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Stereotactic body radiation therapy (SBRT) employs precision target tracking 
and image-guidance techniques to deliver ablative doses of radiation to localized 
malignancies; however, treatment with conventional photon beams requires lengthy 
treatment and immobilization times. The use of flattening filter-free (FFF) beams 
operating at higher dose rates can shorten beam-on time, and we hypothesize that 
it will shorten overall treatment delivery time. A total of 111 lung and liver SBRT 
cases treated at our institution from July 2008 to July 2011 were reviewed and 
99 cases with complete data were identified. Treatment delivery times for cases 
treated with a FFF linac versus a conventional dose rate linac were compared. The 
frequency and type of intrafraction image guidance was also collected and compared 
between groups. Three hundred and ninety-one individual SBRT fractions from 
99 treatment plans were examined; 36 plans were treated with a FFF linac. In the 
FFF cohort, the mean (± standard deviation) treatment time (time elapsed from 
beam-on until treatment end) and patient’s immobilization time (time from first 
alignment image until treatment end) was 11.44 (± 6.3) and 21.08 (± 6.8) minutes 
compared to 32.94 (± 14.8) and 47.05 (± 17.6) minutes for the conventional cohort 
(p < 0.01 for all values). Intrafraction-computed tomography (CT) was used more 
often in the conventional cohort (84% vs. 25%; p < 0.05), but use of orthogonal 
X-ray imaging remained the same (16% vs. 19%). For lung and liver SBRT, a FFF 
linac reduces treatment and immobilization time by more than 50% compared to a 
conventional linac. In addition, treatment with a FFF linac is associated with less 
physician-ordered image guidance, which contributes to further improvement in 
treatment delivery efficiency.  
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I. IntroductIon

Stereotactic body radiation therapy (SBRT) is a method of delivering ablative doses of radiation 
to localized malignancies using concomitant image guidance and/or target tracking to ensure 
accurate target coverage with minimal margin. Based on successful early clinical results from 
phase I and II clinical trials, SBRT has become a common treatment strategy for small primary 
or metastatic lesions in the liver and lung.(1-6) One advantage of SBRT compared to conven-
tionally fractionated therapy is a shortened treatment schedule, measured in days rather than 
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weeks. Despite the benefit of an overall shorter treatment course, one disadvantage of SBRT 
is the lengthy time required to deliver each high-dose treatment.  

Prolonged treatment times are undesirable for patients who must remain immobilized in 
uncomfortable positions. Secondly, personal supervision of lengthy SBRT treatments is often 
an inefficient use of a practitioner’s clinical time. Finally — and perhaps most importantly — 
prolonged treatment sessions may increase intrafraction motion due to patient discomfort in the 
treatment position, thereby jeopardizing the delicate therapeutic index of high-dose radiation 
treatment.(7)  

Although several factors contribute to prolonged treatment times in SBRT, dose rate limita-
tions of the linear accelerator (linac) are of paramount importance. Conventional linacs pro-
duce flattened photon beams at a dose rate of 400–600 monitor units per min (MU/min), but 
are capable of roughly four times higher dose rates with the flattening filter removed (Fig. 1). 
Existing preclinical data using phantom delivery confirm that linacs generating flattening filter-
free (FFF) photon beams can produce dosimetrically equivalent plans(8) while reducing beam-on 
time by more than 50%.(9-10) We hypothesized that clinical use of a FFF linac for SBRT would 
yield similar savings. In this study, we retrospectively compare beam-on time, treatment time, 
and patient immobilization times for patients treated with a conventional linac using flattened 
photons versus a FFF linac for SBRT of lung and liver malignancies.

 
II. MAtErIALS And MEtHodS

A.  Case selection
SBRT for lung and liver malignancies has been routinely performed at our institution since 
2008. The medical records of 111 lung and liver SBRT patients treated from July 2008 to July 
2011 were reviewed and 99 cases with full treatment records were selected for further study. For 
this analysis, SBRT was defined as radiotherapy delivered in 3–5 fractions of 6 Gy per fraction 
or higher, with concomitant image guidance and/or target motion tracking. Prior to September 
2010, all patients were treated using a conventional linac (Varian IX and EX, Varian Medical 
Systems, Palo Alto, CA) producing flattened photons at 400–600 MU/min. In September 2010 
we commissioned a FFF linac (Varian TrueBeam) capable of delivering 10 MV unflattened 

Fig. 1. A schematic representation of the crossbeam profile of a conventional (with flattening filter) 10 megavolt photon 
beam (dashed line) is compared to the crossbeam profile of an unflattened photon beam (solid line) of equivalent energy. 
The unflattened beam has approximately four times higher dose rate at central axis.
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photons at a maximal dose rate of 2400 MU/min. SBRT cases performed after September 2010 
were almost exclusively performed on this machine. Of the 99 included cases, 63 were treated 
with flattened photons at standard dose rates, and the remaining 36 were treated with unflattened 
beams at high-dose rates. Dose schedule, treatment geometry, and treatment delivery technique 
were selected at the discretion of the treating oncologist.  

B.   Immobilization and image guidance
At our institution, the standard immobilization procedure is a custom-molded cradle (alpha 
cradle, Smithers Medical Products Inc, North Canton, OH) with an overhead arm device used 
to immobilize the patient’s arms above the head; these devices were used for all patients in this 
study. All patients underwent standard pretreatment image guidance/target localization with 
paired orthogonal KV X-rays matched to bony anatomy, followed by cone-beam CT matched 
to soft tissue and bony anatomy. If significant patient motion (e.g., patient sits up, coughs 
violently, etc.) was seen on surveillance video, the standard pretreatment image sequence was 
reacquired. Cone-beam CT alone was typically used to reaffirm target localization in between 
fields or arcs with substantial treatment times and was ordered at the discretion of the super-
vising oncologist. The same group of physicians and technicians treated patients with both 
treatment machines. An integrated record/verify software platform (Offline Review, Varian 
Medical Systems) was used to retrospectively assess the frequency and type of intrafraction 
imaging used during each fraction.  

C.   Treatment efficiency measurements
We have identified three primary measures of treatment delivery efficiency: (1) beam-on 
time (BOT), (2) treatment time (TxT), and (3) patient’s immobilization time (IT). BOT was 
defined as the aggregate time in which the machine delivered photons for all fields or arcs in 
a given plan. TxT was defined as the time from onset of first treatment beam until completion 
of treatment, inclusive of any intrafraction imaging and/or shifts. IT begins at acquisition of 
the first pretreatment alignment image and ends at treatment completion; this time essentially 
recapitulates the length of time a patient is require to remain immobilized. Time parameters 
were collected for each SBRT fraction from an integrated treatment planning and record/verify 
software platform.  

Additional treatment time parameters including pretreatment image guidance time (IGT) 
and intrafraction downtime (IFDT) were calculated as follows: 

 IGT = IT - TxT (1)
   
 IFDT = TxT - BOT (2)

IGT was calculated to represent the amount of pretreatment time spent imaging and aligning 
the patient prior to beam-on. IFDT was calculated to represent the time after treatment starts 
when the beam is paused for respiratory gating, imaging, or patient repositioning.     

Lastly, observed clinical dose rate (CDR; measured in MU/minute) was calculated for the 
FFF cohort in order to compare the actual dose rate differences between the two methods.  CDR 
is the number of MU required for a given plan divided by BOT.  

D.  Statistics
Median and mean values for each of the six values described above were calculated for each 
SBRT fraction, and intergroup comparisons were made using t-tests. Univariate regression 
analysis was performed to identify any factors associated with more efficient treatment delivery. 
MS Excel (Microsoft Corp, Redmond, WA) was used to construct and manage the database, 
and SPSS version 19 (IBM, Armonk, NY) was used for all statistical analysis.
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III. rESuLtS 

Ninety-nine clinically delivered SBRT treatment plans, consisting of 391 individual fractions 
with available data, were reviewed. Seventy-five patients were treated for primary tumors and 
24 were treated for recurrent or metastatic disease. Treatment characteristics are reviewed in 
Table 1. Although a variety of fractionation schemes were employed, the median prescription 
was 12 Gy in 4 fractions (range: 6–20 Gy in 3–5 fractions), with the majority of treatments 
consisting of fractional doses greater than 10 Gy. Time-intensive techniques such as respiratory 
gating and intensity-modulated radiation therapy (IMRT) were used in a majority of cases (89% 
and 64%, respectively). FFF beams were used in 36% of cases. As stated in the Materials and 
Methods section above, these patients did not undergo a selection process for FFF treatment, 
as this technology was not available until September 2010.

Treatment with the FFF linac was significantly associated with higher mean CDR and shorter 
mean treatment time measurements (p < 0.01 for all values; Table 2) compared to conven-
tional SBRT. A graphical comparison of mean treatment time between the conventional and 
FFF cohorts is provided in Fig. 2. On univariate analysis, flattened beams, use of static fields, 
respiratory gating, and intrafraction imaging with cone-beam CT were statistically associated 
(p < 0.05) with prolonged TxT (Table 3). Intrafraction imaging occurred more frequently in 
patients treated at conventional dose rates, although this was due exclusively to the increased 
use of CT rather than orthogonal X-ray imaging (Table 4).

 

Table 1. Patient and treatment characteristics for 99 patients treated with SBRT.

  Overall FFF Conventional

Disease site   
 Thoracic 82 31 51
 Hepatic 17  5 12
Dose schedule   
 6 Gy × 5 fractions  3  1  2
 8 Gy × 5 fractions 23  6 17
 10 Gy × 5 fractions 12  7  5
 12 Gy × 4 fractions 21 10 11
 15 Gy × 3 fractions 16  5 11
 20 Gya × 3 fractions 19  5 14
 Other  5  2  3
Dose rate    
 400-600 MU/min 63  0 63
 2400 MU/min 36 36  0
IMRT   
 Yes 64 34 30
 No 35  2 33
Respiratory gating   
 Yes 89 31 58
 No 10  5  5
Treatment geometry   
 Static gantry 67  9 58
 Volumetric arc 32 27  5

a Includes 18 Gy in 3 fractions with heterogeneity correction.
Gy: gray; MU/min: monitor units per minute.
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Table 2. Treatment time components and observed dose rate.

 Time Component FFF (minutes) Conventional (minutes) p-value

 BOT 2.3±0.8 5.6±3.0 <0.01
 TxT 11.5±6.3 32.9±14.7 <0.01
 IT 21.1±6.7 46.8±17.6 <0.01
 IGT 9.6±2.7 13.9±5.9 <0.01
 IFDT 9.2±5.8 27.3±13.2 <0.01
 CDR 1890±478 584±46 <0.01

Note: Mean time ± standard deviation (in minutes) of 5 treatment time components compared between FFF and con-
ventional linac delivery. All tested time components were significantly shorter with FFF delivery. CDR (measured in 
MU/min) is significantly higher for FFF treatments.  
BOT = beam-on time; TxT = treatment time; IT = immobilization time; IGT = image guidance time; IFDT = intrafrac-
tion downtime; CDR = clinical dose rate; FFF = flattening filter-free; MU/min = monitor units per minute.

Fig. 2. Treatment delivery time comparison: the overall length of the bars indicates the total immobilization time (IT) was 
46.8 minutes and 21.1 minutes for the conventional and FFF cohorts, respectively. The unshaded region represents image 
guidance time (IGT), which was only marginally different between the two groups (13.9 vs. 9.6 minutes for conventional 
and FFF, respectively). The checkered portion represents beam-on time (BOT), which was more than two times longer in 
the conventional group than the FFF group (5.6 vs. 2.3 minutes, respectively). The striped region represents intrafraction 
downtime (IFDT), which was substantially longer for the conventional group than the FFF group (27.3 minutes vs. 9.2 
minutes, respectively).   

Table 3. Univariate analysis of treatment time.

  Factor Impact on TxT p-value

FFF treatment decreased <0.01
VMAT decreased 0.02
IMRT none NS
Respiratory gating increased <0.01
IF imaging  
      X-ray none NS
      Cone-beam CT increased <0.01
MU > 3000 none 0.06

Note: Six factors tested for association with treatment time by univariate analysis. Use of FFF mode and VMAT were 
associated with shorter TxT; meanwhile, respiratory gating and intrafraction CT were associated with longer TxT. Use 
of IMRT, intrafraction X-ray, and larger numbers of MUs had no significant effect on TxT.  
FFF = flattening filter-free; VMAT = volumetric-modulated arc therapy; IMRT = intensity-modulated radiation therapy; 
CT = computed tomography; MU = monitor unit.
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IV. dIScuSSIon

This institutional experience demonstrates that high-dose-rate SBRT treatments using a FFF 
linac are more efficient than similar treatments with a conventional dose rate linac. Furthermore, 
this study adds to the existing body of data supporting the feasibility of FFF beams for a vari-
ety of dose schedules and techniques (e.g., gating, IMRT, volumetric-modulated arc therapy 
(VMAT)) in both palliative and definitive SBRT of the liver and lung.(11) Preclinical studies 
have established the efficiency advantages of unflattened beams when delivered in phantom, 
and recent reports indicate these advantages are present in clinical applications;(12) however, 
this is the first report comparing clinically treated cases delivered with flattened versus unflat-
tened beams in a series of consecutive patients treated at the same institution.

A primary advantage of FFF beams is shortened dose delivery time. Until recently, it was 
unknown whether FFF mode would improve actual treatment delivery time in the clinical set-
ting. We first reported that FFF linac-based CNS radiosurgery produced improved treatment 
times compared to historical experience.(13) However, it was not clear whether results from 
fixed-target CNS lesions would translate to the setting of dynamic internal targets such as liver 
and lung malignancies. As expected, these results demonstrate that FFF mode decreases the 
BOT. Unexpectedly, the improvement in BOT was accompanied by dramatic improvements in 
overall treatment time. For instance, TxT — the time elapsed from first beam on until last beam 
off — was threefold shorter in the FFF group compared to the conventional cohort. Likewise, 
patients’ total immobilization time (IT) was reduced by more than half. Only a portion of this 
time savings could be directly accounted for by the shortened BOT; the remainder of the time 
savings came from a decrease in what we have called “intrafraction downtime” (IFDT), which 
was reduced from 27.3 to 9.2 minutes.  

Although beam attenuation during gating and shifts contributes to IFDT, the primary deter-
minant of IFDT is intrafraction imaging. In this study, intrafraction imaging was only ordered 
at the discretion of the treating physician if there was concern regarding intrafraction motion. 
As Table 4 demonstrates, there was no difference in the use of orthogonal X-rays between the 
two groups. This is largely because X-rays were typically used for initial alignment or realign-
ment after significant motion events. On the other hand, CT was used three times more often 
in the conventional cohort than in the FFF cohort (25% vs. 84%), likely due to the assumption 
among supervising physicians that shorter treatments yield less intrafraction motion. Although 
intrafraction motion was not directly measured in this study, existing data support this assump-
tion. In a cohort of 28 SBRT lung patients who underwent intrafraction CT, Purdie et al.(14) and 
found that target motion was significantly increased when the interval from setup imaging to 
repeat imaging exceeded 34 minutes. In our FFF cohort, the median time from setup imaging 
to treatment completion (TxT) was less than 10 minutes; therefore, it is reasonable to expect 
that little intrafraction motion occurred. In summary, more efficient dose delivery with FFF 
beams shortens treatment time minimally by itself; however, the consequent reduction in use 
of intrafraction imaging leads to a dramatic reduction in total treatment time.

Table 4. Frequency of intrafraction imaging use.

 FFF Conventional p-value

Orthogonal X-rays 19% 16% NS
Cone-beam CT 25% 84% <0.01

Notes: Percentage of cases where intrafraction imaging with cone-beam CT or X-rays was used.  CT was used three 
times more often in the conventional cohort compared to the FFF cohort. Orthogonal X-rays were used in the same 
frequency in both cohorts.   
FFF = flattening filter-free; CT = computed tomography.
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The pretreatment IGT was marginally different between the two groups (13 minutes for 
conventional vs. 9 minutes for FFF; p < 0.01). Although one would not expect that a FFF linac 
would improve any time parameter when the treatment beam is off, the small yet statistically 
significant difference we observed in IGT was likely attributed to both improved on-board imag-
ing equipment with the FFF linac and improved staff proficiency with SBRT setup over time.  

Although the nominal dose rate of FFF linac is 2400 MU/min, this is a potential maximum 
value that is not often achieved due to beam modulation or gantry rotation speed. In fact, our 
results indicate that machine output only reached 2400 MU/min in one case. However, the mean 
CDR was significantly higher in the FFF cohort (median 1890 MU/min), indicating that the 
dose-rate advantage of FFF mode was realized in clinical SBRT applications. Use of VMAT 
in 75% of the FFF cohort accounted for most of the decrease in observed dose rate, as limited 
gantry rotational speed dictated machine output.

Some have suggested that the benefits of FFF treatment are not limited to dose-rate improve-
ments and subsequent efficiency advantages. Preclinical research suggests FFF beams generate 
less neutron contamination, lower doses outside the field edge, and less MLC leakage compared 
to beam-flattened plans.(10,15-16) Additional investigators suggest that the use of unflattened 
beams for IMRT could lead to lower rates of secondary malignancies given the observed 70% 
decrease in scattered photon dose.(17) Further work will be necessary to determine the clinical 
significance of these above-noted potential advantages for FFF beams.  

Although interest in the clinical use of FFF photon beams dates back to 1991,(18) their use 
has been limited to preclinical studies at research institutions until recently. With the recent 
commercial availability of linacs capable of operation without the flattening filter, clinical use 
for a broad variety of applications will likely become prevalent in coming years. Likewise, 
given the expanding use of IMRT in a variety of clinical applications, unflattened beams appear 
more practical. Because IMRT relies on modulation of beamlet fluence to achieve conformity 
and homogeneity, the flattening filter is superfluous in many common clinical scenarios.  

Despite the robust data for 391 SBRT fractions presented here, we recognize the impact 
of several confounding variables when interpreting this data. For example, the FFF linac was 
able to perform respiratory-gated volumetric arc therapy, which is expected to independently 
improve efficiency. Indeed, VMAT therapy was significantly associated with improved TxT and 
27 of 32 VMAT plans were delivered on the FFF linac. Likewise, the FFF linac was capable 
of automatic field sequencing for static-field IMRT, which reduces time between fields and is 
expected to independently improve efficiency. Although this represents the first published data 
comparing clinical treatment efficiency between conventional and high-dose rates, interpreta-
tion is further limited by the retrospective nature of our data.

 
V. concLuSIonS

The use of a FFF linac for SBRT of liver and lung malignancies is associated with substantial 
improvement in treatment delivery time. The reduction in beam-on time with the FFF linac 
appears to impact the use of intrafraction imaging which, in turn, affects total treatment dura-
tion and patient immobilization time. Additional studies are warranted to evaluate the impact 
of shorter treatment times on the patient’s treatment experience.  
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