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The constitutive modelling of soft biological tissues has rapidly gained
attention over the last 20 years. Current constitutive models can describe the
mechanical properties of arterial tissue. Predicting these properties from
microstructural information, however, remains an elusive goal. To address
this challenge, we are introducing a novel hybrid modelling framework that
combines advanced theoretical concepts with deep learning. It uses data
frommechanical tests, histological analysis and images from second-harmonic
generation. In this first proof of concept study, our hybrid modelling frame-
work is trained with data from 27 tissue samples only. Even such a small
amount of data is sufficient to be able to predict the stress–stretch curves of
tissue samples with a median coefficient of determination of R2 = 0.97 from
microstructural information, as long as one limits the scope to tissue samples
whose mechanical properties remain in the range commonly encountered.
This finding suggests that deep learning could have a transformative impact
on the way we model the constitutive properties of soft biological tissues.
1. Motivation
Over the last decades, soft tissue biomechanics has substantially contributed to our
understanding of various cardiovascular diseases such as aneurysms and dissec-
tions. It can help develop improved therapies and intervention strategies by
computational simulations. However, realistic and ideally patient-specific simu-
lations require reliable constitutive models that capture the complex and unique
mechanical behaviour of soft biological tissues. The mechanical behaviour of the
arterial wall is determined by its constituents. For example, the tissue anisotropy
is closely related to the local dispersion of collagen fibres. In addition, thewaviness
and cross-linking of collagen fibres affect the stiffening of arterial tissue under ten-
sile loading.While some phenomena such as fibre dispersion canwell be captured
with advanced microstructure-based constitutive models [1], the incorporation of
more subtlemicrostructural and histological information for the purpose of predic-
tive constitutive modelling of arterial tissue remains elusive to date. To overcome
this limitation, a change of paradigm may be helpful.

Over the past decade, machine learning has attracted rapidly increasing atten-
tion in computer vision in general [2], and in medical imaging in particular [3,4].
Deep learning (DL)—a subset of machine learning—has become increasingly
popular due to improved computer performance and the availability of tools
that make it easy to use. In the life sciences in particular, a large number of inno-
vative DL methods have recently been proposed [5,6] in order to move the
technique further and further beyond traditional image analysis.

http://crossmark.crossref.org/dialog/?doi=10.1098/rsif.2021.0411&domain=pdf&date_stamp=2021-09-08
mailto:christian.cyron@hereon.de
http://orcid.org/
http://orcid.org/0000-0001-8119-5775
http://orcid.org/0000-0001-8264-0885
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


royalsocietypublishing.org/journal/rsif
J.R.Soc.Interface

18:20210411

2
In soft tissue biomechanics, DL has recently been used to
estimate material properties from organ scale in silico simu-
lations of physiologically loaded organ geometries, e.g. from
abdominal aortic aneurysms [7] or the aorta [8]. Other
approaches have focused on developing surrogate models
based on machine learning that can complement or replace
more expensive finite-element simulations on the organ scale,
e.g. to predict the left ventricular mechanics in real time [9].
A first attempt to predict the constitutive properties of soft
tissue on the basis of microstructural data is documented in
[10]. It was based on an end-to-end DLmodel that was trained
to capture the relationship between raw second-harmonic
generation (SHG) images and stress–stretch curves of tissue
patches. However, despite some very promising results, the
overall accuracy of the predictions of themechanical properties
that the trained deep neural network could make from given
image data remained relatively poor. The reason for this may
be that standard end-to-end neural networks do not have
any prior information about the physical phenomenon to be
investigated. As a result, large amounts of data are required
to achieve satisfactory predictive capabilities. Unfortunately,
in soft tissue biomechanics, such huge amounts of data are
often not available due to the significant costs typically
associated with experiments. To overcome such problems,
physics-informed machine learning methods have recently
been proposed for constitutive modelling [11]. These can
achieve a high level of predictive accuracy from a surprisingly
small set of training data, since their architecture has physical
knowledge that enables them to use the available training
data with the utmost efficiency. However, such concepts have
not yet been systematically applied in soft tissue biomechanics.

With this in mind, the present study focuses on the follow-
ing key question. Supposewe have a number of tissue samples
for which mechanical, histological and microstructural ima-
ging data are available. How can we predict the mechanical
response of a new, unknown tissue sample based solely on
its histological and microstructural imaging data? To answer
this question, we introduce a novel hybrid modelling frame-
work that combines advanced theory-based constitutive
modelling [12] with DL. A deep neural network is used to
learn the parameters of the continuummechanical constitutive
law for arterial tissue introduced in [12] from SHG imaging
data and histological data. Of course, when compared with
methods that rely entirely on DL (i.e. end-to-end DL models),
our hybrid modelling framework naturally ensures a phys-
ically reasonable output and requires much less training data
to achieve acceptable accuracy in predicting mechanical
properties from imaging and histological data.

Our paper is structured as follows. In §2, we briefly
describe the employed experimental data published pre-
viously [13]. In §3, we summarize the constitutive model
documented in [12], while in §4 we present a novel hybrid
modelling (HM) framework. In addition, we validate its pre-
dictive capabilities and show that it significantly surpasses
the standard curve fitting. Finally, in §5, we summarize the
proposed HM framework and discuss its current limitations
as well as future directions.
2. Experimental data processing
Overall, three different types of data published in [13] form the
basis of our work in this article: Cauchy stress–stretch data
from mechanical tests, volume fractions from histological ana-
lyses and SHG images.

2.1. Mechanical data
Circumferential and axially oriented dog bone samples were
taken from healthy and aneurysmatic human aortic medias,
preconditioned to 50 kPa (engineering stress) in 5 loading–
unloading cycles and subjected to uniaxial extension tests to
failure at a crosshead speed of 2 mmmin−1. Smooth muscle
cells were assumed to be relaxed during testing as they were
reported to have largely lost their functionality due to the freez-
ing and subsequent thawing that all our tissue samples were
subjected to [13]. Using the continuously recorded force and
displacement measurements of the test, as well as thickness
and width measurements prior to the start of the test,
Cauchy stress and stretch data were obtained. Then the mech-
anical data were manually cut off at stretches where either
jumps or softening in the curves were observed (for a detailed
discussion see [13]).

2.2. Histological data
After a successful test in which the sample ruptured in the
gauge region, the two halves of the sample were structurally
fixed in 4% formaldehyde solution. One half was subjected to
histological analysis using hematoxylin, eosin and Elastica
van Gieson staining to quantify the volume fractions of col-
lagen (CO), elastic fibre (EF) and smooth muscle cell (SMC),
hereinafter referred to as ϕCO, ϕEF and ϕSMC, respectively.

2.3. Microstructural data
The second half of the ruptured tissue samples was optically
cleared with a solution of benzyl alcohol to benzyl benzoate to
generate SHG, as described in [13,14]. The collagen fibre orien-
tation in the circumferential–axial (in-plane) and the radial–
axial (out-of-plane) planes was extracted from SHG images
and used to obtain the mean fibre angle α (definition see §3),
the in-plane dispersion parameter κip, and the out-of-plane dis-
persion parameter κop according to their definitions in [12]. In
addition, intensity plots were created for each sample, showing
the change in collagen fibre orientation over the sample thick-
ness, using the data extracted from in-plane images.

All images were processed in the same way in three steps
before they were used as training data for DL in the form
shown in figure 1. First, all intensity plots were rescaled such
that the scale of the pixels was identical for all the plots and
the thickest sample covered 68 pixels in the directionof the thick-
ness (vertical). Accordingly, thinner samples covered fewer
pixels in the thickness direction. In the angular (horizontal)
direction, all samples were scaled to 54 pixels. Second, linear
interpolation scaled all images to 68 pixels in the thickness
(vertical) direction to achieve a uniform image format suitable
for DL. Third, data augmentation was performed by taking
additional samples by applying various random periodic
shifts to the image data in the angular (horizontal) direction.
3. Theory-based constitutive modelling
3.1. Constitutive model
Here, we model soft biological tissues as mechanical bodies.
According to the theory of nonlinear continuum mechanics,
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Figure 1. Intensity plots showing the orientation and dispersion of the collagen fibres over the thickness of the tissue samples examined in [13]: the plots were
obtained from SHG images and prepared for use in DL by rescaling. Yellow and dark blue colours indicate the presence and absence of fibres for the entire range of
possible fibre angles (relative to the circumferential tissue direction), respectively.
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the deformation of these bodies is described by a reference con-
figuration (e.g. the configuration before the deformation) and a
current configuration (after the deformation). The reference
configuration consists of material points X that are mapped
by the deformation to their current position xðXÞ. Locally, the
deformation can be characterized by the so-called deformation
gradient F ¼ @x=@X, while F can be used to define the right
Cauchy–Green tensor C ¼ FTF and the left Cauchy–Green
tensor b ¼ FFT.Wemodel the constitutive behaviour of arterial
tissues following the approach introduced in [12]. Thereby, we
include two symmetric collagen fibre familieswith the two cor-
responding mean fibre directions

M4 ¼ cosae1 þ sinae2 and

M6 ¼ cosae1 � sinae2,
ð3:1Þ

where α is the mean fibre angle in the ðe1–e2Þ plane with
the circumferential direction e1 and the axial direction e2; see
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Figure 2. Schematic of arterial tissue sample: two fibre families are rep-
resented by their respective mean directions M4 and M6 in the ðe1–e2Þ
(circumferential–axial) plane, each with an angle α relative to the circumfer-
ential direction e1 of the arterial tissue. The normal direction e3 (thickness
direction of the arterial wall) is referred to as Mn (adapted from [12]).
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figure 2. Now, we can comfortably describe the continuum
deformation with the set of invariants

I1 ¼ trC, Ii ¼ C :Mi �Mi, i ¼ 4, 6,

In ¼ C :Mn �Mn,
ð3:2Þ

where Mn denotes the out-of-plane unit direction vector
(normal to the circumferential–axial plane of the arterial
tissue). To capture the anisotropic mechanical behaviour gov-
erned mainly by the alignment of collagen fibres, we employ
the so-called generalized structure tensor

Hi ¼ AIþ BMi �Mi þ ð1� 3A� BÞMn �Mn,

i ¼ 4, 6:
ð3:3Þ

Here, I denotes the second-order identity tensor and

A ¼ 2kopkip and B ¼ 2kopð1� 2kipÞ, ð3:4Þ

where κip and κop quantify the in-plane and out-of-plane
collagen dispersions, respectively. By assuming an additive
decomposition of the strain-energy function C into the ground
matrix contribution Cm and the collagen fibre contribution Cf,
the resulting C can be given as [12]

C ¼ Cm(C)þ
X
i¼4,6

C f,i(C, Hi): ð3:5Þ

Wemodel the ground matrix as a neo-Hookean material, while
the fibre contribution is of exponential type, i.e.

Cm ¼ c
2
ðI1 � 3Þ,

C f,i ¼
X
i¼4,6

k1
2 k2

{ exp [k2ðI�i � 1Þ2]� 1},
ð3:6Þ

where c, k1 > 0 are stress-like material parameters, k2 is a
dimensionless material parameter, and Ii* is the generalized
invariant, i.e.

I�i ¼ tr(CHi) ¼ A I1 þ B Ii ¼ ð1� A� BÞ In, i ¼ 4, 6: ð3:7Þ

Modelling arterial tissue as an incompressible hyperelastic
material, the second Piola–Kirchhoff stress tensor S can then be
computed as

S ¼ 2
@C

@I1
Iþ

X
i¼4,6

@C

@Ii
Mi �Mi þ @C

@In
Mn �Mn

 !

� pC�1, ð3:8Þ
where p denotes a Lagrange multiplier (pressure) to enforce
incompressibility.

3.2. Parameter fitting to experimental data
The constitutive model has six parameters in total. The
three structural parameters κip, κop, α can be determined
from the fibre orientation and in-plane dispersion infor-
mation carried by the intensity plots in figure 1. By
contrast, the three material parameters c, k1, k2 remain
a priori unknown. The classical way to determine these is
curve fitting, using data from mechanical testing. In uniaxial
extension tests, the three principal stretches λ1, λ2 and λ3 in
circumferential, axial and thickness direction define the
deformation gradient as a diagonal tensor, here written in
matrix form as ½F� ¼ diag½l1, l2, l3�. Combining s ¼ FSFT

with (3.8) yields the non-zero components of the Cauchy
stress tensor s as

s11 ¼ [cþ 4ðAþ B cos2 aÞc0
4] l

2
1 � p,

s22 ¼ [cþ 4ðAþ B sin2 aÞc0
4] l

2
2 � p,

s33 ¼ [cþ 4ð1� 2A� BÞc0
4] l

2
3 � p,

with c0
4 ¼ k1ðI�4 � 1Þ exp [k2ðI�i � 1Þ2]:

9>>>>>>=
>>>>>>;

ð3:9Þ

Incompressibility of the tissue requires λ1λ2λ3 = 1. Moreover,
only σjj is non-zero in a uniaxial test with loading in the
j-th direction. That is, for a circumferential test we have j = 1
and σ22 = σ33 = 0, for an axial test we have j = 2 and σ11 =
σ33 = 0.

With these equations, the unknown material parameters
can be expressed as experimentally measured variables. The
material parameters can then be determined by curve fitting
using the experimentally measured stress–stretch curves. For
this purpose, the least-squares method implemented in the
LMFIT package, Python 3.7 [15], was used. First, the material
parameters were individually fitted for each tissue sample. In
a second step, this information was used for predictions. That
is, a specific sample of interest has been selected. For this
sample, the structural parameters κip, κop, α were calculated
directly from the imaging data. The remaining constitutive
parameters were set equal to the median values across all
other samples. This predictive protocol was repeated by run-
ning the sample of interest (for which predictions were
made) through the entire set of available samples. This
approach is also known as leave-one-out cross-validation
(LOO-CV) and was performed separately for each sample
in the dataset (i.e. validation fold). That is, each sample was
considered a sample of interest once. To quantify the good-
ness of fits, we used the coefficient of determination R2, i.e.

R2 ¼ 1� Sres=Stot, ð3:10Þ
with

Sres ¼
X
i

ðsi
exp � siÞ2, Stot ¼

X
i

ðsi
exp � sexpÞ2: ð3:11Þ

Here, the index i runs through all contained experimental data
points. Each i is associated with a certain uniaxial stretch λi

(either in the axial or in the circumferential direction of the
tissue patch), a related experimentally measured Cauchy
stress σexp in the same direction and a Cauchy stress component
σi also in this direction and calculated from our constitutive
model, i.e. (3.9). The mean values of the experimental stress
values contained is sexp.
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The values of R2 found in the LOO-CV method described
above characterize the accuracy with which the constitutive
properties of a new (mechanically not yet tested) tissue
sample can be predicted using an SHG image-based compu-
tation of the structural parameters κip, κop, α with standard
curve fitting for the remaining material parameters.
This accuracy marks the current state of the art, and the
method for achieving this is referred to below only as the
standard fitting. Remarkably, the above method consistently
resulted in higher predictive accuracies than an alternative
method in which we determined c, k1, k2 by fitting all of
the stress–stretch curves simultaneously except for those
of the sample of interest. Therefore, the latter method is not
discussed further herein.

Predictions using the standard fitting method described
above showed poor to moderate quality (median R2 = 0.631,
s.d. ±0.46) when samples with R2≤−1 were excluded, and
were of poor quality (median R2 = 0.14, s.d. ±5 × 108) if all
samples were taken into account. In 8 out of 27 cases (37%),
R2 was very low (i.e. R2≤−1); see also figure 6, samples 4,
6, 8, 13, 14, 20, 25 and 27.
4. Hybrid modelling framework
In this section, we present a novel hybrid model (HM) that
combines DL and theory-based modelling with the aim of
predictive constitutive modelling of arteries. Our HM uses
the theory-based constitutive model that was introduced in
[12] and summarized above in §3.1. In relation to this
model, it uses DL to determine the a priori unknown material
parameters c, k1 and k2. In this way, our HM enjoys the
advantages of machine learning, but includes the essential
theoretical prior knowledge that is summarized in the
theory-based model introduced in [12]. It is expected to
reduce considerably the amount of training data required to
learn the stress–stretch relationship for a given tissue
sample, compared to standard end-to-end DL models
that involve a deep neural network used to learn the entire
constitutive equation from scratch.

4.1. Architecture
TheHMarchitecture consists of two parts. One is a deep neural
network model referred to as DL block and the other is the
theory-based constitutive model, as summarized in §3. The
DL block maps the intensity plots and the histology data (ϕEF,
ϕCO, ϕSMC) as input of a deep neural network to the material
parameters (c, k1, k2). The DL block output (c, k1, k2) forms
together with the structural parameters (α, κip, κop), which
are calculated in the standard way directly from the SHG
images, and the stretch data the input of the constitutive
relation (3.8), which gives the Cauchy stress. The architecture
of our new HM is illustrated in figure 3. The DL block can be
trained in such a way that the HM optimally resembles the
stress–stretch relationship found in the training data. Once
the HM has been trained in this way, it can be used to predict
the stress–stretch relationship even for tissue samples for
which SHG images and histological data are available but
mechanical testing data are not yet available.

For the DL block we used a 17 layer residual network
(ResNet) encoder (down-sampling) [16] together with a
three-layer, densely connected feedforward neural network
(DCFNN). ResNets are widely applied in image classification
and benefit from the advanced method of deep residual learn-
ing, while DCFNNs are able to approximate any continuous
function given by the universal approximation theorem [17].
The residual network consisted of a 7 × 7 two-dimensional con-
volutional (Conv2D) layer with maximum pooling (3 × 3,
stride 2), and 4 consecutive residual blocks, as shown in
figure 3. Each residual block contains four Conv2D layers
with ReLu activation functions and a batch normalization as
well as two residual connections, one after each sequence of
two Conv2D layers. The Conv2D layers were initialized with
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Remark. The exact dense layer architecture used in our study
was determined by hyperparameter tuning. For this purpose,
we have tested different layer architectures with the training
and validation strategy 1 described below in §4.2. Finally, we
chose the architecture that performed best in this comparative
study, following the concept of grid search, as also pointed
out in [19].

4.2. Model training and validation
Our HM only gains its predictive abilities by training the
DL block. During training, the weights of the deep neural net-
work are adjusted in such a way that they optimally resemble
the stress–stretch relationship in the training data. We started
the training process with the widely used Glorot weight initi-
alization [20]. For the training, we used Adam optimization
[21] to adjust the weights so that the mean squared error
(MSE) is minimized as a loss function, i.e.

MSE ¼
X
i

jsi � si
expj2, ð4:1Þ

where i runs through all tissue stretches contained in the
training data and σi and si

exp are defined analogously to
(3.11). The training was carried out in batches, each randomly
sampling 32 stress–stretch pairs from the entire training data.
MSE minimization was performed by running through these
batches and modifying the weights of the neural network
after each batch to minimize their respective MSE contri-
bution. As soon as this has been achieved for all batches, a
so-called epoch of the training process is finished and the
next epoch starts, with all batches being run through again.
In total, the training continued for 1000 epochs. The learning
rate was fixed at 0.001 during training at various layers of the
network. Since the Glorot weight initialization involves a
certain randomness, the result of the training is also not
deterministic. Therefore, training with different initializations
was performed ten times in each scenario and the best (based
on its performance when applied to the validation dataset)
was selected from the resulting trained networks. Our com-
plete framework was implemented using the open-source
software library and the Keras machine intelligence platform
with TensorFlow backend [22,23].

In DL, so-called over-fitting is a common limitation. That is,
if a network is to learn from given training data for too many
epochs, after a certain point in time it may no longer learn gen-
eral features of the problem of interest, but rather specific
details of the training data that were selected at random to
inform the network about the problem. To avoid such over-
fitting, the available data can be divided into three subsets,
the training data, the test data and the validation data. For
training purposes only the training data for a certain number
of epochs are made available to the network. The network’s
predictive performance for the different epochs is then com-
pared using the test data. Typically, one observes that this
predictive performance improves in the first epochs (learning
stage), while it decreases after a critical epoch (over-fitting
stage). By simply selecting the trained state of the network
rather than the state after the last epoch, but rather the one at
the end of the epoch in which the best performance is observed
in the test, the problem of over-fitting can usually be largely
avoided. Once the trained state of the network has been deter-
mined in this way, its predictive performance is assessed on the
samples thatmake up the so-called validation set and that have
been completely withheld by the neural network up to this
point, so that the network’s performance on this dataset
shows its predictive abilities.

The amount of data available is often decisive to the success
of machine learning. Often, when big data are available, about
20% of the data are used as a test set and 20% of the data are
used as avalidation set, so only 60%are used in the actual train-
ing process. Since only small data (27 tissue samples) were
available in our case, we had to make sure that the machine
learning results were not being influenced too much. To this
end, we have combined three strategies for this purpose.

LOO-CV: we used a so-called LOO-CV scheme. In such a
scheme, only one sample is retained for the validation set. In
order to evaluate a representative performance, the LOO-CV
contains several passes in which different random samples
are retained for validation. At the end, the mean or median
performance is calculated in all these runs. LOO-CV mini-
mizes the amount of data that is held back for validation
purposes and thus maximizes the amount of data that are
available for training purposes. It is therefore particularly
helpful when only small data are available, since around
20% of the data do not be retained for validation purposes,
as is usually the case.

Minimal representative test set: the smaller the test set,
the larger the amount of data that can be used for training.
Since LOO-CV can be used to minimize the amount of
data retained for validation purposes, other strategies can be
used to reduce the amount of data retained for testing
purposes. Here, we have only selected a single test sample.
However, we did this in such a way that it was particularly
representative to compensate for the small size of the test set.
For this purpose, we looked at what is known as latent space,
the feature space of the data that is used for machine learning.
In our case, the latent space can be approximated as the
three-dimensional space spanned by the parameters c, k1 and
k2 in the theoretical model described in §3.1. The position
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of individual samples in this space can be determined by indi-
vidual curve fitting and is illustrated in figure 4. The median
of all samples is illustrated by a red cross. To ensure that our
individual test sample was as representative as possible,
in our LOO-CV scheme we always selected test sample first
that comes closest to the median of the 26 samples not used
for validation.

Confined validation set: DL is known to be powerful at
interpolating, but has difficulty extrapolating from [19].
Therefore, when thinking of the data in latent space, machine
learning tends to work best for samples in the centre of the
data cloud in that space, while a decreased predictability is
often observed for samples near the boundaries of that
cloud. With small data, this problem can particularly severe
as the relative size of the boundary regions of the data
cloud increases. To solve this problem with very small data,
we limited the range from which the validation samples in
the LOO-CV scheme were selected. Instead of going through
all the samples with the validation sample in this scheme, we
only went through the samples within a logarithmically
scaled sphere around the median point in the latent space,
which is referred to below as region of interest (ROI). The
radius of this sphere was heuristically defined as 0.74
orders of magnitude. The samples with mechanical proper-
ties are collected in the most common range (sample
numbers 3, 5, 7, 15, 24 and 26).
4.3. Results
After training, our hybrid model achieved a predictive accu-
racy for the validation samples in the ROI with a median of
R2 = 0.966, s.d. ± 0.01. By contrast, the standard LOO-CV fit-
ting, which was also only used for the samples in the ROI,
only achieved a median of R2 = 0.676, s.d. ±0.33 (see also
table 2 and figure 5).
Of course, if both methods are used not only for predic-
tions for samples in the ROI but also for samples with
more unusual properties, their predictive accuracy decreases.
It is an interesting question whether this decline could be pre-
vented if a larger dataset were available to inform both
prediction methods. While an unequivocal answer is imposs-
ible in this study, one can at least try to mimic this situation to
some extent. To this end, we again applied a LOO-CV
scheme. This time we allowed the scheme to run through
all of the 27 samples as validation samples. However, to
simulate a situation in which more data are available, we
also used the validation sample as a test sample for our
hybrid model. This mimics a situation where there are
enough data available that an amount of test data large
enough to be representative of the entire problem can be
withheld from the training data. This can trigger an early
stop of the learning process after a suitable epoch, even for
samples that have rather unusual properties and are far
from the most common range. In fact, our hybrid model
still achieved a median of R2 = 0.964, s.d. ± 0.28 with this
method. By contrast, the standard LOO-CV fitting, as already
mentioned at the end of §3.2, only achieved a median of R2 =
0.631, s.d. ±0.46, even if the eight worst results have already
been skipped, and of only R2 = 0.140, s.d. ±5 × 108 otherwise;
see also table 1 and figure 6. The predictive accuracy of the
hybrid model was exceptionally low for only samples 11
and 16 (i.e. R2 < 0). The standard fit had problems with
these samples as well, but in fact even worse and additionally
with a number of other samples. These results give hope that
a larger database could actually enable our hybrid model to
extend its excellent predictive capabilities well beyond the
ROI for which they are demonstrated in this article. By con-
trast, against the background of the above numbers, it
seems questionable whether a standard curve fitting
scheme could ever achieve similar predictive accuracy, even
if it could rely on a much larger database.



Table 1. Results of the LOO-CV prediction for the standard fit compared to the hybrid model: predictive accuracy R2 and obtained material parameters c, k1
and k2.

standard fitting hybrid model

sample R2 c k1 k2 R2 c k1 k2

3 0.206 16.42 12.08 2.36 0.963 6.05 34.08 29.32

5 0.869 16.58 12.08 3.04 0.992 1.56 23.99 21.74

7 0.922 19.65 12.33 2.36 0.955 3.49 26.75 9.24

15 0.483 16.42 12.97 2.36 0.974 0.11 10.66 17.02

24 0.883 19.65 12.08 2.85 0.968 1.92 21.08 9.84

26 0.140 19.65 12.97 2.36 0.960 0.00 4.56 16.72

median 0.676 18.11 12.21 2.36 0.966 1.74 22.54 16.87

Table 2. Results of LOO-CV prediction for the standard fit compared to the hybrid model (trained with a test sample that corresponds to the validation sample
and the LOO-CV scheme passing through all 27 tissue samples): predictive accuracy R2 and obtained material parameters c, k1 and k2. * means excluding
samples with R2 <−1.

standard fitting hybrid model

sample R2 c k1 k2 R2 c k1 k2

1 0.994 16.42 12.97 2.36 0.929 28.25 9.10 0.00

2 0.633 16.42 12.08 3.04 0.986 38.35 33.31 0.00

3 0.206 16.42 12.08 2.36 0.995 45.05 13.75 16.73

4 <−1 19.65 12.08 3.04 0.901 23.81 0.02 19.62

5 0.869 16.58 12.08 3.04 0.998 22.64 17.45 2.42

6 <−1 19.65 12.08 3.04 0.995 6.35 12.56 0.41

7 0.922 19.65 12.33 2.36 0.935 17.19 22.04 1.28

8 <−1 19.65 12.97 3.04 0.998 14.95 10.66 0.00

9 0.798 19.65 12.08 2.36 0.897 17.03 9.75 5.47

10 0.997 16.42 12.97 3.04 0.954 36.55 66.73 0.00

11 −0.345 16.42 12.97 2.36 −0.087 36.87 58.85 0.00

12 0.996 16.42 12.97 2.36 0.731 29.44 28.04 0.00

13 <−1 19.65 12.08 3.04 0.996 12.05 12.34 0.22

14 <−1 19.65 12.97 3.04 0.999 13.96 3.33 0.00

15 0.483 16.42 12.97 2.36 0.965 12.16 16.93 0.00

16 −0.039 16.42 12.97 2.36 −0.029 67.77 50.37 24.01

17 0.631 16.42 12.97 2.36 0.734 30.40 49.28 0.00

18 1 16.42 12.97 2.36 0.991 15.99 13.58 1.13

19 −0.129 16.42 12.97 2.36 0.938 114.86 322.75 10.40

20 <−1 19.65 12.97 3.04 0.986 15.76 9.20 0.00

21 −0.202 16.42 12.08 3.04 0.972 32.67 61.95 3.77

22 −0.094 16.42 12.08 2.36 0.447 38.31 63.03 0.00

23 0.603 19.65 12.08 3.04 0.964 2.54 24.20 0.00

24 0.883 19.65 12.08 2.85 0.964 13.80 17.05 0.00

25 <−1 19.65 12.08 3.04 0.862 27.15 19.75 0.00

26 0.14 19.65 12.97 2.36 0.951 7.16 15.31 0.00

27 <−1 19.65 12.08 3.04 0.984 22.42 7.61 0.64

median 0.631* 16.58 12.33 2.85 0.964 22.64 17.05 0.00
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sample that corresponds to the validation sample and the LOO-CV scheme passing through all 27 tissue samples) and box plot with R2-statistics. * means excluding
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5. Conclusions
Significant advances have been made in constitutive modelling
of soft biological tissues in the last decades. The methods pro-
posed so far can nowadays describe the mechanical behaviour
of such tissues almost perfectly, but they largely lack the ability
to predict it from information about the tissue composition and
the microstructure. The authors as well as others have tried to
make such predictions with classical methods such as linear
regression; however, so far only with limited success. In this
article, we would like to help fill this gap. We have proposed a
novel hybridmodel that combines advanced theoretical model-
ling according to [12] with machine learning. We have
demonstrated that this hybridmodel canpredict the constitutive
behaviour (i.e. the stress–stretch curve) of soft biological tissues
based on information about the tissue composition (histological
data) andmicrostructure (SHGimages). Thepredictive accuracy
reaches a median of R2 = 0.966, s.d. ± 0.01 for samples whose
mechanical properties fall into the most frequently encountered
regime. Outside this regime, the predictive accuracy decreases.
However, further analysis at least gives hope that this decline
could be stopped if more data were available to train our deep
neural network. More studies, based on more data, are needed
to confirm or deny this hope.

It is worth highlighting that the predictive accuracy of
our hybrid model was far better than that of traditional
techniques used to make sample-specific predictions by
simply fitting thematerial parameters that cannot be calculated
directly from SHG images. Even when applied only to tissue
samples with properties in the most common range, such con-
ventional techniques allow predictions of the stress–stretch
curves only with a median of R2 = 0.676, s.d. ± 0.26. In
addition, further extension of the prediction range to include
samples withmore unusual properties resulted in a substantial
decrease in the accuracy of the predictions.

This clearly demonstrates the superior predictive capabili-
ties of our novel hybrid constitutive model, which enables
predictions of the mechanical properties of soft biological tis-
sues with unprecedented accuracy. In particular, this suggests
that machine learning may be able to discover relevant infor-
mation in experimental data that has so far passed the
attention of people working on soft tissue modelling. This
once again confirms the transformative effects that machine
learning can also have on biomechanics.

A key element of our hybrid model is the theoretical prior
knowledge that it inherits due to its architecture from the
advanced theoretical constitutive model introduced in [12].
This prior knowledge helps to significantly reduce the
amount of training data required, and enables highly accurate
predictions based on a sample count as low as 27. In particular,
a previous attempt [10] to predict the constitutive properties of
soft tissues using a standard end-to-end DL architecture gave
relatively poor prediction accuracy, even though almost twice
the amount of data was used.

Hybrid modelling cannot only help reduce the amount of
training data required. An additional advantage is a constitu-
tive model in a classical form that can easily be used in any
computational (e.g. finite-element) simulation. It can also be
hoped that the prior knowledge in our framework protects
against over-fitting and improves the robustness against
errors in the datasets as well as the ability to extrapolate.
These advantages have not yet explicitly been shown here,
butwere recently demonstrated for another type of hybrid con-
stitutive model described in [11]. All of this clearly shows the
critical role that prior theoretical knowledge can play in apply-
ing machine learning to biomechanics, especially given the
often limited databases in this field due to high costs associated
with experiments. However, this article should be viewed as a
proof of concept study. Further studies based on much larger
datasets ideally including also multiratio biaxial extension
tests are required to confirm the results of this study and
identify potential difficulties machine learning might face in
soft tissue biomechanics. While such studies will require
substantial effort, especially to collect sufficient amounts of
experimental data, the promising results of this paper certainly
give hope that they could have a transformative impact on soft
tissue biomechanics.
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