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Abstract: With the increasing adoption of teledermatology, there is a need to improve the automatic
organization of medical records, being dermatological image modality a key filter in this process.
Although there has been considerable effort in the classification of medical imaging modalities, this
has not been in the field of dermatology. Moreover, as various devices are used in teledermatological
consultations, image acquisition conditions may differ. In this work, two models (VGG-16 and
MobileNetV2) were used to classify dermatological images from the Portuguese National Health
System according to their modality. Afterwards, four incremental learning strategies were applied to
these models, namely naive, elastic weight consolidation, averaged gradient episodic memory, and
experience replay, enabling their adaptation to new conditions while preserving previously acquired
knowledge. The evaluation considered catastrophic forgetting, accuracy, and computational cost.
The MobileNetV2 trained with the experience replay strategy, with 500 images in memory, achieved
a global accuracy of 86.04% with only 0.0344 of forgetting, which is 6.98% less than the second-best
strategy. Regarding efficiency, this strategy took 56 s per epoch longer than the baseline and required,
on average, 4554 megabytes of RAM during training. Promising results were achieved, proving the
effectiveness of the proposed approach.

Keywords: teledermatology; continual learning; catastrophic forgetting; modality classification

1. Introduction

Skin cancer is one of the most frequent malignancies in fair-skinned populations,
with a worldwide increasing incidence [1]. In 2020, nearly 300,000 new diagnoses of
malignant melanoma were reported worldwide, and more than one million new cases of
non-melanoma skin cancers were diagnosed, compromising the capacity of the healthcare
services to respond to all patients [2]. For this reason, and thanks to the advances in
medical imaging equipment, teledermatology has been essential to ensure an improved
quality of medical care. Due to the importance of the visual appearance of skin lesions,
teledermatological consultations are characterized by the acquisition of images representing
the patient’s lesion that may be stored and forwarded to a reference dermatologist, enabling
communication between primary-care units and dermatology services [3,4].

The increasing use of teledermatology has also contributed to the annual growth
of medical records, with it being estimated that every year these records grow from
20% to 40% in terms of medical images [5]. Since their categorization is mainly done
manually, which is time-consuming and prone to errors, the search for specific clinical
information among these records may be demanding [6]. For this reason, content-based
medical image retrieval systems (CBMIR) have been used to facilitate access to this data.
In these systems, each new medical image is automatically indexed according to a feature
system, automatically determining similar images. This way, CBMIR systems not only
reduce the workload of experts resulting from manual annotation of images but also
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may aid in the training of less experienced specialists [7,8]. However, medical records
contain images from different medical modalities, which may have been acquired under
different conditions [8]. Therefore, to tackle this problem, imaging modality has already
been pointed out as one of the most important filters to improve the search of medical
records, as it considers visual characteristics of images [9]. In terms of dermatology,
according to the established guidelines, it is possible to categorize the images acquired
for teledermatological consultations in different modalities, such as full-body, anatomic,
macroscopic, and dermoscopic images, or even clinical reports [10]. With this in mind,
automatic systems able to distinguish dermatological images according to these modalities
may improve the organization of medical records [11] and, consequently, contribute to the
optimization of teledermatological processes. Considering that several types of devices
are used to obtain these images and that medical data are always evolving, the acquisition
protocols may differ over time, leading to the introduction of new concepts of images, or
alterations in data distribution, which is typically called concept-drift [12,13]. Traditional
machine learning (ML)-based computer vision systems are static, requiring that a dataset
with a fixed distribution is used in the learning process. For this reason, when continuously
trained, these systems are very prone to a phenomenon usually designated by catastrophic
forgetting, which consists of a performance degradation at previously learned concepts
when facing new conditions [14,15]. Thus, to allow models to adapt to conditions different
from the ones they encountered initially while preserving the knowledge already acquired,
the use of incremental learning strategies may be essential.

As will be further discussed, although some works have been developed with the aim
of classifying medical images according to their modality, to the best of our knowledge,
these works were not specifically designed to differentiate dermatological modalities, but
other medical modalities such as computed tomography (CT), magnetic resonance imaging
(MRI), or X-ray , which present very particular visual characteristics. Moreover, although
some incremental learning strategies have been applied in a medical context, we are not
aware that they have been used in the field of dermatology, or more specifically in terms of
dermatological image modality classification.

Taking this into account, this work aims to develop models able to accurately clas-
sify dermatological images according to their modality, employing different incremental
learning strategies to allow the continual learning of new concepts. Hence, different reg-
ularization and rehearsal strategies were explored, and the corresponding results were
discussed in terms of catastrophic forgetting, accuracy, and computational cost (training
time and used random-access memory (RAM) ). The proposed approach was conceived
so incremental training could be applied to a model already stored, enabling its adapta-
tion to distinct images if other images were available, without forgetting the previously
acquired knowledge.

Therefore, the main contributions of this work may be summarized as follows:

• The proposed work presents models able to classify dermatological imaging modal-
ities, allowing a better organization of medical records to improve teledermatologi-
cal processes.

• It explores different incremental learning strategies to enable the continuous training of
the developed classification algorithms, without losing performance on the previously
learned concepts, as the images acquired in teledermatological consultations may
present different properties over time.

1.1. Related Work
1.1.1. Medical Imaging Modality Classification

To categorize medical images based on the corresponding modality, several systems
have been developed in recent years that aim to classify medical modalities, such as CT,
MRI, X-ray, and others. These systems comprise both feature engineering methods and
deep-learning-based approaches. With respect to the former, both visual and textual fea-
tures have been used. Concerning visual features, many works considered scale-invariant
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feature transform (SIFT) descriptors for feature extraction [8,16], some of them in combina-
tion with a bag of visual words (BoVW) representation [17,18]. Texture features, such as
Gabor or Tamura [16,19], local binary patterns [8,16], and fuzzy color histograms [17,19]
were also reported in some studies, and in [8] and [17], besides fuzzy color and texture
histograms, a color and edge directivity descriptor was also considered. In relation to the
textual features, the most common approach relies on the term frequency-inverse document
frequency (TF-IDF) weighting [8,16], with these features being acquired from the image
caption or metadata. In the majority of these works, a support vector machine (SVM)
classifier was employed, but, in some cases, other classifiers were also explored, such as
logistic regression [20], the k-Nearest Neighbors [21], or the random forest classifier [19].

Although hand-crafted designed approaches for medical image modality classifica-
tion have been widely used, algorithm efficacy is highly dependent on feature selection.
For this reason, less human-dependent methods are increasingly being adopted and, in
what concerns the deep-learning-based approaches, various types of convolution neural
networks (CNNs) have been employed to achieve more effective classifiers. The proposed
networks rely not only on the popular architectures such as the AlexNet [22], Visual Ge-
ometry Group network (VGG) [6,23], GoogLeNet [22], ResNet [6,23–25], and others, but
also on CNNs conceived from scratch [9]. In these studies, CNNs are used both as feature
extractors, then applied a different classifier, such as logistic regression [6], or SVM [22], or
in an end-to-end manner, applying a SoftMax function on top of the network to obtain the
classification prediction [9,22–24]. To improve the results, transfer learning is a common
procedure [6,22,23,25], allowing the leveraging of generic features that are shared among
different images and optimizing the process for the purposes of medical imaging modality.

1.1.2. Incremental Learning

With the aim of avoiding catastrophic forgetting when training models incrementally,
different strategies have been proposed in the literature. Depending on the way they
handle the information from previous tasks, these strategies may be divided into three
categories: architectural, regularization, and rehearsal strategies.

Regarding the first category, these strategies resort to network architecture manipula-
tions, without changing the objective function, which may be done by the accommodation
of new neurons or layers, by changing the activation functions, or even freezing specific
weights within the network. Some examples include the work developed by Roy et al. [26],
Progressive Neural Networks [27], ExpertGate [28], or CWR [29], where explicit architec-
ture modifications were made; or PackNet [30] and Piggyback [31] that use a special mask
obtained by network pruning techniques to protect the most relevant weights.

With respect to regularization strategies, they extend the loss function with a regular-
ization term, constraining the update of the weights depending on the neuron importance.
Concerning elastic weight consolidation (EWC) [32] the importance of the weights is
obtained through the Fisher information matrix that is computed before training the
incremental tasks. In the case of synaptic intelligence [33], the weights’ importance is
evaluated online, during stochastic gradient descent processing. Learning without forget-
ting (LWF) [34] is another example of a regularization strategy that intends to preserve
previously acquired knowledge through knowledge distillation.

In relation to rehearsal strategies, a subset of data from the past is reproduced on the
current model to reinforce the knowledge acquired in previous tasks. Gradient episodic
memory (GEM) [35] and averaged gradient episodic memory (A-GEM) [36] are examples
of this type of strategy, projecting the gradient on the current tasks to avoid catastrophic
forgetting. A typical rehearsal approach was explored in [37], which may be known as
experience replay and consists of using past examples together with new ones in each
training batch. In the case of iCarl [38], which is another popular incremental approach,
it may be defined as a hybrid strategy since, on the one hand, it retains examples from
previous tasks (rehearsal) and, on the other, it applies a distillation loss to constrain model
alterations (regularization).
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Incremental Learning in a Medical Context: In what concerns incremental learning
employed in medical applications, a few studies have already been done. Meng et al. [39]
proposed the Attribute Driven Incremental Network (ADINet) , an incremental system
for retinal image classification. To automatically infer data shifts resulting from the use of
different CT scanner protocols, a dynamic memory consisting of samples from the previous
task was proposed by Hofmanninger et al. [40]. In the work of Ravishankar et al. [41], an
incremental learning method based on feature transformers was developed and applied
to two medical applications: X-ray pneumothorax classification and ultrasound cardiac
view classification. Garderen et al. [42] and Baweja et al. [43] employed the previously
presented EWC [32] for glioma segmentation from MR imaging, and to incrementally
perform segmentation of normal structures and of white matter lesions in brain MR
imaging, respectively. Additionally, Karani et al. [44] developed an incremental method
for brain MR segmentation which can adjust to different acquisition protocols or scanners.
Although some medical applications of incremental learning have been proposed in recent
years, to the best of our knowledge, there is no report on the usage of incremental learning
strategies for modality classification in the dermatology field, so the need to develop
systems in this regard persists.

2. Materials and Methods
2.1. Problem Definition

To facilitate the evaluation of the teledermatological images by dermatologists, it
is essential that medical records are well organized, where their categorization through
imaging modality may aid in the process. As, over time, different devices and acquisition
conditions may be used to obtain photos in these consultations, distinct properties and new
concepts may be introduced, which can lead to alterations that affect dataset distribution.
Moreover, traditional ML-based computer vision systems are static, requiring a dataset
with fixed data distribution to optimize the learning process. Therefore, to complement
their learning with new information from unseen data, these models need to be retrained
using both previous and new data, which may be unfeasible due to the high computational
cost involved or because data from the past may not be available anymore due to memory
issues, for instance. Incremental learning intends to overcome these situations, comprising
strategies able to preserve and extend the already acquired knowledge to solve new tasks.

Taking this into account, in this work two models were initially developed to classify
dermatological images according to their modality (full-body, anatomic, macroscopic,
dermoscopic, or clinical report). Additionally, these models should adapt to images with
concepts different from the ones they first encountered, while preserving the knowledge
previously learned. Therefore, the learning process was divided into two tasks (Task A and
Task B), which are comprised of images corresponding to the same modalities but with
distinct visual properties. The developed models were first trained with images from Task
A and various incremental learning strategies were then applied, to allow them to continue
acquiring knowledge from a new set of images (Task B) without forgetting the information
learned on Task A.

2.2. Database

In this work, a private dataset containing a total of 4955 dermatological images from
the Portuguese National Health System consisting of retrospective data related to the
referral requests from local healthcare units for the first dermatology hospital consultation
was considered. This dataset is composed of images belonging to different dermatologi-
cal modalities, namely full-body, anatomic, macroscopic, and dermoscopic images. The
classification by modality was manually performed by four researchers following the
medical guidelines [10]. Besides the aforementioned images modalities, primary-care
clinicians may also send other clinical information for teledermatological consultations,
such as medical reports. Due to confidentiality issues, this data could not be directly
used in the work and, for this reason, images that could represent this information had
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to be acquired from other sources. To accomplish this purpose, a Chrome extension called
“Imageye” (https://chrome.google.com/webstore/detail/image-downloader-imageye/
agionbommeaifngbhincahgmoflcikhm) (accessed on 9 February 2021) was used to collect
this class of images from Google Images. The search included terms such as “medical report”,
“clinical report”, “report”, “medical form” and others, resulting in 1020 images belonging
to this modality. Thus, with the addition of these images, the employed dataset comprised
a total of 5975 images. An example concerning each modality may be found in Figure 1.

Figure 1. Examples of images belonging to each dermatological modality.

The dataset was divided into two subsets of images with different visual properties,
corresponding to Task A and Task B. Task B consisted of around 900 examples that were
used to continue training the image modality classification models developed in the first
part of the work (Section 2.3). Since one of the aims of incremental learning is to allow
algorithms to adapt to new conditions, the selection of these examples was made to simulate
the presence of the concept-drift. To achieve this, and since no information concerning the
acquisition properties of the images was provided, some particular types of images were
only used on the incremental phase (i.e., on Task B), as shown in Figure 2, allowing the
introduction of new concepts on the already seen classes. Regarding the full-body modality,
this selection referred to images where legs and arms were presented. In the case of the
anatomic modality, all images that contained hands or feet were only considered in the
second phase of the learning process. Concerning the macroscopic images, images that
contained regions of the face were only used in Task B, and with respect to the dermoscopic
modality, the images selected for the incremental phase comprised the ones that presented
a pink coloring, such as the one presented in Figure 2.

Figure 2. Examples of images from each image modality selected for the incremental phase.

For training, validation, and testing purposes the dataset was then split in a proportion
of 60:20:20 in the case of Task A and in a proportion of 80:20 for training and testing in
the case of Task B. In summary, the dataset distribution according to the different tasks is
presented in Table 1.

Due to the existing imbalance across the five modalities (Table 1), an oversampling of
the training images corresponding to the less representative classes (i.e., full-body, dermo-
scopic, and clinical reports) was applied, resulting in around 4000 images related to the
first task and around 1000 in the case of the incremental task. This oversampling was made
offline, including data augmentation techniques such as horizontal and vertical flipping
with a probability of 0.5, alterations in brightness with a percentual value p ∈ [0.4, 0.8],
zoom shifts using a percentual value p ∈ [0.8, 1.2], and width shifts in the percent range of
[−0.15, 0.15]. After employing these techniques, all images were assessed to ensure that
they have not gone through damaging alterations.

https://chrome.google.com/webstore/detail/image-downloader-imageye/agionbommeaifngbhincahgmoflcikhm
https://chrome.google.com/webstore/detail/image-downloader-imageye/agionbommeaifngbhincahgmoflcikhm
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Table 1. Dataset distribution according to the different tasks.

Task A Task B (Incremental)

Train Validation Test Train Test Total

Full-body 180 60 60 43 10 353
Anatomic 803 268 268 190 48 1577

Macroscopic 880 294 294 209 51 1728
Dermoscopic 661 220 221 156 39 1297

Clinical reports 521 173 173 123 30 1020

Total 3045 1015 1016 721 178 5975

2.3. Image Modality Classification

After data preparation, two models that could accurately classify images according to
their modalities were developed. These models were trained on the images from Task A,
and the resulting parameters were stored to enable them to later be incrementally trained
with the images from Task B (Section 2.4).

The choice relied on two distinct networks, the VGG-16 and the MobileNetV2, allow-
ing an understanding of the differences verified in the performance of the models according
to their complexity. The VGG-16 architecture was chosen due to its popularity and effec-
tiveness in image classification and, as reported in the previous section, it has already been
employed for image modality classification purposes in other medical fields [6,23], and the
MobileNetV2 architecture since it is a smaller network also able to achieve good results in
image classification.

Both networks were used in a transfer learning scenario, having been previously
trained on the ImageNet dataset. The pretrained networks were used as feature extractors,
and a new set of layers was added to the top of the extracted features, which were trained
for this modality classification problem. Thus, in the case of the VGG-16 network, around
12 million trainable parameters were considered, whereas in the MobileNetV2 model only
about 650,000 parameters were trainable.

The implementation of these models and of the following work was made by adopting
the PyTorch API 1.8.1 in Python 3.7.10 on a NVIDIA T4 GPU with 8GB of memory. As
training protocol, the two models were trained for 50 epochs, considering a batch size of
16 and a learning rate of 1 × 10−5. In both, the Adam optimizer was considered and a
cross-entropy loss function was applied.

With respect to their evaluation, the models were assessed in terms of accuracy,
precision, recall, and F1-score metrics, and the corresponding confusion matrices were
plotted, using the test images from Task A. Furthermore, although these models have only
been trained with images from the Task A subset, their accuracy was also computed on
Task B images and on a set containing the test images belonging to both tasks. Therefore,
these results could be compared with the ones achieved in the second part of the work,
after employment of different incremental learning strategies.

2.4. Incremental Learning of Image Modalities

Due to the fast-growing interest in incremental learning, often different assumptions
and settings are considered, which makes it difficult to compare algorithm performance,
even when the same benchmarks are considered. Therefore, it was decided to adopt the
Alpha version of the Avalanche library [45], which is an end-to-end open-source library that
favors the flexibility and simplicity of incremental learning implementations.

2.4.1. Incremental Learning Strategies

After being trained on Task A (Section 2.3), the models’ parameters that have been
stored were updated on the incremental training resorting to different strategies. In this way,
on the one hand, the previously trained models could adjust to new concepts, preserving
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and extending already acquired knowledge, and, on the other hand, a more reliable compar-
ison of the performance of the implemented incremental learning strategies could be done,
as they were all applied to the same initial models. The strategies’ choice relied on the naive
strategy, a regularization strategy (EWC [32]), and two rehearsal strategies (A-GEM [36]
and experience replay [37]), since these are popular continual learning approaches, with
some of them having been previously considered in medical contexts [40,42,43].

The naive strategy works as a baseline, with the two tasks learned sequentially without
using any technique to tackle catastrophic forgetting.

In the case of the EWC [32], a new parameter on the loss function that aims to penalize
changes in the most important weights is introduced. The importance of the weights is
given by the diagonal of the Fisher matrix that is computed after training Task A. Thus, the
function that is intended to be minimized in the incremental training is obtained by:

L(θ) = LB(θ) + ∑
i

λ

2
Fi(θi − θ∗A,i)

2 (1)

where LB(θ) is the loss corresponding to the incremental task only, λ is a hyperparameter
that sets how important the previous task is compared with the new one, F represents the
diagonal of the Fisher matrix, θi is the set of weights and biases of the current (incremental)
task, θ∗A,i represents the sets of weights and biases of the previous task, and i labels
each parameter.

Regarding A-GEM, this strategy considers a fixed memory to store patterns from a
previous task. A reference gradient is then computed, consisting of the average of the
gradients from a random set of examples contained in this memory. If the dot product be-
tween the reference gradient and the gradient of the current task is negative, the gradient is
projected via Equation (2), ensuring that the loss over the previous tasks does not increase.

g̃ = g−
gT gre f

gT
re f gre f

gre f (2)

In this equation, g refers to the gradient of the current task and gre f is the
reference gradient.

With respect to the experience replay, a random subset of images from the previous
task that are contained in external memory is concatenated with the incremental dataset
at each training batch. The examples considered in each batch are balanced, ensuring an
equal number of images from the various tasks.

To implement these strategies, various λ values were employed in the case of the
EWC and, in the case of the rehearsal strategies (A-GEM and experience replay), different
memory sizes were considered. More specifically, the EWC strategy was implemented with
λ values of 0.5, 1, 50, and 100; the A-GEM strategy retained in memory 50, 100, and 150
examples from the first task; and, with respect to the experience replay strategy, 100, 250,
and 500 images from Task A were considered throughout the incremental training.

Besides these approaches, a cumulative strategy was also explored. In this case, it is
intended to mitigate the catastrophic forgetting by retraining the model from scratch using
all previous examples together with the new ones—in other words, images from Tasks
A and B at the same time. Therefore, since it requires all data to be stored in memory, it
cannot properly be defined as an incremental learning approach, but rather as a means
of comparison.

2.4.2. Incremental Task Training

As aforementioned, it was intended that the models previously trained with images
from Task A could adapt to the new concepts presented in Task B images, preserving the
knowledge acquired from the first task. For this reason, the code of the Avalanche library
was slightly adjusted to employ the already trained models instead of retraining them with
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Task A images. In this way, for the various incremental learning strategies, the training
with images from Task B started from the same parameters.

The models employed in the training of Task B also consisted of a VGG-16 and
MobileNetV2 networks, since the goal of this task was also to classify dermatological
modalities. With the exception of the batch size that was set to 8 to reduce the involved
computational cost and the number of epochs, the other implementation details were
similar to the ones considered on the training of Task A (Section 2.3). Regarding the
number of epochs, Task B was trained for 10, 20, and 30 epochs, allowing an understanding
of whether the performance of the models was affected by a longer training, namely in
what concerns the forgetting.

For both models, each configuration was run for 10 iterations to provide more robust
and reliable results.

2.4.3. Incremental Learning Evaluation

Although there is still no consensus among the computer vision community in what
concerns the evaluation of the incremental learning strategies’ performance, this assessment
typically relies on accuracy computation at different levels (among the different tasks or
global performance) and on the efficiency of the models. Thus, these were the evaluation
metrics considered within the scope of this work. With respect to accuracy, it was computed
after training Task A and after training Task B, allowing calculation of the backward transfer
(BWT) and the forward transfer (FWT) metrics proposed in [35]. The higher the BWT and
the FWT, the better. Moreover, a negative BWT is usually related to catastrophic forgetting,
which means that the performance of the previous task decreased after performing the
incremental training with new concepts. In relation to the FWT, this metric was assessed
for the two models using Equation (3) [35], where the b variable corresponds to the test
accuracies vector for each task at random initialization. In this work, only two tasks were
explored (T = 2) and the training of the first task was the same for all strategies. Therefore,
the variables involved in the computation of the FWT metric simply corresponded to
the b2 value and to the RA,B, which do not depend on the implemented incremental
learning strategy.

FWT =
1

T − 1

T

∑
i=2

Ri−1,i − bi (3)

Furthermore, the accuracy of all test images (Task A and Task B together) after the two
training processes was computed. This evaluation was made to evaluate the performance
of the obtained models on a set of examples containing images belonging to the two
employed distributions.

Concerning the efficiency of the different approaches, for every incremental learning
strategy, both the time required to train each epoch and the maximum RAM used through-
out the learning process were assessed. The evaluation of the RAM usage was made every
0.5 s and the maximum value reached was considered.

3. Results and Discussion
3.1. Image Modality Classification

Regarding the classification of dermatological images’ modalities, Table 2 shows the
test results with respect to the models, which, as previously mentioned (Section 2.3), were
only trained with images from Task A.

As it is possible to infer from Table 2, independently of the models used, and analyzing
the F1-score, the modality that most negatively influenced the results was full-body. This
may be due to the smaller variability of images belonging to this category since the full-body
modality was the less representative class of the original dataset where only 180 examples
were available for training (Table 1). Although an oversampling has been made to balance
the classes during the training phase, only a small feature diversity was introduced with
this technique.
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Table 2. Results of the base models tested on Task A.

Model Modality Accuracy Precision Recall F1-Score

VGG-16

Full-body

0.9084

0.6486 0.8000 0.7164
Anatomic 0.9032 0.7313 0.8082

Macroscopic 0.8636 0.9694 0.9135
Dermoscopic 0.9955 1.0000 0.9977

Clinical reports 1.0000 1.0000 1.0000

MobileNetV2

Full-body

0.8837

0.6232 0.7167 0.6667
Anatomic 0.8071 0.7649 0.7854

Macroscopic 0.8658 0.8776 0.8716
Dermoscopic 0.9865 0.9955 0.9910

Clinical reports 1.0000 0.9942 0.9971

Comparing the results achieved by the two models, the VGG-16 model surpassed
the performance of the MobileNetV2 in almost all metrics and classes, as highlighted in
Table 2. These outcomes may result from the model’s higher complexity, being able to
better identify features intrinsic to each modality.

To further understand these results, the confusion matrices corresponding to the two
models were plotted and can be found in Figure 3.

Looking at these matrices, it may be verified that in general, both the VGG-16 and the
MobileNetV2 were able to correctly predict the modalities of the different dermatological
images, which is represented by the darker shades on the matrices’ diagonal. Nevertheless,
some anatomic, full-body, and macroscopic images were confused by the two models. It is
worth noting that in some cases, the images belonging to these classes are very similar, and
it was difficult to effectively differentiate them. Hence, as the labeling of the images was
manually made by various people, it is possible that different labels have been assigned to
identical images, which may have influenced the results.

Figure 3. Confusion matrices of the base models tested on Task A.

To allow a later comparison with the results obtained after being incrementally trained
with Task B images, these models were also evaluated on the test images belonging to
the incremental task (Task B) and on the global test set containing the test images con-
cerning both tasks (Tasks A and B). The corresponding accuracy results may be found
in Table 3. Regarding the adopted terminology, as proposed in [35], RA,B corresponds to
the test accuracy of Task B after the models have been trained with images from Task A,
for instance.
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Table 3. Accuracy results after training Task A.

RA,A RA,B RA,(A+B)

VGG-16 0.9084 0.8652 0.9019
MobileNetV2 0.8837 0.8596 0.8801

3.2. Incremental Learning of Image Modalities

To continue training models with images from Task B, different settings were em-
ployed in the implementation of the considered strategies, namely the λ value, and memory
sizes, and various number of epochs were used, as detailed in Sections 2.4.1 and 2.4.2, re-
spectively. Regarding the number of epochs, with respect to the VGG-16 model, in the case
of the naive, the EWC, and the A-GEM strategies considering a memory size of 100 and
150, it was verified that when a higher number of epochs was considered, the global per-
formance of the model decreased and catastrophic forgetting increased. Therefore, it is
preferable to consider a lower number of epochs when implementing these strategies, such
as 10 epochs. In the case of the A-GEM strategy with a memory buffer of 50 examples
and of the experience replay strategy considering 250 and 500 images from the first task, it
was advantageous to use an intermediate number of epochs, since when the model was
trained for 20 epochs, it was possible to further reduce the forgetting, compared with the
results achieved for 10 and for 30 epochs. Finally, only the experience replay strategy with
a memory size of 100 demonstrated an improvement on the global performance when the
model was trained for a larger number of epochs (30 epochs). Concerning the MobileNetV2
model, it was verified that all strategies benefited from being trained for a lower number of
epochs, i.e., for 10 epochs. Therefore, in Table 4 it is possible to find the results achieved by
each strategy with respect to the number of epochs that provided the best outcomes and
concerning both models. The presented results refer to the global test accuracy (considering
the test images belonging to both Task A and B together, represented by RB,(A+B)) after the
two tasks have been trained sequentially, and the catastrophic forgetting (assessed by the
BWT metric).

Table 4. Test results of the two models after training Task B considering different incremental learning strategies. Results
averaged over 10 iterations (±SD).

VGG−16 MobileNetV2

RB,(A+B) BWT RB,(A+B) BWT

Naive 0.8459 ± 0.0025 −0.0767 ± 0.0029 0.8313 ± 0.0049 −0.0688 ± 0.0047

EWC100 0.8500 ± 0.0025 −0.0718 ± 0.0029 0.8337 ± 0.0072 −0.0659 ± 0.0065
EWC50 0.8517 ± 0.0039 −0.0699 ± 0.0046 0.8367 ± 0.0065 −0.0628 ± 0.0065
EWC1 0.8500 ± 0.0028 −0.0718 ± 0.0033 0.8348 ± 0.0059 −0.0652 ± 0.0057

EWC0.5 0.8500 ± 0.0032 −0.0719 ± 0.0038 0.8339 ± 0.0060 −0.0655 ± 0.0055

A−GEM50 0.8495 ± 0.0036 −0.0724 ± 0.0042 0.8432 ± 0.0063 −0.0567 ± 0.0065
A−GEM100 0.8502 ± 0.0030 −0.0716 ± 0.0035 0.8436 ± 0.0055 −0.0563 ± 0.0064
A−GEM150 0.8522 ± 0.0030 −0.0693 ± 0.0035 0.8453 ± 0.0034 −0.0551 ± 0.0044

Replay100 0.8602 ± 0.0056 −0.0600 ± 0.0071 0.8516 ± 0.0059 −0.0448 ± 0.0070
Replay250 0.8695 ± 0.0043 −0.0482 ± 0.0050 0.8588 ± 0.0051 −0.0368 ± 0.0040
Replay500 0.8786 ± 0.0045 −0.0372 ± 0.0056 0.8604 ± 0.0065 −0.0344 ± 0.0070

The analysis of this table demonstrates that in both models it was not possible to
completely avoid the catastrophic forgetting (i.e., to preserve all the knowledge acquired in
Task A after the models have continued to be trained with images from Task B), as the BWT
values remain negative. Nevertheless, the explored incremental learning strategies allowed
a reduction of it, which may be verified by the increase in the BWT values when compared
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to the ones obtained with the naive strategy which works as a baseline strategy. Moreover,
when the incremental strategies were employed, the global test accuracy also improved
when compared to when the models were simply fine-tuned (naive strategy), which results
from the fact that they allowed the retention of more information concerning the first task.

Bearing these results in mind, in Figure 4, a comparison of the forgetting (assessed
through the BWT metric), achieved by the two models and using various incremental
learning strategies, is depicted.

Figure 4. Model comparison in terms of backward transfer. Results averaged over 10 iterations
(±SD).

It is possible to verify that the MobileNetV2 model surpassed the VGG-16 model in
what concerns forgetting, being able to better preserve the knowledge acquired on the
previous task (Task A). This is demonstrated by the higher BWT values obtained for all the
implemented incremental learning strategies when the MobileNetV2 model was employed,
which means that catastrophic forgetting verified with this model was lower.

Furthermore, other conclusions may be taken from this plot and from Table 4, namely
concerning the comparison of the different incremental strategies. It is possible to infer that
for both models, the rehearsal strategies (A-GEM and experience replay) demonstrated
outperformance of the employed regularization strategy (EWC), for almost all the consid-
ered λ values and memory sizes. Moreover, in the case of the EWC regularization strategy,
the λ value that provided the best results in terms of global accuracy and forgetting corre-
sponded to 50. Concerning the rehearsal strategies, it is verified that as a higher number
of examples from the first task was considered (i.e., as the memory size increased), the
performance of the models improved. Therefore, for each incremental learning strategy, a
more detailed analysis was addressed taking into account the λ value (in the case of the
EWC) and the memory sizes (in the case of the rehearsal strategies) that led to the best
outcomes. In Table 5, the accuracy results corresponding to the implementation of the
incremental strategies using these parameters among the different tasks may be found.

Table 5. Test results in terms of accuracy concerning the best approaches for the two models. Results
averaged over 10 iterations (±SD).

Strategy RA,A RA,B RB,A RB,B

VGG-16

Naive

0.9084 0.8652

0.8316 ± 0.0029 0.9270 ± 0.0000
EWC50 0.8385 ± 0.0046 0.9270 ± 0.0000

AGEM150 0.8391 ± 0.0035 0.9270 ± 0.0000
Replay500 0.8711 ± 0.0056 0.9213 ± 0.0038

MobileNetV2

Naive

0.8837 0.8596

0.8150 ± 0.0047 0.9242 ± 0.0100
EWC50 0.8209 ± 0.0065 0.9270 ± 0.0102

AGEM150 0.8287 ± 0.0044 0.9404 ± 0.0054
Replay500 0.8494 ± 0.0079 0.9236 ± 0.0100

These results are in line with what was previously mentioned: on the one hand,
for all strategies, the performance of both models on the first task decreased after they
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had been incrementally trained with the images corresponding to Task B (RB,A), which
results from catastrophic forgetting; on the other hand, it was possible to improve the
results of Task B (RB,B), when compared with the ones obtained right after the training of
Task A (RA,B), since the incremental training allowed the models to learn features of the
incremental images.

As previously mentioned, the FWT metric was also computed. In the case of the
VGG-16 model, an FWT value of 0.7303 was achieved, while in the case of the MobileNetV2
this value corresponded to 0.6910, which means that after being trained with images from
Task A only, the VGG-16 model could better perform on Task B.

Although accuracy is a standard metric used to evaluate incremental learning ap-
proaches, to assess the performance of the models with respect to the classes predicted
after they have been trained incrementally, other metrics were also computed. In Table 6, it
is possible to find the F1-score results achieved with the test images from Task A after the
models have been trained on Task B. These results are averaged over the ten iterations that
were made. Besides that, in Figures 5 and 6 the confusion matrices of Task A test images
concerning a randomly selected iteration may be observed, allowing an understanding of
which modalities were most affected by the incremental training. Despite the presented
matrices being related to only one iteration, they were plotted for all iterations, to avoid
biased conclusions.

Confronting these results with the ones achieved after the first training (Table 2), the
anatomic modality was the one that underwent the most changes after the models were
incrementally trained with images from Task B. This may be verified by a steeper decrease
in the F1-score metric in the case of this modality. Moreover, observing the confusion
matrices presented in Figures 5 and 6, we can see that these images were essentially
misclassified as full-body or macroscopic images.

Table 6. Results of Task A after the incremental training has been performed. Results averaged over
10 iterations.

Model Modality Naive EWC50 A-GEM150 Replay500
F1-Score F1-Score F1-Score F1-Score

VGG-16

Full-body 0.5583 0.5684 0.5665 0.6461
Anatomic 0.5730 0.6016 0.5928 0.7123

Macroscopic 0.8732 0.8757 0.8778 0.8832
Dermoscopic 0.9868 0.9865 0.9903 0.9957

Clinical reports 1.0000 1.0000 1.0000 1.0000

MobileNetV2

Full-body 0.5348 0.5512 0.5683 0.6177
Anatomic 0.5626 0.5810 0.6153 0.6867

Macroscopic 0.8503 0.8500 0.8499 0.8507
Dermoscopic 0.9799 0.9810 0.9797 0.9833

Clinical reports 0.9968 0.9971 0.9971 0.9971

Figure 5. Confusion matrices of Task A test images after the training of Task B with the VGG-16 model.
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Figure 6. Confusion matrices of Task A test images after the training of Task B with the MobileNetV2 model.

Some examples of images from Task A that were correctly classified after the first
training but misclassified after the incremental one can be found in Figure 7. By looking
at these images, it is then possible to confirm that they present patterns in common with
the images that were considered in the incremental task (Figure 2), despite belonging to
different modalities. This may explain the alteration verified in their classification, as for
instance, the anatomic modality of Task B comprised images of hand and feet, whereas
in the first task these images were assigned to the macroscopic class, as is the case of the
rightmost images in Figure 7. As mentioned above, this may result from a labeling issue,
as some similar images were assigned to distinct classes, and, when dividing the dataset,
these may have been allocated to different tasks.

Besides the naive strategy, a cumulative strategy was also explored as a baseline
strategy. As previously introduced, this strategy consists of a model retraining considering
all examples from previous and new tasks. Hence, in the context of this problem, the
VGG-16 and the MobileNetV2 models were trained considering images belonging to Task
A and B together. The models were also tested on the images concerning Task A (RA), Task
B (RB), and on the global test set (Task A + B). The accuracy results obtained through this
approach are presented in Table 7.

Figure 7. Examples of images from Task A correctly classified after the first training but misclassified
after the incremental training.
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Table 7. Cumulative strategy results. Results averaged over 5 iterations (±SD).

RA RB R(A+B)

VGG-16 0.8802 ± 0.0034 0.9224 ± 0.0062 0.8865 ± 0.0023
MobileNetV2 0.8617 ± 0.0087 0.9371 ± 0.0047 0.8742 ± 0.0079

By comparing the results achieved with the cumulative strategy with the ones cor-
responding to the incremental learning strategies (Tables 5 and 7, respectively), it may
be verified that the performance of Task A improved when the models had access to all
images (A + B) at the same time, instead of being trained incrementally. This is demon-
strated by the higher RA value reached with the cumulative strategy, compared to the
RB,A values obtained with the incremental learning approaches. A possible explanation
for this relies on the difference observed in the number of images belonging to the two
tasks, since as the first task contains more images, when the models were trained with all
images together, they were not as affected by the Task B images as when the incremental
training was done. Regarding Task B and the VGG-16 model, it was verified that when all
images were available (cumulative strategy, RB), the performance of this task decreased in
relation to an incremental training (RB,B), except for the experience replay with a memory
buffer of 500 examples from the first task that achieved lower results on the incremental
scenario. This exception may result from the fact that when more images from Task A
were considered in the incremental training, due to their higher representativeness, the
incremental model could not fit so well to Task B. Thus, the same aforementioned reason
may be responsible for the lower performance on the cumulative scenario, since due to
the smaller number of images belonging to the incremental task, when the model was
trained with all images at the same time, it was not able to properly adjust to this task.
Nevertheless, in what concerns the MobileNetV2 model, in general, the Task B performance
was better when the model was trained with all images together. This turns out to be
in accordance with what was previously verified, as the forgetting of the MobileNetV2
was lower. This means that, when incrementally trained, the model did not fit so well to
the images belonging to Task B, whereas when all images were trained together, it was
adjusted to the global domain. Moreover, comparing the overall outcomes of the models
when using the incremental learning strategies (RB,(A+B) in Table 4) and when trained in a
cumulative scenario (R(A+B)), it is possible to see that when the models were trained with
images regarding the two tasks together from the beginning, their performance improved.
However, this scenario implies that all images are available at the training time, which may
be unfeasible in terms of the required memory to store all examples, or even due to the
computational cost involved to train them. Bearing this in mind, training models incre-
mentally may be preferable over retraining them as new images are available, presenting a
better trade-off between the achieved performance and the required costs with respect to
storage capacity and computation.

The efficiency assessment of the incremental learning strategies was made both in
terms of the time taken by each epoch at the learning phase, and of the RAM required
to train the models. Although this evaluation has been made for all strategies, only the
results with respect to the parameters that led to a better performance of each strategy are
presented in Table 8. Furthermore, in Figure 8, a visual comparison of the presented results
may be found, where a representation in terms of global test accuracy, training time, and
RAM is shown.

These values demonstrate that in terms of time, each epoch of the rehearsal strategies
took longer to be trained. This results from the higher amount of considered examples, as
some information concerning the first task is trained together with the incremental one.
Therefore, since the experience replay strategy that uses 500 examples from Task A was
trained for 20 epochs in the case of the VGG-16 model, among the strategies presented in
the table, this was the strategy that took the longest to be trained.
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Table 8. Training results in terms of efficiency concerning the best approaches for the two models.
Results averaged over 10 iterations (±SD).

Strategy Time/Epoch(s) RAM (MB)

VGG-16

Naive 59.38 ± 2.66 3805.22 ± 1360.07
EWC50 60.98 ± 0.64 4017.37 ± 149.99

AGEM150 166.01 ± 3.44 6127.38 ± 284.36
Replay500 123.54 ± 3.46 4441.09 ± 105.13

MobileNetV2

Naive 53.04 ± 2.46 4437.26 ± 226.91
EWC50 54.88 ± 2.23 4428.37 ± 7.97

AGEM150 83.91 ± 2.97 6457.83 ± 3.98
Replay500 109.56 ± 3.35 4554.59 ± 144.08

Besides that, regarding the required RAM, the A-GEM strategy involved a higher
computational cost when compared to all other strategies, being even unfeasible to be
trained when a memory size higher than 150 was applied. Therefore, comparing the two
employed rehearsal strategies, although in the case of the VGG-16 model, the experience
replay has taken longer to be trained due to the higher number of epochs, in what concerns
the efficiency in terms of the required RAM and taking into account the obtained accuracy
and forgetting results, the experience replay strategy may be advantageous when compared
to the A-GEM strategy.

Moreover, despite the performance of the rehearsal strategies being better when
compared to the EWC, these strategies require that some previous images are maintained
in memory to be later used in combination with the incremental set. Thus, if these images
are not available or if the training time is a conditioning factor, taking into account that
the regularization strategy was also able to achieve promising results, this strategy may be
preferable over the A-GEM or experience replay in the context of this problem.

Figure 8. Comparison of the different incremental learning strategies in terms of global test accuracy,
training time, and RAM. The circles’ diameter is proportional to the required RAM.

4. Conclusions and Future Work

Due to the increasing incidence of skin cancer, the use of teledermatology has been
growing, contributing to the annual growth of medical records in terms of medical images.
Therefore, to enable an effective retrieval of specific information from these records, au-
tomated categorization systems are being increasingly developed. Nevertheless, to the
best of our knowledge, the already developed systems are not specifically designed for
dermatological imaging modality classification, but to other image modalities, such as CT,
MRI, X-ray, and others, meaning that the need to develop systems in this regard remains.
Over time, different protocols may be used for image acquisition, introducing new con-
cepts or changing the data distribution of these images. As traditional ML-based computer
vision systems are static; they are not able to learn new information without forgetting the
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knowledge acquired before. For this reason, in recent years, the use of incremental learning
approaches has gained popularity among the scientific community.

Bearing this in mind, this work comprised two major goals: the development of sys-
tems able to accurately classify dermatological images according to their modality and the
implementation of different incremental learning strategies to allow the developed models
to be continuously trained, preserving and extending the already acquired knowledge.

As main conclusions and with respect to the first goal of the work, it was verified that
the VGG-16 model performed better over the MobileNetV2 model in the dermatological
imaging modality classification problem. However, comparing the performance of the
two models in an incremental scenario, the simpler model (i.e., the MobileNetV2) was
better able to preserve the previously learned information, as the obtained BWT values
were higher than the ones achieved with the VGG-16 model. Additionally, the employed
rehearsal strategies led to better results in terms of accuracy and forgetting. Nevertheless,
they also took longer to be trained, and the A-GEM required more RAM during training.
For this reason, although the results achieved with the EWC strategy have been lower,
they were also promising, and this strategy may be preferable if the training time is a
conditioning factor or even if previous images are not available at all. With respect to
the employed cumulative strategy, despite having achieved better results in terms of
global accuracy, it implies that all images are available at the training time, which may be
unfeasible both in terms of memory constraints or due to the computational cost involved.
Therefore, to overcome these limitations, incremental learning may be an advantageous
methodology, with its effectiveness having been proved within the scope of this work.

Although several conclusions regarding the behavior of incremental learning ap-
proaches have been drawn, there are still some aspects that may be considered in a future
work to reinforce and improve the obtained results. Since in this work the images selected
for the incremental task were part of the same original dataset, and this selection was
visually made, it could be interesting to use a different strategy to separate tasks, to verify
if the main conclusions still hold. Additionally, since these images were essentially from
a fair-skinned population, the incremental task could take into account new images with
different skin tones, for instance, or even the task separation could be done according
to image acquisition protocols. Moreover, due to the limited number of data, it was not
possible to investigate the performance of the incremental learning strategies on a third
task. Hence, to corroborate the achieved results and evaluate their evolution throughout
different tasks, more data should be considered.

As a final remark, it is noteworthy that the proposed design may be applied to other
classification scenarios, considering different databases. Moreover, other networks may be
employed, enabling this approach to be adapted to different classification problems.
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