represses glutathi-

one redox pathways resulting in increased oxidative stress,21 induces

muscle atrophy,22 and activates germline and immune transcriptional

programs.23 This raises the question whether the DUX4-induced

expression of these genes in FSHD muscle induces an immune

response and whether this is the basis of the inflammatory infiltrates

associated with FSHD pathology.24-26

First, we describe the genetic and epigenetic changes leading to

DUX4 expression in FSHD muscle. Then, downstream effects of

DUX4 expression are discussed. Finally, we review the different ther-

apeutic strategies that have been explored thus far.

2 | FSHD PHENOTYPE AND GENOTYPE

2.1 | Clinical presentation of FSHD

The classical FSHD phenotype is hallmarked by progressive, often

asymmetric weakness and wasting of muscles of the face, shoulder

and upper arms. With disease progression and increasing severity,

abdominal, axial, foot-extensor and pelvic-girdle muscles can become

affected. Generally, the disease manifests in the second decade of life,

but onset can be highly variable.27 Facial weakness can be demon-

strated in patients by attempts to puff out the cheeks or to whistle, as

FSHD often involves wasting of the periorbital and perioral muscles.

Scapular winging and inability to raise the arms above shoulder height

are also signs of FSHD.28 Disease penetrance is incomplete, with

roughly one-third of FSHD mutation carriers remaining asymptomatic

throughout their life; although careful clinical examination can often

identify FSHD-related symptoms.29 Conversely, ~20% of patients

exhibit a severe phenotype and will eventually become wheelchair

dependent.28 The prevalence of FSHD was originally estimated to be

1:21.000, but due to advances in diagnostics and awareness, the most

recent estimates lie between 1:15.000 and 1:8.500 in Europe.1,30,31

FSHD is considered a slowly progressive muscle disorder, with

the rate of muscle weakening thought to occur in bursts after longer

periods of no apparent functional decline.31 Prognosis is variable, but

roughly correlates with age at onset and D4Z4 repeat size (see genet-

ics of FSHD). As involvement of cardiac and respiratory muscles is

rare, general life expectancy is not reduced for FSHD patients.31 Clini-

cal anticipation has been suggested, but not undisputedly proven.32,33

Inheritance from parents who are mosaic for the FSHD mutation has

been postulated to explain, at least in part, the suggestion of

anticipation.31,34

FSHD affects males more severely and frequently than females.35

Males generally tend to have a higher mean Ricci score, a 10-grade

scale used to assess clinical severity,36 and to develop motor impair-

ment approximately 7 years before females do.36-38 Female mosaic

carriers of an FSHD mutation are more often the unaffected parent of

an affected child who inherited the mutation, while mosaic males are

more often affected.39 The biological cause underlying the gender dif-

ference is not clear, but recent studies suggest that estrogen can influ-

ence the intracellular activity and localization of DUX4 in cultured

FSHD myoblasts. This study also indicated that female patients that

had rapidly diminishing estrogen levels because of early menopause

or due to anti-estrogenic treatment experienced an increase in the

severity of clinical symptoms.40 However, a clinical study on estrogen

exposure during the lifetime of female patients did not find conclusive

evidence for either benefit or harm of estrogen levels on disease pro-

gression.41 The estrogen levels that could exhibit protective proper-

ties for muscle tissue in vitro are possibly not of physiological

proportions to be of benefit to patients. It is also important to note

that estrogen differences between male and female patients would be

much greater than between females.41 Moreover, while 12% to 24%

of female FSHD patients experienced worsening of their symptoms

following pregnancy, this percentage is relatively low when compared

to other neuromuscular disorders.42,43

High-frequency hearing loss is reported in 15% to 32% of FSHD

patients and partly depends on the D4Z4 repeat size (see Section 2.2).

Retinal vasculopathy is observed in 25% of examined individuals with

clinical or genetic evidence for FSHD.5,44 High-frequency hearing loss

severity is variable, but it usually starts with failure to perceive high

tones and can progress to involve all frequencies.45 While occasionally

observed and postulated to be part of FSHD pathogenesis, cardiac

involvement, ptosis, extraocular muscle weakness and extensive con-

tractures are not considered to be FSHD specific.30,45

2.2 | The genetics of FSHD

Linkage studies mapped the FSHD locus to chromosome 4q, which

subsequently led to the discovery that FSHD is associated with partial

deletions of the D4Z4 repeat.27 The D4Z4 repeat consists of units of

3.3 kb each, ordered head-to-tail, with the number of units varying

from 8 to 100 in the European population (Figure 1A). In FSHD1

patients, the repeat is reduced to a size of 1 to 10 units on one of the

chromosomes 4. At least one unit is required to develop the disease,
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F IGURE 1 D4Z4 structure and genetic elements. A, The D4Z4 macrosatellite repeat on chromosomes 4 and 10 are highly homologous and
consist of repeating 3.3 kb D4Z4 units (one large triangle represents one D4Z4 repeat unit). In healthy individuals, the length of the repeat is

larger than 8 units and the D4Z4 repeat is heavily methylated (black popsicles). When the repeat is contracted to a short to intermediate size of
8 to 20 units, additional alteration of D4Z4 chromatin modifiers can lead to methylation loss (white popsicles) and development of
Facioscapulohumeral muscular dystrophy (FSHD) (FSHD2). However, methylation status of the repeat can also be greatly influenced by the
nature of the mutations in, for example, SMCHD1, DNMT3B, or LRIF1. Mutations in these factors act on methylation status of D4Z4 repeats on
chromosome 4q and 10q simultaneously (not visualized). Upon a severe contraction of the repeat below 10 units, chromatin relaxation becomes
less dependent on modifiers, and methylation status of the repeat is further reduced (FSHD1). Contractions below 8 units together with an
SMCHD1 mutations are known as FSHD1/2 and are generally severe cases of FSHD. Relative locations of the stable simple sequence length
polymorphism (SSLP), β-Satellite repeats (β-Sat), Polyadenylation signal (PAS) and pLAM are indicated. B, The chromatin relaxation on
chromosome 4q D4Z4 repeats will ultimately lead to DUX4 transcription from the last repeat unit, but only when the most distal D4Z4 repeat
contains a PAS allowing stable expression of DUX4 transcript (4qA). The most common variants of D4Z4, 161S/161L, contain such a PAS in exon
3 of DUX4, a region known as pLAM. The S/L variants mainly differ in the size of the most distal, partial repeat unit in 161 L. The unique
sequence proximal to exon 3 in the 161 L repeat can be incorporated in the transcript as two different splice variants. Splicing to exon 3A or 3B
results in DUX4La (longer) or DUX4Lb (shorter) transcripts, respectively. The DUX4La variant is more common, but the final DUX4 protein is
identical in all (S/La/Lb) variants. No relationship between disease severity and S/L variants has been detected. A few restriction sites used for
D4Z4 analysis are indicated, as well as the location of diagnostic region 1 (DR1), an area in which CpG methylation status has diagnostic value.
Distance and size of genetic elements not to scale. *: Rare translocations of permissive 4qA D4Z4 repeats to chromosome 10q can result in DUX4
expression from chromosome 10. **: A moderate contraction between 8 and 20 D4Z4 repeat units is generally associated with FSHD2 when
additional mutations in chromatin modifiers occur. ***: As the number of D4Z4 repeat units associated with FSHD1 or FSHD2 overlaps, disease
penetrance is variable and dependent on whether modifiers are mutated. The type of mutation in the modifier also influences disease severity.
Please see main text for more information
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emphasizing the critical role for D4Z4 in FSHD.37,46-51 Each D4Z4 unit

contains a copy of the DUX4 retrogene that contains the full open read-

ing frame.52 However, only DUX4 from the most distal repeat unit can

be stably expressed in FSHD muscle due to genetic elements down-

stream to the repeat that are important for mRNA processing.14,53

FSHD1 is inherited in an autosomal dominant fashion with incom-

plete penetrance,27 with 10% to 30% of cases being the result of de

novo mutations.30,34,54 De novo mutations are often mitotic in origin,

leading to somatic mosaicism. Depending on D4Z4 repeat size and

proportion of affected cells, mosaicism can be found in either the clin-

ically unaffected parent or in the proband.34,39 These rearrangements

seem to occur during early zygotic cell divisions through gene conver-

sions with or without crossover.55

Two major allelic forms of chromosome 4q exist, 4qA and 4qB,

and while being equally common in the European population, only the

4qA allele is associated with FSHD.56 The 4qA sequence contains a

9 kb beta-satellite repeat region immediately distal to the D4Z4

repeat, which is absent from 4qB (Figure 1A).57 This distal portion of

the FSHD-permissive 4qA allele, called pLAM, contains a unique 30

untranslated region with non-canonical polyadenylation signal (PAS)

for DUX4.7 While this PAS is essential for stable expression of DUX4

in muscle, it is possible that other elements in the 4qA sequence also

contribute to DUX4 mRNA expression, processing and stabiliza-

tion.58,59 D4Z4 repeat contractions <10 units on a non-permissive

4qB allele do not cause FSHD, as this allele lacks the pLAM region in

its entirety.7,56 The 4q haplotypes are further classified based on the

size of a simple sequence length polymorphism (SSLP) located 3.5 kb

proximal to the D4Z4 repeat.60 4q Haplotypes are therefore defined

by the chromosomal origin, the size of the SSLP, and the distal poly-

morphism, for example, the most prevalent FSHD-permissive haplo-

type 4A161 contains a SSLP of 161 nucleotides on a 4qA

chromosome.60 The 4A161 haplotype can be further divided into two

major subtypes: 4A161S and 4A161L.61 These two subtypes differ in

the size of the distal D4Z4 unit, which is truncated (Figure 1B).

Despite this size difference both 4A161 variants produce the same

DUX4 ORF.7,61 Although at least 17 unique 4q haplotypes have been

identified, only 4A161S, 4A161L, 4A159 and 4A168 have been

reported to be associated with FSHD.51 It is currently unknown why

contractions in 4A166 do not cause FSHD, as this haplotype also con-

tains a DUX4 PAS. The different haplotypes are not equally distrib-

uted over the different world populations, which might account for

the perceived differences in FSHD prevalence around the world.51

A highly homologous D4Z4 repeat exists on chromosome 10q26,

but this repeat is generally not associated with FSHD as this chromo-

some has a damaging SNP in the DUX4 PAS.56,62,63 However, individ-

uals with translocations between chromosomes 4 and 10 have been

reported. In these individuals, the distal end of the repeat on chromo-

some 10, including pLAM sequence, is 4qA-derived. When contracted,

these hybrid repeats likely give rise to DUX4 expression in muscle from

the 4q related unit on chromosome 10, resulting in disease presenta-

tion.51,64 These hybrid repeats were initially observed by Southern blot

analysis, but recent advances in diagnostic techniques allow to visualize

complex D4Z4 rearrangements by use of molecular combing.64,65

FSHD1 patients account for >95% of patients diagnosed with

FSHD. The remaining patients are classified as FSHD2, and are often

carrying a mutation in the Structural Maintenance of Chromosomes

Hinge Domain Containing 1 (SMCHD1) gene (>80% of FSHD2), or

rarely in the De Novo Methyltransferase 3B (DNMT3B) gene (both

described in more detail below).66,67 Inheritance of FSHD2 occurs in a

digenic manner, requiring the transmission of both a mutant SMCHD1

or DNMT3B allele, together with a permissive 4qA allele.66 Recently,

an FSHD patient without mutations in SMCHD1 or DNMT3B was

described to be a carrier of a homozygous mutation in Ligand-

Dependent Nuclear Receptor Interacting Factor 1 (LRIF1 [also known as

HBiX1]).68 This mutation causes the absence of one LRIF1 isoform

resulting in D4Z4 chromatin relaxation. LRIF1 and SMCHD1 protein

are known to interact with each other,69 and reduced LRIF1 and

SMCHD1 binding to the D4Z4 repeat was observed in this patient. A

small subset of patients do not carry mutations in either SMCHD1,

DNMT3B or LRIF1, suggesting that other disease genes are yet to be

identified.67

For more information on FSHD diagnostic techniques, we would

like to refer to the 2019 review by Zampatti et al.70

3 | D4Z4 CHROMATIN STRUCTURE AND
THE ROLE OF SMCHD1

In somatic cells, the D4Z4 repeat is decorated with a plethora of chro-

matin marks indicative for a repressive chromatin state, such as the

histone modification H3K9me3, and CpG methylation

(hypermethylation).71-73

Several studies have demonstrated that D4Z4 methylation levels

correlate with the size of the D4Z4 repeat and that the D4Z4 methyl-

ation level is reduced in somatic cells of FSHD individuals (hyp-

omethylation).12,71,74,75 To account for the repeat size dependency of

D4Z4 methylation levels, the delta1 correction model was introduced.

This model calculates the corrected D4Z4 methylation value defined

by the observed methylation minus the predicted methylation based

on repeat size information. The mean of this value is zero, and varies

between 10% and −10% in controls and FSHD1 patients, while it is

below −21% in FSHD2 patients. The delta1 value facilitates (epi)geno-

type-phenotype studies of clinical variability resulting from inter-

individual differences in D4Z4 methylation, which were originally

deemed not to be correlated.71,76 In FSHD2, these differences are

mainly explained by the type of the SMCHD1 mutation.71

While in FSHD1, the contracted D4Z4 allele is

hypomethylated,73 in FSHD2, the D4Z4 repeats on chromosomes

4 and 10 are hypomethylated.12 The loss of methylation in FSHD is

restricted to the D4Z4 repeat, as no hypomethylation is observed in

the region proximal to the repeat.12,77 Methylation facilitates repres-

sion of DUX4, as treatment of cells with 50aza-20deoxycytidine

(AZA), a demethylating agent, causes an increase of DUX4 expres-

sion.78,79 Use of monochromosomal cell hybrids indicated that

D4Z4 is hypoacetylated, and that histone deacetylases (HDACs) are

actively recruited to the D4Z4 repeat, similar to the DNMT
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proteins.78 Furthermore, treatment of cells with trichostatin A (TSA; an

inhibitor of HDACs) leads to increased DUX4 expression, an effect which

is amplified by combined treatment of cells with AZA and TSA.78,79

D4Z4 chromatin relaxation is associated with DUX4 expression in

FSHD skeletal muscle. Chromatin relaxation is also observed in other

patient derived tissues, indicating that it is not specific for muscle.73,80

The apparent tissue-wide D4Z4 chromatin relaxation raised the ques-

tion which mechanisms confine DUX4 expression to skeletal muscle.

The tissue-restricted expression might be, at least in part, attributed

to two myogenic enhancers (called DUX4 myogenic enhancer 1 and

2). Chromatin confirmation capture (3C) studies showed that these

two enhancers located proximally to D4Z4 can associate with the

DUX4 promoter in vivo in myocytes but not fibroblasts, and drive the

expression of DUX4.59 An alternative explanation is that upon myo-

genic differentiation, SMCHD1 protein levels decline as does

SMCHD1 binding to D4Z4, which coincides with increased DUX4

expression.81

Apart from DUX4 mRNA, several other D4Z4 transcripts can be

detected, some specific for FSHD while others occur in control and

FSHD muscle cells.82 Of these, the long noncoding RNA (lncRNA)

DBE-T was reported to be specifically associated with the D4Z4 chro-

matin in FSHD. DBE-T recruits the H3K36me2 methyltransferase

Ash1L, contributing to derepression of genes in the 4q35 region.79,83

This same study identified an enrichment of Polycomb components

along the FSHD locus, which are necessary for repression of the

locus.79 The presence of the Polycomb repressive complex 2 (PRC2)

and its accompanying histone mark H3K27me3 on the D4Z4 repeat

was observed in multiple studies,84-86 and seems to be important for the

stability of D4Z4-bound heterochromatin protein 1 alpha HP1α.85 Spe-

cifically in FSHD2 myotubes, the loss of SMCHD1 protein at D4Z4 is

partially compensated by H3K27me3 deposition in a PRC2-dependent

manner.81 This effect was also observed in control myotubes upon

SMCHD1 knockdown, while SMCHD1 overexpression in FSHD1 and

FSHD2 myotubes suppresses DUX4.81 Simultaneous presence of the

repressive histone marks H3K9me3 and H3K27me3 at D4Z4 was dem-

onstrated by ChIP, while marks for transcriptional permissive chromatin

H3K4me2 and H3 acetylation (H3Ac) were also identified.72 A specific

loss of H3K9me3 was observed in FSHD1 cells, while H3K27me3 and

H3K4me2 levels remained relatively unaltered.72

For creating a heterochromatic environment, D4Z4 hosts a range

of repressor complexes such as YY1, Nucleosome Remodeling

Deacetylase and Chromatin Assembly Factor 187,88 (Figure 2A).

SUV39H1-dependent H3K9me3 on D4Z4, which is partially lost in

FSHD, was found to recruit HP1γ and cohesin.72 The presence of

acetylated histone H4 (H4ac) indicates that D4Z4 is configured similar

to unexpressed euchromatin, rather than constitutive heterochroma-

tin, which is hypoacetylated. Euchromatic and heterochromatic D4Z4

units might exist simultaneously within a repeat.78,89 The H3K4me2:

H3K9me3 ratio represents the chromatin compaction score, which is

significantly reduced in FSHD patients.8 Separating DUX4 expressing

muscle cells from non-expressing cells by use of a DUX4-sensitive

reporter showed that the D4Z4 repeat of non-expressing cells is

enriched for PRC2 and H3K27me3, while these cells were depleted

for H3K9Ac. No CpG methylation differences could be detected

between the two cell pools, indicating the loss of CpG methylation

alone is not sufficient to trigger DUX4 expression.86 As indicated, thus

far three FSHD2 genes have been identified: SMCHD1, DNMT3B and

LRIF1. The SMCHD1 locus on chromosome 18p contains 48 exons. It

encodes a 2005 amino acid (2007 aa in mice) protein consisting of an

N-terminal GHKL (DNA Gyrase, HSP90, Histidine Kinase, MutL) type

ATPase domain and a C-terminal SMC hinge domain which orches-

trates SMCHD1 homodimerization and chromatin binding. The pro-

tein is conserved among vertebrates.90-93 Due to its SMC hinge

domain, SMCHD1 is often classified as an a-typical member of the

SMC protein family, which contains members forming the cohesin and

condensin protein complexes. However, while condensin/cohesin

ATPases are of the Walker A/B type, the GHKL-type ATPase domain

is more similar to what is present in the microrchidia (MORC) family

of nuclear proteins. Hence, SMCHD1 can be considered to be a dis-

tant MORC-family member.94-96 X-ray crystallography studies of the

N-terminus of SMCHD1 identified a unique ubiquitin-like fold N-

terminal of the ATPase domain, which potentially aides in

homodimerization of the ATPase domain in an ATP-dependent con-

formational change.97 Furthermore, SMCHD1 contains coiled-coil

domains both N- and C-terminally of the hinge domain, which possibly

mediate protein-protein interactions or assist in SMCHD1

homodimerization, a C-terminal nuclear localization signal and a puta-

tive Bromo Associated Motif/Homology (BAM) domain of unknown

function are located C-terminal of the ATPase domain.83,92,98

When SMCHD1 mutations were first described in FSHD2, it

became clear that SMCHD1 activity is required for DUX4 repression

in somatic tissues.66 Similar to the inactive X chromosome in Smchd1

mutant mice, the D4Z4 repeats are hypomethylated upon loss of

SMCHD1 function.66,90

Heterozygous missense mutations in the DNMT3B gene on chro-

mosome 20q were identified in a few FSHD2 patients that do not

have a mutation in SMCHD1. DNMT3B mutation carriers have hypo-

methylated D4Z4 repeats, but only develop FSHD when the DNMT3B

mutation co-segregates with a relatively short (9 and 13 units) D4Z4

repeat on a 4qA chromosome.67 DNMT3B mutations have previously

been shown to cause immunodeficiency, centromeric instability, and

facial anomalies (ICF) syndrome.99 ICF is a rare autosomal recessive

disorder, marked by hypomethylation of CpGs in pericentromeric sat-

ellite regions as well as hypomethylation of the D4Z4 repeats and

other large repeat structures.77,100-102 Although ICF patients show

hypomethylated D4Z4 repeats, no ICF patients presenting with mus-

cular dystrophy have so far been reported.77 Likewise, no immune

phenotype has been reported in FSHD patients with DNMT3B muta-

tions, consistent with the absence of an immune phenotype in hetero-

zygous DNMT3B mutation carriers in ICF families.

3.1 | Genotype-phenotype relationships

For FSHD1 individuals with a repeat length of 1 to 6 units, the clinical

severity depends to some degree on the size of the D4Z4 repeat. In
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patients with 7 to 10 units, chromatin modifiers acting on D4Z4 play

an increasingly prominent role in the susceptibility to D4Z4 chromatin

relaxation, DUX4 expression and disease presentation. The nature of

these factors is currently only partly understood.71 Families harboring

a 7 to 10 unit D4Z4 allele show more clinical variability among family

members with apparent identical FSHD genotypes.103 This includes

non-penetrant disease allele carrying siblings of symptomatic FSHD

patients.37,38,54 The cause of this variability seems to be heritable to

some extent, as first degree relatives are almost twice as likely to

exhibit motor-impairment when compared to second through fifth

degree relatives, which are more frequently asymptomatic.37 Interest-

ingly, carriers of a repeat of 7-10 D4Z4 units on an FSHD-permissive

allele have a reduced delta1 value indicative of a lower CpG methyla-

tion level than would be expected based on their D4Z4 repeat size.

This negative delta1 value can be fully attributed to disease pre-

senting carriers of a 7 to 10 unit repeat, as non-penetrant carriers

with a similar repeat size have normal delta1 values.71,104,105 In this

size range, the disease course is typically milder and non-penetrance

is more frequent.104 Furthermore, comparison of methylation levels of

4qA D4Z4 in myocytes and blood derived from FSHD1 patients and

their non-manifesting relatives shows lower methylation levels in

affected patients specifically.106 Although this suggests that individ-

uals with upper-sized FSHD1 repeats are more frequently unaffected,

unaffected carriers with permissive D4Z4 repeats of 1 to 3 units have

also been observed.107

Patients who are diagnosed with a severe form of FSHD at a

young age, called early onset FSHD, usually have a D4Z4 repeat of

1 to 3 units.108 The definition of early onset FSHD is: symptoms of

facial weakness before the age of 5 and/or signs of scapulohumeral

weakness before the age of 10.30 A recent study of cohort patients

between the age of 0 to 17 years and a 22-year follow-up study of

another small cohort of early onset FSHD patients revealed that even

among early onset patients, there is a wide variety in severity of the

disease. Severity spanned the entire FSHD spectrum, that is, some

patients were wheelchair dependent, while others could still walk

unaided.109,110 This indicates that the phenotype and severity of early

onset FSHD patients is still not uniformly defined.

Altogether, these studies indicate that the epigenetic state and

transcriptional activity of the D4Z4 repeat is not perfectly related to

the number of units on a permissive allele, but that other epigenetic

modifiers play a role in the degree of D4Z4 chromatin relaxation. An

example of such a modifier is SMCHD1, which has been shown to

influence expression of DUX4.66,81 When an FSHD1-sized D4Z4

repeat is inherited together with a mutation in SMCHD1 (FSHD2) a

more severe FSHD phenotype (FSHD1 + 2) is observed111

(Figure 2B). Similarly, DNMT3B mutations can act as a disease modifier

in FSHD1 families.67 Although FSHD2 is often referred to as the

contraction-independent form of FSHD, analysis of a large number of

unrelated controls and FSHD2 patients reveals a repeat size depen-

dency in these patients as well. While the median number of D4Z4

units in controls is 33.7 units, in FSHD2 this is significantly lower with

a median of 16.8 units.71,112 Sacconi et al provided further evidence

for the hypothesis that FSHD1 and FSHD2 form a disease contin-

uum.103 This was based on the analysis of the combined effect of

D4Z4 repeat size and SMCHD1 mutation status on the methylation

levels at D4Z4 (Diagnostic Region 1 [DR1]) in a group of FSHD

patients. This study showed that methylation levels in FSHD1 + 2

(9 or 10 units combined with an SMCHD1 mutation) and FSHD2

F IGURE 2 D4Z4 chromatin components and the facioscapulohumeral muscular dystrophy (FSHD) disease continuum. A,D4Z4 is host to a
plethora of repressor complexes which keep the repeat silenced in healthy controls by direct binding or deposition of repressive chromatin marks
(top of (A)). In FSHD, these protein complexes and the chromatin state are altered (bottom of (A)). See main body of text for further information
of illustrated complexes. The listed alterations in FSHD do not have to occur simultaneously in a single patient, although some combinations can
increase disease severity. (B) Simplified representation of the FSHD disease spectrum. As the D4Z4 repeat size changes from 100 (asymptomatic)
to 1 unit, chromatin modifiers (eg, SMCHD1) have less additional effect on the repression of DUX4 expression, therefore mutations are seldom
seen together with shorter repeats. Rare cases of patients with relatively long repeats, or carriers with short alleles are not accounted for
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(>11 units with an SMCHD1 mutation) form a continuous scale

together with FSHD1. Importantly, in this study SMCHD1 mutations

were exclusively found in FSHD1 patients with a 9 to 10 unit D4Z4

repeat, and never in combination with a 4 to 8 unit D4Z4 repeat.

These lower levels of DR1 methylation are associated with higher

age-corrected disease severity and faster disease progression.103

Additionally, certain unique cases of FSHD2 which were originally

thought to have unusually long 4qA alleles (>20 units) can be

explained by the presence of D4Z4 duplication events. These cases

present as FSHD2 in which a long D4Z4 repeat on a 4qA allele is

followed by, or preceded by, a duplication of the D4Z4 repeat, which

is of an FSHD2-compatible size (ie, <20 units).65,112 Therefore, it is

tempting to speculate that there is a repeat size threshold for any type

of FSHD.

In FSHD2 patients with a mutation in SMCHD1, the disease

severity is influenced by the type of mutation. In general, missense

mutations in the protein coding sequence lead to a more severe

phenotype than those causing haploinsufficiency. As SMCHD1 nor-

mally forms homodimers, the missense mutations most likely lead to

the formation of dysfunctional heterodimers with dominant-negative

consequences.71,93 SMCHD1 loss-of-function mutations such as

mutations causing frameshifts and premature stop codons or aberrant

splicing are well-described causes of FSHD2.71,113 Recent studies

have also highlighted that the loss of one copy of the SMCHD1 gene

can occur through chromosome 18p microdeletions, or the complete

loss of the short arm of chromosome 18 in 18p deletion syndrome

(18p−).114,115 These 18p− patients with SMCHD1 among the deleted

genes were found to have reduced D4Z4 repressive chromatin marks

and express DUX4 in myonuclei when a permissive 4qA allele is pre-

sent.114 Although these patients present a wide range of unrelated

symptoms, FSHD clinical features were also detected in a few cases,

demonstrating that the loss of one copy of SMCHD1 can cause

FSHD2.114,116 Furthermore, when FSHD2 patients have more than

one permissive 4qA allele of appropriate size (ie, 1-8 units in FSHD1,

F IGURE 3 Schematic representation of the DUX4-induced transcriptional cascade in skeletal muscle cells. DUX4-induced misexpression of
Cancer testis antigens (CTAg) and germline antigens (GLAg) in facioscapulohumeral muscular dystrophy (FSHD) skeletal muscle cells would induce
an immune response which could explain the inflammatory infiltrates associated with FSHD histology. PITX1, another DUX4 target gene, is a

transcription factor able to activate p53 (cell cycle arrest mediator), Atrogin 1 and Murf1 (proteasome family members) eventually leading to
muscle atrophy. DUX4-induced upregulation of caspase 3/7 activity (CASP3/7) would lead to muscle cell death which is a further stimulus for
interleukin 1α (IL-1α) secretion, a potent inflammatory cytokine; DUX4 also upregulates a group of genes belonging to the innate immunity
defense like DEFB103B, IFRD1, CXADR, CBARA1 and CXCR4. These findings could be responsible for the presence of muscle inflammation.
Genes belonging to the glutathione-redox pathway appear to be downregulated resulting in an elevated reactive oxygen species (ROS)
production and therefore in an increased susceptibility to oxidative stress. Finally, DUX4 could also compromise muscle differentiation (by MYOD
and PAX3/7 downregulation) and myogenesis (by MYOG downregulation) with consequent myotubes anomalies
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<20 in FSHD2), biallelic expression of DUX4 can occur, which can

result in a higher susceptibility to disease presentation and could

potentially cause a more severe FSHD phenotype.61

3.2 | SMCHD1 mutations in BAMS and FSHD2

Recently, several reports showed that heterozygous mutations in

SMCHD1 are also causal to Bosma Arhinia Microphthalmia Syn-

drome (BAMS). BAMS is a rare developmental disorder in which the

nose (arhinia) and olfactory structures are partially or completely

absent due to defects in early nasal development. Many BAMS

patients show other craniofacial anomalies and ocular defects such

as anophthalmia or microphthalmia (absence of the eyes or smaller

eyes, respectively) and patients may demonstrate hypogonadotropic

hypogonadism.117,118

Mutations causative for FSHD2 cover the entire SMCHD1 locus,

and can be classified as indels, splice site mutations, nonsense or mis-

sense mutations.71 Close to 200 FSHD2 mutations have currently

been identified (See the Leiden Open Variant Database).119,120 In con-

trast, only missense mutations have been described in BAMS, and

they are exclusively located in the extended ATPase domain.117,118,120

In FSHD2, the extended ATPase domain is also enriched for missense

mutations, and three-dimensional modeling of FSHD2 and BAMS mis-

sense mutations suggests that although mutations occur in the same

region, the affected amino acids are largely located in different func-

tional regions of the ATPase domain for either disease.97,120 At least

one BAMS patient with FSHD symptoms has been reported having a

moderately sized D4Z4 repeat on a 4qA allele. This suggests that

although the phenotypes are very different, the disorders are not

mutually exclusive.118 Intriguingly, two mutations (G137E and L107P)

have been reported in both FSHD2 patients and unrelated BAMS

patients.71,118,121 The FSHD2 patients harboring the L107P mutation

do not have BAMS-like features.121 Based on questionnaires, neither

did any of the other FSHD2 patients with a missense mutation other

than the L107P mutation in the extended ATPase domain of

SMCHD1.121

To investigate whether BAMS and FSHD2 mutations have differ-

ent functional outcomes, in vitro ATPase assays have been employed

with a recombinant N-terminal fragment of murine or human

SMCHD1.97,117,122 Whether the ATPase function is differentially

affected by FSHD2 or BAMS mutations is still topic of debate. Some

data suggest that BAMS mutations exhibit increased capacity to

hydrolyze ATP to ADP,117,122 while others show no difference.97

Interestingly, although the aforementioned G137E mutation also cau-

ses FSHD2, this mutant was observed to have increased ATPase

activity,97,122 while D4Z4 methylation status available for the FSHD2

G137E patient indicates hypomethylation (indicative of FSHD2).71

This implies that BAMS and FSHD2 mutations cannot be fully func-

tionally distinguished on their ATPase activity alone, and that

hypermorphic variants might cause FSHD2 just like hypomorphic vari-

ants could potentially cause BAMS. Modeling of BAMS mutations in

Xenopus laevis indicates a developmental defect leading to smaller

eyes in the tadpole.117,122 Downregulation of smchd1 in the early lar-

vae of zebrafish by either morpholinos or clustered regularly inter-

spaced short palindromic repeat (CRISPR/Cas9) mediated genome

editing resulted in smaller eye size as well, indicating that in different

organisms either loss (FSHD2) or potential gain (BAMS) of SMCHD1

function can confer similar phenotypic effects.118 Collectively, the

data obtained in these studies show that great care must be taken

when interpreting the functional outcome of SMCHD1 mutations.

The functional effect of either BAMS or FSHD2 on full length

SMCHD1 protein is not known, neither is the effect of

heterodimerization of mutant and wild-type SMCHD1 protein in vivo.

4 | CONSEQUENCE OF EPIGENETIC
DEREPRESSION: THE DUX4 IMMUNE
DEREGULATION CASCADE

There is general consensus that D4Z4 chromatin structure reorganiza-

tion in the context of a specific genetic background results in inappro-

priate activation of DUX4 in skeletal muscle.7,52,123,124 DUX4 is

expressed in the testis and cleavage stage embryos, and epigenetically

silenced in most somatic tissues. In cleavage stage embryos, DUX4

acts as a transcription factor that is involved in zygotic genome activa-

tion.14,15,18,125 Among the several candidate genes for FSHD, DUX4 is

currently the strongest candidate since its expression is repeatedly

found in both FSHD1 and FSHD2 while absent in control cells126,127

thereby connecting two genotypes with a single pheno-

type.7,14,52,126,128-130 Several studies have thus proposed DUX4 as

the initiator of a transcriptional deregulation cascade with ultimately

myopathic effects.23,131

DUX4, once epigenetically de-repressed, activates germline genes

in skeletal muscle.23,132,133 Therefore, it is plausible that

DUX4-induced misexpression of these genes induces an immune

response which can drive the progression of the disease. However,

the nature of such immune response is largely unclear. In this section,

we recapitulate DUX4 candidate mechanisms disturbing muscle

homeostasis in general (Figure 3).

DUX4 mRNA is only detected in low quantities in FSHD muscle

biopsies and primary muscle cell cultures.18,134 Based on RT-PCR and

immunofluorescent studies this low expression is explained by the

presence of a small number of myonuclei expressing relatively high

levels of DUX4, rather than a uniform low expression level in all

nuclei.14,135

Overexpression of DUX4 in muscle cells induces upregulation of

caspase 3/7 activity (a prominent mediator of apoptosis), altered

emerin distribution in the nuclear envelope, and cell death.136 DUX4C,

a variant of DUX4 that lacks the transactivation domain, is located in

a single inverted and truncated D4Z4 unit, which is positioned proxi-

mally to the D4Z4 repeat. Forced expression of DUX4C does not lead

to muscle cell degeneration.137 Cell death is known to drive a subtype

of inflammation defined as “sterile inflammation,”138-142 mainly

through the release of the IL-1 family cytokines (IL-1α, IL-1β, IL-18, IL-

33, IL-36α, IL-36β, IL-36γ and IL-37).143 Once activated, all members
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of this family are able to recruit inflammatory cells (such as neutro-

phils and macrophages) to the site of injury as well as tissue repair fac-

tors such as TGFβ, which will promote the healing of the inflammation

by fibrosis.138,143 The effect of IL-1 on skeletal muscle cells has been

studied in the early 1980s.144 Incubation of rat muscles with IL-1 cau-

ses increased muscle proteolysis as well as increased secretion of

prostaglandin E2 which can further stimulate protein degradation.144

Therefore, muscle cell death in FSHD initiated by DUX4 might be

mediated through the IL-1 pathway. Wallace and colleagues demon-

strated that the caspase 3/7 activity is upregulated upon injection of

DUX4 protein in the muscles of wild type but not p53 knockout

mice.145 This suggested that DUX4 induced apoptosis is p53 depen-

dent. However, recent findings challenge this model. Bosnakovski

et al argued that inhibition and/or deficiency of p53 in murine derived

myoblasts and tissues does not suppress cytotoxicity mediated by

DUX4 expression, a result which was also observed by Shadle et al in

human myoblast deficient for TP53.146,147 The latter authors propose

that DUX4 activates the MYC-mediated apoptosis together with the

double-stranded RNA response pathway instead, which can function

in a P53-independent manner.147 Further research is needed to clarify

the exact mechanism of DUX4-mediated apoptosis.

Among DUX4 downstream target genes is PITX1, a member of

the paired homeodomain family. PITX1 is involved in the early devel-

opment of the lower limbs,148 and is upregulated in patients with

FSHD.53 PITX1 regulates the expression of the IFN gene family

involved in the activation of the innate immune response against viral

infection and is a suppressor of both RAS and tumorigenicity.149 Fur-

thermore, PITX1 is also known to activate components of the p53

pathway causing cell cycle arrest and apoptosis,150 and to induce

MURF1 and ATROGIN1.22 These two proteins are components of the

proteasome, which is involved in the degradation of muscle pro-

teins.22 These findings make PITX1 an interesting DUX4 target which

abnormal activation could help explain muscle atrophy and inflamma-

tory features in FSHD.

DUX4 upregulates a group of genes belonging to the innate

immunity defense like DEFB103B, IFRD1, CXADR, CBARA1 and

CXCR4.23 DEFB103B is a member of the defensin family with an anti-

inflammatory activity through inhibition of NF-kB signaling and Toll-

like receptor 4, thereby suppressing the release of pro-inflammatory

cytokines.151 It has also been suggested that DEFB103B inhibits mus-

cle differentiation. Therefore, it has been proposed that DUX4 might

suppress the innate immune system and impair muscle differentiation

by upregulation of DEFB103B.13,15,23 IFRD1 encodes a protein related

to interferon gamma and represses transcriptional activity of NF-kB,

contributing to explain the DUX4 immunosuppressive action.23,152 On

the other hand, DUX4 upregulates CXADR and CXCR4, which are

receptors involved in the migration of leukocytes from the blood into

inflamed tissues.153,154 Among the innate immunity pathways, several

membrane attack complex-related genes were also found highly

expressed in normal appearing FSHD muscle fibers.155 Therefore,

complement activation may be an early event in FSHD pathogenesis.

It has recently been shown that DUX4 expression in cancer cells leads

to a block of interferon gamma mediated MHC class I expression.156

As blocking MHC class I antigen presentation lowers the inflammatory

response against the DUX4 expressing cells, it is not yet clear how this

finding correlates with FSHD muscle showing an increased inflamma-

tory response.

Another pathway likely disrupted by DUX4 is myogenesis,133 a

finely regulated process responsible for normal muscle develop-

ment.157 Defects in the myogenic program may perturbate muscle

homeostasis contributing to the pathogenesis of muscle disor-

ders.158,159 PAX3 and PAX7 are two key regulators of myogenesis160

that share a high degree of homeodomain homology with the DUX4

DNA binding domain.161,162 Therefore, Bosnakovski et al suggested

that DUX4 might interfere with myogenesis by competition with

PAX3 and PAX7 after induced co-overexpression in mouse C2C12

myoblasts.131,161 However, a possible competitive inhibition by DUX4

and PAX3/7 needs further validation and translation to FSHD patient

studies163 as co-expression of these proteins was not observed in cell

cultures.164 In addition to the hypothesized PAX3/PAX7 inhibition

theory, DUX4 would impair myogenesis and muscle differentiation

decreasing the expression of the myogenic precursors MyoG,133,165

MyoD and of its downstream target genes as confirmed by different

laboratories.18,130,166,167 This defective myogenic program causes

myoblasts to differentiate into abnormal myotubes, as shown in

in vitro cultures.168,169

DUX4 could also affect muscle differentiation by not only affect-

ing the upstream regulators of myogenesis but also through the induc-

tion of oxidative stress. Indeed, in vitro cultured FSHD myoblasts are

particularly sensitive to oxidative stress.170 In fact, several oxidative

stress related genes have been found to be altered in FSHD muscle

cells.130,165,167,170-172 Presence of constitutive oxidative stress dis-

turbs muscle homeostasis and reduces the ability of myoblasts to cor-

rectly differentiate into myotubes.173,174 Dmitriev et al described the

presence of high levels of DNA damage lesions, increased reactive

oxygen species production, and upregulation of DNA damage repair

related genes in cultured FSHD myoblasts.175

Altogether, the activation of DUX4 in FSHD might trigger a cas-

cade of events which can activate hundreds of genes, ultimately lead-

ing to muscle inflammation, muscle atrophy, oxidative stress, and

disrupted myogenesis.

5 | NOVEL POTENTIAL THERAPEUTIC
TARGETS

Despite the progress in understanding the pathophysiology of the dis-

ease, there is no cure for FSHD.

Currently, patients can benefit from symptomatic treatment that

can improve muscle function and strength such as physical therapy,2

moderate aerobic exercise,176-179 scapular fixation (a surgical proce-

dure that ameliorates the arm functionality)5 and the use of orthotic

devices like corsets, back supports, and shoes plus orthoses that can

compensate the weakening muscles.180

Over the last three decades, different clinical trials attempted to

improve muscle function and strength in FSHD patients. Antioxidants
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like vitamin C and E, zinc gluconate, and selenomethionine have been

tested in FSHD patients in the context of a double-blind randomized

trial.181 The rationale of this trial stems from the increased susceptibil-

ity of FSHD muscle cells to oxidative stress.21,175,182 Unfortunately,

patients receiving antioxidants did not report a significant improve-

ment in muscle performance compared to the placebo group.

Apart from physical activity, another attempt to improve muscle

mass and function in FSHD is represented by use of anti-myostatin

therapies. Myostatin, also known as growth differentiation factor

8, belongs to the TGF-β superfamily, a group of proteins with pro-

fibrotic activity.183 Myostatin is produced by skeletal muscle cells and

acts as a negative muscle growth regulator.184 Animal studies have

demonstrated that myostatin deficient mice have a strong increase in

muscle mass compared to the wild-type mice.185 These findings

sparked the interest of pharmaceutical companies in designing anti-

bodies against myostatin which have been tested in several neuro-

muscular diseases.186 However, despite high expectations, results

have been unsatisfying.187,188 In 2008, a 9-month multicenter double-

blind randomized clinical trial tested the myostatin inhibitor MYO-29.

The study tested three different doses in three patient groups, among

which 42 patients with FSHD. Although MYO-29 was generally well

tolerated, there was no significant improvement in muscle strength

and function in any of the groups.188

The presence of inflammatory features in FSHD muscle pro-

vided a rationale for an open-label trial of prednisone.29,189 Also,

this study did not find significant differences in muscle strength and

muscle mass between the treated and the placebo arm. Further-

more, case-reports of FSHD patients receiving corticosteroid ther-

apy have failed to show function improvements.190,191 In 2015, the

immune involvement in FSHD also provided rationale for a Phase

1b/2 open-label trial of ATYR1940 in patients with early onset

FSHD. ATYR1940 is a physiocrine-based protein and a modulator of

immune responses in skeletal muscle.192 Eight genetically confirmed

FSHD patients were included and received one placebo dose

followed by 12 escalating doses of ATYR1940. The drug was well

tolerated up to the highest dose, but there was no clinical improve-

ment in terms of muscle strength and function, or on muscle MRI

evaluation.193

More recently, research groups are focusing on the identification

of specific disease targets to develop a causal treatment. Taking into

account the complexity of DUX4 toxicity, a major focus is on (epige-

netic) regulators of DUX4 activity, as this would also block all its

downstream targets and effects. Different laboratories explored

whether it is possible to revert the chromatin structure of the FSHD

locus into a repressed state. Snider et al demonstrated that small RNA

transcripts consistent with siRNAs and miRNAs (small RNA molecules

involved in RNA silencing) are produced by D4Z4, suggesting their

role in RNA-mediated epigenetic silencing of the repeat.82 Some years

later, Lim and coworkers investigated whether these small RNA mole-

cules might contribute to the epigenetic silencing of the D4Z4 repeat.

To test this hypothesis, the authors transfected siRNAs identical to

the siRNAs endogenously transcribed from D4Z4 into FSHD muscle

and observed strongly reduced DUX4 mRNA levels. This silencing

correlated with increased H3K9me2 and with AGO2 recruitment to

the D4Z4 repeats. Together these studies suggest that an RNA-

mediated silencing pathway is normally involved to prevent DUX4

transcription, making this pathway an interesting potential therapeutic

target. Himeda et al194 demonstrated the benefits of the use of

CRISPR and dCas9 (catalytically dead Cas9) protein system (CRISPR-

dCas9) to reverse the epigenetic status of the FSHD locus.195

Targeting the transcriptional inhibitor KRAB to the DUX4 promoter

through fusion with dCas9 repressed DUX4 and its downstream target

genes in FSHD muscle cell cultures. Additionally, the presence of the

KRAB-repressor leads to a slight increase in the levels of repressive

proteins, for example, HP1α and KAP1, at D4Z4, although no increase

of H3K9me3 and H3K27me3 could be observed, potentially due to

the large amount of non-targeted D4Z4 repeats in the genome.194

Recently, the same group identified epigenetic pathways that activate

DUX4 by knock down of 36 candidate DUX4 activators in FSHD1

myocytes and monitoring the effect on DUX4 expression and other

genes involved in muscle homeostasis.83 Selected candidates belong

to several functional categories: chromatin modifiers, transcription

regulators, as well as several classes of histone modifiers. The screen-

ing yielded four validated candidates: ASH1L, BRD2, KDM4C, and

SMARCA5. In addition, slight increases in SMCHD1 by ectopic

expression or repairing the SMCHD1 gene defect in patient cells effi-

ciently silences DUX4 in muscle cell cultures.81,196 Besides that these

candidates are potentially druggable targets, the results confirm that

multiple epigenetic pathways shape the D4Z4 chromatin structure.

Attempts to improve muscle functionality in FSHD have also

been undertaken with salbutamol, a β2 adrenergic receptor (β2AR)

agonist,197-199 since β2 agonists were proven to favor muscle cell

regeneration in animal studies, and to prevent muscle proteolysis.200

However, in none of the trials salbutamol proved to benefit the physi-

cal performance of the patient group in comparison to the control

group. Nevertheless, a recent study using β2AR agonists salbutamol

and formoterol in FSHD myotube cultures showed that both drugs

were able to reduce the expression of well-known DUX4 target genes

ZSCAN4, TRIM43, MBD3L2, and LEUTX, and to induce the production

of cAMP.201 cAMP, an ATP derivate, is a second messenger crucial for

many biological process such as transport of hormones, ion channel

regulation and protein kinase activation like the protein kinase A

(PKA).202 Therefore, the authors treated FSHD myotubes with a

cAMP analogue which was also able to reduce DUX4 target gene

expression levels through a PKA-dependent mechanism.

Campbell et al further investigated the potential of β2AR agonists

and bromodomain and extra-terminal (BET) inhibitors as possible

FSHD drugs candidates.203 BET proteins belong to the BRD protein

family including four members: BRD2, BRD3, BRD4 and BRDT. These

proteins normally bind to acetylated histones thereby promoting gene

transcription.204 They reported a significant suppression of DUX4 and

DUX4 target gene levels in both FSHD1 and FSHD2 primary muscle

cells treated either with β2AR agonists through cAMP increase, or

with BET inhibitors through BRD4 inhibition.203 Further research by

these authors into the signaling pathway behind the effect of β2AR

agonists identified p38 mitogen-activated protein kinase (p38-MAPK)
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as a regulator of DUX4 expression.205 Clinically approved p38 inhibi-

tors lead to potent suppression of DUX4 expression in both FSHD

myoblasts and a mouse FSHD xenograft model.205 A phase 2 clinical

trial using p38 inhibitor Losmapimod in FSHD is currently (early 2020)

ongoing.

6 | CONCLUSION

As research on FSHD continues, it is becoming apparent that the

genetic underpinnings of FSHD are complex with many modifiers con-

tributing to a wide clinical spectrum: from asymptomatic to wheelchair

dependent, from features restricted to muscle to extramuscular

involvement such as hearing loss and vision impairment. The involve-

ment of partially known modifiers implies that FSHD should be con-

sidered a complex disorder rather than a monogeneic or digenic

disease, with classical FSHD1 and FSHD2 forming a disease contin-

uum. In this complex and variegating scenario, with two seemingly dis-

tinct but converging genotypes, common epigenetic changes explain

the cytotoxic gain of function of the otherwise silenced DUX4 gene.

DUX4 is activated at the wrong time (with unpredictable bursts of

expression) and in the wrong place (skeletal muscle). Once activated,

it triggers a cascade of events that, among others, elicit a response

from our immune system, leading to the presence of inflammatory

infiltrates in affected muscles. However, it is not yet clear which

means of defense our immune system undertakes and whether this

represents a double-edged sword, explaining the progressive

replacement of skeletal muscle with fatty fibrosis. Numerous strate-

gies have been undertaken to treat the muscle weakness in FSHD,

but unfortunately, apart from increasing physical activity, none of

them resulted in functional benefit. However, the field has matured

to an exciting new era in which we can expect trials with new and

existing drugs that target DUX4 itself, its regulation, or its damaging

effects in skeletal muscle.
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