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Abstract
Breast cancer is the most common form of malignant tumor in females, accounting for the
second highest mortality among cancer patients. In the breast tumor microenvironment,
tumor-associated macrophages (TAMs) are the most abundant immune cells, which regu-
late the progression of breast cancer. During breast cancer tumorigenesis and progression,
TAMs support breast tumor growth by promoting angiogenesis and cancer cell metastasis,
inducing cancer stemness, regulating energy metabolism, and supporting immune system
suppression. TAMs exhibit a high degree of cellular plasticity. Repolarizing tumor-related
macrophages into M1 macrophages can promote tumor regression. This study reviews the
role and mechanism of action of TAMs in the development of breast cancer and establishes
TAMs as effective targets for breast cancer treatment.
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INTRODUCTION

The global cancer incidence and prevalence statistics of 2020
indicated that breast cancer has surpassed lung cancer to
become the most common form of cancer prevalent in
women today.1 Histological classification of breast cancer
based on the expression of estrogen receptor (ER), proges-
terone receptor (PR), and/or human epidermal growth fac-
tor receptor-2 (HER2) has been established as the gold
standard of cancer diagnosis which is clinically used to clas-
sify breast cancer as luminal A, luminal B, HER2-positive
and basal-like triple negative breast cancer (BL/TNBC).2

Clinical efforts to characterize the features of the breast
tumor microenvironment (TME) have confirmed the
presence of tumor cells and the active recruitment of
host immune cells such as tumor-associated macrophages
(TAMs), T cells, natural killer (NK) cells, B cells, granulocytes,
plasma cells, and basophils, respectively.3 TAMs are promi-
nent components of the TME, comprising over 50% of the
total infiltrating immune cells in some cases, and can affect
the progression of breast cancer through diverse mecha-
nisms4,5 Macrophages as a heterogeneous cell population
are differentiated into two functionally distinct subtypes
which respond to different environmental factor-based

stimuli to form classical activated M1 macrophages or alter-
natively activated M2 macrophages, respectively.6,7

Traditionally, M1 macrophages exert tumor-killing func-
tions via cancer cell recognition and phagocytosis accompa-
nied with production of proinflammatory cytokine molecules
such as interferon γ (IFN-γ) and interleukin-12 (IL-12).8–10

During tumor progression, the number of M2 macrophages
increase and they become the dominant type of TAM in the
TME. M2 macrophages are generally regarded as “tumor
promotors”, which support the progression of breast cancer
by promoting tumor cell invasion and metastasis, angiogene-
sis, cancer stemness, regulating energy metabolism, and
supporting immune system evasion.5,11–14 TAM-based infil-
tration in the primary tumor has been associated with inferior
patient prognoses and treatment outcomes.5,11–14 In this
review, we summarize the functional aspects of TAMs in the
development of breast cancer as shown in Figure 1 which
may be utilized in breast cancer diagnosis and prevention.

BREAST CANCER ANGIOGENESIS

Angiogenesis involves the formation of new blood vessels
which support tumor growth and development. TAMs act
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as important players in angiogenesis by closely associating
themselves with high-density vascular networks formed in
breast cancer. In breast cancer TME, TAMs are an impor-
tant source of vascular endothelial growth factor
(VEGF).15,16 The interactions of VEGF with vascular endo-
thelial growth factor receptors (VEGFRs) triggers angiogen-
esis in breast cancer. Therefore, inhibiting potential VEGF/
VEGFR interactions can significantly block angiogenesis
and tumor metastasis.17,18 The macrophage colony-
stimulating factor or colony-stimulating factor 1 (CSF-1)
drives the recruitment and the differentiation of macro-
phages towards a M2 phenotype. During neoplasm
development in the mammary gland, the application of
colony-stimulating factor 1 receptor (CSF1-R) inhibitors can

deplete TAMs to effectively inhibit metastasis, angiogenesis
and reduce the invasiveness of the tumor.19

Hypoxia is a hallmark of the TME that promotes angio-
genesis and leads to efficient recruitment of macrophages.20

The hypoxic environment activates macrophages to trans-
form into TAMs stimulating the upregulation of hypoxia-
inducible factors (HIFs) in TAMs, which act as transcrip-
tional activators of VEGF.21,22VEGF facilitates hypoxic
microenvironment-based angiogenesis which supports oxy-
gen and nutrient delivery to the tumor, promoting its
growth.21,22 Early evidence of the role of HIF signaling has
been correlated with angiogenesis, inhibition of the HIF-1α
signaling which impedes angiogenesis and tumor growth.
Interestingly, inhibition of the HIF-2α signaling leads to the

F I G U R E 1 TAM-associated mechanisms
which promote the development of breast
cancer
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formation of highly disordered blood vessels and aggrava-
tion of the hypoxic condition in the TME.20 Additionally,
breast cancer cells in the hypoxic TME upregulate the
expression of activating transcription factor 4 (ATF4), a
member of the ATF/cAMP response element-binding pro-
tein (CREB) family, which has been reported to be related to
the recruitment of macrophages and promotion of angio-
genesis which indirectly support tumor growth.23 Thus,
TAMs increase the malignancy of tumors by promoting
angiogenesis.

BREAST CANCER CELL METASTASIS

Metastasis is the primary cause of death in breast cancer
patients. TAMs play a key role in promoting metastasis and
invasion in breast cancer. Targeting TAMs has previously
been suggested as a potential therapeutic strategy for the
treatment of metastatic breast cancer.5,24TAMs facilitate
tumor metastasis by chemokine (C-C motif) ligand2
(CCL2), CCL5, and CCL18, respectively. The functional
mechanism of CCL2 involves the promotion of metastasis in
breast cancer cells to bone and lung tissue. The
CCL2-expressing breast tumor cells recruit C-C motif che-
mokine receptor 2+ (CCR2+) macrophages to accumulate
in the lung and regulate osteoclast differentiation in the
bone, playing a significant role in premetastatic niche for-
mation by cancer cell colonization. Thus, inhibition of
CCL2-CCR2 may effectively inhibit tumor metastasis.25,26

Breast cancer cells that secrete CCL5 act on mononuclear
macrophages towards TAMs which can promote tumor
migration and invasion.27 CCL18 is abundantly released by
TAMs, and its expression in TME is associated with tumor
metastasis and decreased patient survival. The PYK2 N-
terminal domain-interacting receptor 1 (PITPNM3), which
is the functional receptor of CCL18, inhibits the metastatic
and invasive effects exerted by CCL18.28 Nie and colleagues
reported the existence of positive feedback loops of
CCL5-CCR5 and CCL18-PIPTNM3 between malignant
phyllodes tumors (PT) of the breast and TAMs, while
assisting in maintaining TAM phenotype as well as PT
aggressiveness. Their study reported the use of CCR5 inhibi-
tor and CCL18 monoclonal antibody to double-block the
CCL5-CCR5 and CCL18-PIPTNM3 pathways, which led to
significant suppression of tumor metastasis.29 TAMs secrete
cellular cytokines and surface receptors which are important
factors promoting breast cancer metastasis. High epidermal
growth factor (EGF) expression in TAMs activates epider-
mal growth factor receptors (EGFRs) in the cancer cells
which in turn promotes metastasis and CSF-1 secretion. The
CSF-1 recruits and activates TAMs to further secrete EGF,
which suggests the existence of an EGF/CSF-1 positive feed-
back loop between TAMs and cancer cells. EGF induces
the infiltration of breast cancer cells into the blood
vessels, leading blood vessel metastasis.30 A group of
matrix-metalloproteinases (MMPs), such as MMP2, MMP7
and MMP9 are secreted by TAMs, which have been

demonstrated to be involved in the degradation matrix com-
ponents of the TME, promoting the metastasis of tumor
cells and the formation of the metastatic microenviron-
ment.15 High expression of the scavenger receptor named
macrophage receptor with collagenous structure (MARCO)
by suppressive TAMs promotes tumor growth and metasta-
sis. MARCO is closely associated with metastasis driving
gene signatures for epithelial-mesenchymal-transition
(EMT), and targeted blocking of MARCO expression can
effectively inhibit tumor metastasis.31

TAMS PROMOTE BREAST CANCER CELL
STEMNESS

TME consists of a large number of immunosuppressive cells
(mainly TAMs). There is evidence to support that TAMs
induce and maintain cancer stem cells (CSCs), thereby pro-
moting tumorigenesis, proliferation, and self-renewal.5,32,33

There is a vast body of published literature that supports the
involvement of the various TAM-based cytokines in the
generation of breast CSCs. It was earlier thought that classi-
cal “M1” activation exerts antitumor effects via
proinflammatory cytokines which prevent tumor progress.
A recent study by Guo and colleagues showed that the
proinflammatory effects of M1 can also trigger the expan-
sion and self-renewal of CSCs. Coculture of breast cancer
cells with M1 macrophages induced the formation of alde-
hyde dehydrogenase 1+ (ALDH1+) breast CSCs through
inflammatory cytokine activation of the Lin-28B-let-7-
HMGA2 pathway, and these breast CSCs were highly drug-
resistant with elevated spheroid forming capability. Their
study also suggested that the M1 phenotype repolarized into
the M2 phenotype to maintain a high population of
ALDH1+ breast CSCs.34 The IL-6 from TAMs can promote
the transformation of human and mouse nonstem cancer
cells (NSCC) into CSCs by activating the JAK/STAT path-
way to enhance the self-renewal and tumorigenic capacity of
CSCs.35,36 Immune-suppressing M2-like macrophages in
inflammatory breast cancer (IBC) have been found to
secrete high levels of IL-8 and growth-regulated oncogene
(GRO) chemokines which activate the STAT3 pathway, and
are the main driving force for the formation of the CSCs.37

Additionally, TAMs also promote breast cancer cell
stemness by upregulating the expression of the SRY-related
HMG-box (SOX) family of transcription factors (TFs) and
surface receptors. The EGF secreted by the TAMs activates
the EGFR/ STAT3/SOX-2 paracrine pathway in the breast
cancer, resulting in increased SOX-2 expression, which in
turn enhances the CSC phenotype in the tumor cells.38 The
existing body of research on SOX-2, OCT-4 and NANOG
suggests that early-stage breast tumors exhibit SOX-2
expression, with no expression of OCT-4 and NANOG.
Overexpression of SOX-2 increased the spheroid-forming
ability and self-renewal in CSCs,39 suggesting that SOX-2 is
a key molecule regulating the formation of CSCs in early
breast cancer. Transforming growth factor-β (TGF-β)
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upregulates SOX-4 expression during the EMT process, and
SOX4 directly enhances the expression of histone methyl-
transferase EZH2. Overexpression of EZH2 is essential in
stem cell self-renewal and the expansion of CSCs in breast
cancer.40,41The ephrin type-A receptor 4 (EPHA4) protein
on the surface of TAMs is upregulated during EMT and
binds directly to the receptor on cancer cells, which activates
the NF-kB pathway in cancer cells to facilitate the mainte-
nance of homeostasis in the CSCs.10

TAMS MODULATE T CELL ACTIVITY
TO INDUCE IMMUNOSUPPRESSIVE
MICROENVIRONMENT IN BREAST
CANCER

The immunomodulatory function of TAMs is a major
mechanism of cancer disease progression and the main area
of focus here is the regulation of the tumor-killing function
of effector T cells.5 TAMs regulate arginine metabolism as
an important way to suppress T cell function. The expres-
sion level of arginase-1 (ARG-1), a molecular marker of M2
macrophages, has been reported to be significantly higher in
breast cancer patients compared with healthy controls. The
level of L-arginine decreases to suppress the function of
effector T cells in condition of ARG-1 hydrolyzes L-argi-
nine.42 In addition to ARG-1, nitric oxide synthase (iNOS),
a molecular marker of M1 macrophages, metabolizes L-
arginine to form the product NO, which inhibits the func-
tion of effector T cells.10

Expression of immune checkpoints, such as
programmed cell death protein 1(PD-1), is an important
way for TAMs to regulate the tumor-killing function of T
cells.6 Several studies have investigated the ability of TAMs
to modulate the expression of PD-1/programmed death-
ligand 1 (PD-L1) via several cytokines in the breast TME.
For example, IFN-γ secreted by TAMs activates the
JAK/STAT3 and PI3K/AKT pathways to upregulate PD-L1
expression. TGF-β, a multifunctional cytokine, induces mac-
rophage polarization to M2, thereby enhancing the suppres-
sive activity of TAMs while inducing upregulation of PD-L1
promoting tumor escape. In the IL-6 deficient condition,
PD-L1 expression was significantly upregulated, and treat-
ment with an anti-PD-L1 antibody proved to be remarkably
effective.14 Moreover, deficiency of macrophage common
lymphatic endothelial and vascular endothelial receptor-1
(CLEVER-1) markedly impedes tumor development via
activation of the tumor-killing ability in effector T cells.43

The TAMs play an important role in cancer disease pro-
gression since they can exhaust CD8+ T cells, leading them
to lose their ability to eliminate cancer cells.44,45 Thus, as a
potential therapeutic rationale in the development of cancer
immunotherapy, it is necessary to elucidate the mechanism
by which TAMs cause T cell exhaustion. In the TNBC-
based study conducted by Xu and colleagues, the interaction
between TAMs and exhausted T cells were demonstrated
using single-cell transcriptome analysis. The findings

indicated that lymphocyte activating 3 (LAG3) and T cell
immunoglobulin and mucin domain-containing protein
3 (TIM3) were enriched during T cell exhaustion when
compared to PD-1 and CTLA-4, providing targets for
potential immune-based therapies.46 Calcium/calmodulin-
dependent protein kinase kinase (CaMKK2), highly
expressed within TAMs in breast cancer, can suppress pro-
liferation and T cell tumor killing function.47 Additionally,
high cyclooxygenase-2 (COX-2) expressing hepatocellular
carcinoma cell lines can induce M2 TAMs polarization，
which can contribute to the exhaustion of the antitumor
abilities in activated CD8+ T cells.48 When the number of
TAMs in the stroma increases, the cells secrete STAT3 into
the TME, causing CD8+T cell exhaustion.44 Similarly, Pu
et al asserted that TAM-derived extracellular vesicles (EVs)
promoted CD8+ T cell exhaustion in a hepatocellular carci-
noma (HCC) mice model. The microRNA-21-5p (miR-
21-5p) expression was upregulated in EVs that were carried
into tumor tissues. Inhibition of miR-21-5p blocked the
tumor-promoting effect of TAMs.49 Another study demon-
strated that exosomal microRNA-146a-5p (miR-146a-5p)
from TAMs drives T cell exhaustion in HCC.50

TAMs are involved in tumor immune regulation by
numerous potential mechanisms. TAMs and myeloid-
derived suppressor cells (MDSCs) exert their immunosup-
pressive effects in a cell contact–dependent manner. Skewed
macrophages which transform into TAMs can be induced
by MDSCs, and are characterized by downregulation of IL-
12 expression. TAMs stimulate MDSCs to upregulate IL-10
expression, resulting in secretion of IL-12 in macrophages
further downregulating, forming the self-perpetuating nega-
tive loop damage effector T cell function.51 TAMs blunt the
function of effector T cells through secretion of IL-10 from
TAMs inhibits IL-12 production by dendritic cells, leading
to blunting of effector T cell function by TAMs.52 TAMs
play a critical role in suppressing T cell recruitment; how-
ever, the potential mechanism of action is still unknown.
Targeting the CSF1/CSF1R pathway can obstruct macro-
phage recruitment and enhance T cell infiltration during
chemotherapy or high-dose irradiation. Similar results were
observed when blocking the CCL2/CCR2 pathway which led
to macrophage recruitment.53 Additionally, classically acti-
vated macrophages can be induced by Th1 cytokines (IFN-γ
and TNF-α), while alternatively activated macrophages can
be induced by Th2 cytokines (IL-13 and IL-4).54 As previ-
ously mentioned, TAMs are involved in the immunosup-
pression of breast cancer and can protect cancer cells.

TAMS REGULATE ENERGY METABOLISM
IN BREAST CANCER CELLS

TAMs impact the overall metabolic profile of the TME
through modulation of metabolic activities and metabolites
which can influence tumor development.6 A large number
of macrophages localize significantly in the hypoxic tumor
regions and the lactic acid produced by glycolysis in the
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cancer cells cause them to polarize into M2 phenotype.10

Lactate-activated macrophages promote the secretion of
CCL5 by activating the Notch pathway. CCL5 play a key
role in translating the metabolic communication between
TAMs and breast cancers, increasing aerobic glycolysis,
migration and invasiveness of the cancer cells. Blocking the
CCL5-CCR5 axis with monoclonal antibodies disrupts the
glycolytic metabolic cycle and inhibits cancer cell metasta-
sis.55 The G protein-coupled receptor 132 (Gpr132),
expressed by TAMs in a high-lactate environment, is a key
sensor of the rising lactate levels in TME, mediated the
interaction between cancer cells and TAMs during metasta-
sis. Lactate-activated Gpr132 is involved in M2-type macro-
phage polarization.56 TAMs upregulate the expression of
HIFs, which assists them in adapting to the hypoxic TME.
The HIFs function as important regulatory players modulat-
ing the tumor energy metabolism.21 HIF-1α drives glycolytic
metabolism in metastatic breast cancer cells and promotes
metastasis and colonization of cancer cells to the liver.57

Chen and colleagues have demonstrated that RNA is also
involved in aerobic glycolysis. TAMs promote aerobic gly-
colysis in breast cancer via HIF-1α-stabilizing long noncod-
ing RNA (HISLA). The lactate released from glycolytic
tumor cells further induces expression of HISLA in macro-
phages, creating a positive feedback loop for glycolysis that
enhances drug resistance in cancer cells.58 Additionally,
HIF-2α expression activates mitochondrial oxidative phos-
phorylation in tumor cells and over-activation of mitochon-
drial oxidative phosphorylation is a marker for an aggressive
form of breast cancer.59 Therefore, HIFs are important
energy metabolic targets for breast cancer treatment.

REPOLARIZATION OF TAMS INTO M1
TYPE MACROPHAGES EXERT TUMOR-
KILLING EFFECTS

The altered TME causes the TAMs to polarize into M1 mac-
rophages and mediate an antitumor immune response.11

M1 macrophages highly express proinflammatory factors,
such as IL-6, IL-12, iNOS, reactive oxygen species (ROS),
TNF-α, which can exert effects to kill tumor cells.8 M1 mac-
rophages have a stronger antigen-presenting ability because
they express major histocompatibility complex (MHC) class
II.54 Repolarization of TAMs into M1 macrophages can
inhibit tumor progression by exploiting the plasticity of
TAMs.19 The maintenance of the immunosuppressive phe-
notype of TAMs is closely related to the NF-κB signaling
pathway. When NF-κB signaling is inhibited specifically in
TAMs, they repolarize to M1 macrophages and abundantly
secrete IL-12. The IL-12 can activate and recruit NK cells to
perform tumor-killing functions in advanced tumors.60

Upregulation of miR-155 expression levels drives repolariza-
tion of TAMs to M1 macrophages to regain tumor-killing
functions.61 Paclitaxel converts TAMs into M1 macrophages
via the Toll-like receptor 4 (TLR4) pathway.62 Exosomes of
M1 macrophages have been reported to enhance the

therapeutic effect of paclitaxel in breast cancer through
macrophage-mediated inflammation.63 The combination of
anti-CD40 with anti-CSF-1R immunotherapy has been
reported to prompt the TAMs to polarize towards a
proinflammatory phenotype with antitumor functionality,
significantly enhancing the antitumor response and
prolonging the survival in patients.64 A recent study showed
that anti-Her2 antibody alone was able to upregulate PD-L1
in macrophages which led to immunosuppression and poor
prognosis. Interestingly, a combination of therapeutic anti-
bodies and anti-PD-L was shown to be beneficial.65 Tradi-
tional Chinese medicine can promote repolarization of
TAMs, and may serve as a novel treatment modality for
breast cancer treatment in the future.66 An important exam-
ple of an effective Chinese herbal medicine-based anticancer
agent is emodin, which exerts antitumorigenic effects in
breast cancer by inhibiting the TGF-β1 production in the
macrophages which in turn suppresses TAM polariza-
tion.32,67 Additionally, XIAOPI formula (XPS) is being
extensively used as a promising traditional chinese
medicine-based therapy in breast cancer treatment.
Baohuoside I (BHS) is the key bioactive compound of XPS.
Functional studies have revealed that BHS can suppress the
M2 phenotype polarization of TAMs to significantly inhibit
the migration and invasion of breast cancer cells.68

FUTURE DEVELOPMENT

One of the main limitations of targeting TAMs for cancer
therapy is the lack of reliable and specific markers. Cassetta
et al. used multicolor flow cytometric analysis to determine
the sialic acid-binding Ig-like lectin 1 (SIGLEC1) protein
expression in breast cancer patients and found that
SIGLEC1 was exclusively expressed by TAMs. Furthermore,
in the circulation, both classical and nonclassical monocytes
exhibited low expression of SIGLEC1, with no difference
between cancer and noncancer patients, indicating the speci-
ficity of SIGLEC1 to macrophages/TAMs.69 Additionally,
breast cancer cells overexpress CD24, while TAMs express
high levels of Siglec-10. Genetic ablation of Siglec-10
robustly resulted in a macrophage-dependent reduction of
tumor growth.70 This study emphasizes the existing knowl-
edge concerning the role of TAMs in breast cancer and
attempts to identify unique genes expressed by human
TAMs to uncover novel therapeutic targets.

CONCLUSIONS

This article summarizes the roles played by TAMs in breast
cancer development by promoting TME angiogenesis and
cancer cell metastasis, inducing cancer cell stemness, regu-
lating energy metabolism, and supporting immune system
suppression..Macrophage function and polarization are reg-
ulated by multiple TME-based factors. TAMs are important
players in tumor progression which should be explored with
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the aim of developing improved therapies for breast cancer
treatment. Macrophages can adopt different states of activa-
tion. Repolarization of TAMs into antitumorigenic M1 mac-
rophages is a very promising therapeutic option. A recent
study conducted by Xiao et al. showed the presence of a high
proportion of M2-like TAMs reaching 43.1% in control
groups. In comparison, M2-like TAMs decreased to 10.7%
in the treatment group by M2 repolarizing to M1. In addi-
tion, the proportion of M1 macrophages increased from
10.2% to 58%,71which apparently contributed to the effective
inhibition of tumor growth and metastasis with low immune
side-effects. In future, combination treatment modalities
involving traditional chemotherapeutic drugs and traditional
Chinese medicine targeted at promoting repolarization of
TAMs can serve as a novel treatment modality for breast
cancer treatment. Therefore, exploring the role and mecha-
nism of action of TAMs in the development of breast cancer
can provide a foundation for better treatment of breast
cancer.
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