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Abstract: Hippocampal place cells are a well-known object in neuroscience, but their place field
formation in the first moments of navigating in a novel environment remains an ill-defined process.
To address these dynamics, we performed in vivo imaging of neuronal activity in the CA1 field of
the mouse hippocampus using genetically encoded green calcium indicators, including the novel
NCaMP7 and FGCaMP7, designed specifically for in vivo calcium imaging. Mice were injected with
a viral vector encoding calcium sensor, head-mounted with an NVista HD miniscope, and allowed
to explore a completely novel environment (circular track surrounded by visual cues) without any
reinforcement stimuli, in order to avoid potential interference from reward-related behavior. First, we
calculated the average time required for each CA1 cell to acquire its place field. We found that 25% of
CA1 place fields were formed at the first arrival in the corresponding place, while the average tuning
latency for all place fields in a novel environment equaled 247 s. After 24 h, when the environment
was familiar to the animals, place fields formed faster, independent of retention of cognitive maps
during this session. No cumulation of selectivity score was observed between these two sessions.
Using dimensionality reduction, we demonstrated that the population activity of rapidly tuned CA1
place cells allowed the reconstruction of the geometry of the navigated circular maze; the distribution
of reconstruction error between the mice was consistent with the distribution of the average place
field selectivity score in them. Our data thus show that neuronal activity recorded with genetically
encoded calcium sensors revealed fast behavior-dependent plasticity in the mouse hippocampus,
resulting in the rapid formation of place fields and population activity that allowed the reconstruction
of the geometry of the navigated maze.

Keywords: Ca2+ indicators; calcium in vivo imaging; place cells; place fields; cognitive maps

1. Introduction

It is well known that neurons in the CA1 field of the hippocampus form a represen-
tation (also referred to as a cognitive map) of a novel context, while animals explore a
novel environment [1,2]. The long-term dynamics of such cognitive maps have been well
explored in studies [3–5], revealing that the place code can be stable for weeks, though
subserved by a drifting population of CA1 neurons. Moreover, it is known that multiple
cognitive maps can coexist in the hippocampus in a stable manner and switch between
different navigating sessions and even within the same navigating session [6,7].

However, the short-term dynamics of place field emergence and initial tuning are
still ill-defined. In particular, it is unclear whether place fields are established at the first
moment at which the animal arrives in a novel place, or whether several repeated visits
are necessary for place cells to become tuned. A recent study of head-restrained mice in
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a virtual navigation task demonstrated “immediate” place cells that appear and fire in a
stable manner from the first lap in a novel virtual environment [8]. However, it is unclear
how rapidly the place codes emerge in real conditions of animal free navigation.

Many of the previous studies on place cell registration used rewarded approaches
with pre-trained animals [7,9]. However, since goal-directed behavior may confound the
factor of spatial navigation [10,11], we used a reward-free task where mice were allowed
to explore a completely novel environment in the shape of an elevated circular track with
proximal and distal visual cues (Figure 1).

Figure 1. (A,B) Mouse with an attached NVista HD miniscope exploring the circular track. (C) A
scheme of calcium sensor injection and GRIN lens implantation. (D) A coronal brain section with a
footprint of a GRIN lens and calcium sensor expression. (E) The timeline of surgical preparations and
imaging.

To record place cell activity, we used head-mounted NVista HD miniscopes [12],
which are capable of capturing calcium signals from hundreds of neurons in freely moving
animals. To image cells, we used a set of genetically encoded calcium indicators: both
conventional GCaMP6s and GCaMP7f, as well as novel ones, NCaMP7 and FGCaMP7.
NCaMP7 is a new calcium indicator with enhanced brightness, containing a mNeonGreen
fluorescent protein, while FGCaMP7 is a novel calcium sensor based on fungi calmodulin
with lowered affinity to the intracellular environment and designed specifically for in
vivo miniscopic calcium imaging [13,14]. In these papers, we described in detail their
dynamic parameters, such as mean amplitude, and rise and decay times of typical calcium
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transients. Importantly, we showed that there is no notable difference in such parameters
between these new calcium indicators and a conventional one, GCaMP6s. Moreover, the
applicability of these sensors for the analysis of in vivo neural functions in awake mice was
directly demonstrated by calcium imaging of hippocampal place cells.

Using these tools, we set out to investigate the dynamics of the initial place field
formation in the mouse hippocampus, not only at the level of individual place cells, but
also at the level of a whole imaged CA1 population. The activity of large populations
of neurons is often well embraced by low-dimensional dynamics [15–17]. This makes it
possible to describe computations performed by groups of cells using the dynamics of
a small number of underlying “latent factors”, each of which corresponds to a separate
pattern of neuronal coactivation. However, it is not possible to observe the latent factors
directly, because they are often related to the initial variables in a non-obvious and non-
linear way. In this paper, we utilize the tools from manifold learning to construct an
underlying low-dimensional “neural manifold” from rapidly tuned place cell activity and
to explore its representational power.

2. Materials and Methods
2.1. Animals and Surgical Procedures

Nine C57Bl/6J mice aged from 2 to 3 months at the beginning of the experiment
were used for this study. All surgical protocols were described in detail in our pre-
vious papers [13,14,18,19]. First, a viral vector encoding one of the calcium sensors
(GCaMP6s/GCaMP7f/NCaMP7/FGCaMP7) was delivered to the CA1 field of the hip-
pocampus of the mice. Animals were anesthetized with a zoletil–xylazine mixture (40 and
5 mg/kg, respectively) and fixed in a stereotaxic holder (Stoelting Inc., Wood Dale, IL, USA).
Then, a circular 2-mm-diameter craniotomy was made (Bregma: −1.9 mm AP, −1.4 mm
ML), and 500 nL of AAV viral particles (AAV-DJ-CAG-GCaMP6s, AAV-DJ-CAG-GCaMP7f,
AAV-DJ-CAG-NCaMP7 or AAV-DJ-CAG-FGCaMP7) was injected to a depth of 1.25 mm
from the brain surface. Injections were performed through a glass micropipette with a
50 µm tip diameter (Drummond Scientific Comp., Broomall, PA, USA) by UltraMicroPump
with a Micro4 Controller (WPI Inc., Sarasota, FL, USA) at a rate of 100 nL/min. After
the injection, all exposed surfaces of the brain tissue were sealed with KWIK-SIL silicone
adhesive (WPI Inc.). Two weeks later, the animals were anesthetized and fixed in the
stereotaxis again, the silicone cap was removed, and the dura mater was perforated and
gently removed from the craniotomy site. Then, a column of cortex tissue superficial
to the hippocampus was gently aspirated by a blunt needle tip connected to a vacuum
source and the hippocampus was exposed and washed with sterile saline. After this, a
1.0-mm-diameter GRIN lens probe (Inscopix Inc., Palo Alto, CA, USA) was lowered slowly
to a depth of 1.1 mm while constantly washing the craniotomy site with sterile saline.
Next, all the exposed brain tissue was sealed with KWIK-SIL, and the lens probe was
fixed to the skull surface with dental acrylic (Stoelting Inc.). After another two weeks, the
animals were checked for fluorescent calcium signal under light anesthesia ( 1

2 of the dose
described above). The mice were fixed in the stereotaxis, and an NVista HD miniature
microscope (Inscopix Inc.) was lowered upon the GRIN lens probe and the optimal field of
view was chosen. Then, a baseplate for chronic imaging was affixed to the skull surface
with dental acrylic.

2.2. Miniscope Imaging in Freely Behaving Mice

Finally, after a one-week recovery period, awake mice with an attached NVista HD
miniscope were placed for 15 min into a custom-made circular O-shaped track (50 cm
diameter, 5 cm width, with 5 cm height borders) with proximal (different border material)
and distal (placed on a surrounding curtain 20 cm apart from the track) visual cues. Mice
were allowed to explore the environment in arbitrary directions and were not forced
to move. The imaging session was repeated for 8 of 9 mice on the next day after 24 h
and for 3 mice on the third day after 48 h from the first imaging session. The neural
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activity was recorded at 20 frames per second at resolution 1440 × 1080 px with an NVista
HD miniscope. Screenshots and video samples of raw calcium signal can be seen in
Figure A1 of Appendix A and in Supplementary Videos S1–S3.The video of mouse behavior
was captured with a Sony HDR CX-405 (Sony Corp., Tokyo, Japan) camera at 25 frames
per second.

At the end of the experiments, animals were perfused transcardially with 1%
paraformaldehyde in 0.1 mM CaCl2, and then brains were extracted and postfixed for
24 h in the same solution. Thin (50 µm) floating sections were prepared with a Leica 1200VT
(Leica Microsystems GmbH, Wetzlar, Germany) vibratome, stained with Hoechst dye
(Hoechst AG, Frankfurt, Germany) and imaged with an Olympus FluoView 1000 (Olympus
Corp., Tokyo, Japan) confocal microscope with a UMPlanFLN 10× NA 0.30 W objective.
All sections were inspected and checked for consistency of calcium sensor expression site
and GRIN lens implantation locations to the field CA1 of the hippocampus. Samples of
such sections can be seen in Figure 1D and in Figure A1 of Appendix A.

2.3. Neural and Behavioral Data Processing

Image processing was performed with the NoRMCorre [20] and MIN1PIPE [21]
pipelines and custom MATLAB and Python scripts. First, all movies were downsam-
pled spatially by a factor 2 to increase the computation speed. Then, the NoRMCorre
routine was applied to spatially align movies and to correct motion artifacts. Next, the
MIN1PIPE routine was applied to corrected movies, and locations and activity traces of
putative cell units were extracted and manually inspected (Figure 2A,B). Then, significant
calcium events were detected in the activity traces.

Detection of calcium events was performed with a custom routine, which was de-
scribed in our previous work [18]. First, a threshold of 4 or 5 median absolute deviations
(MADs) was applied to extracted neural traces for animals injected with slow (GCaMP6s,
NCaMP7 and FGCaMP7) or fast calcium sensors (GCaMP7f), respectively. Then, neighbor-
hoods of each upward threshold crossing were fitted with a typical calcium event model
function with fast rise and slow decay (Figure 2C). This model utilizes precise spiking time
t0, rise time ton, decay time toff and spiking amplitude A as the parameters to be optimized.
The lower limit of toff was set to 200 ms for mice injected with the GCaMP7f indicator
and 500 ms for the other ones. In case of acceptable fit (goodness of fit ≥0.8), a calcium
event was scored and the fit was locally subtracted from the original trace in order to let
subsequent events be fitted and scored (Figure 2D).

Data for each session were processed separately; matching of cells and traces across
sessions was performed with the CellReg routine [22] with default parameters (maximum
angle of 30 degrees, maximum translation of 14 microns, registration threshold P_same
of 0.5). Exact amounts of matched cells across sessions and their contours can be seen in
Table A2 and in Figure A2 of Appendix A. Positions of animals were extracted from be-
havioral video recording with the open-source Bonsai visual programming media [23]. All
obtained time series were synchronized and aligned to the beginning of the imaging session.
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Figure 2. (A,B) Selected neuron locations (A) and their traces (B) extracted by MIN1PIPE routine.
(C) Scheme of spike detection. Whenever the trace reaches the threshold value, the fitting procedure
starts in a range, denoted by the solid green line. Fitting curve f(t) is set to a composition of rise
and decay exponential factors and spiking amplitude A, where t0, ton and toff are fitting parameters.
(D) Scheme of multiple spike detection. In case of tolerable goodness of fit (not less than 0.8), the
event is scored, and the fitting curve is subtracted from the original trace, allowing next peaks to
be scored. (E) Spatial event distribution for putative place field detection. Solid black line denotes
Gaussian mixture fit of the distribution and grey zones are putative place fields. (F) An example of a
detected place field based on the distribution on the left. Trajectory of the mouse is unfolded in the
axial direction for better readability and colored with respect to raw activity of the correspondent
place cell. To check the consistency of putative place field, we calculated selectivity score each time
the animal attended place field zone (in the depicted case, selectivity score equals 1).

2.4. Place Cell Detection

Given some uncertainty that exists in the procedure of place cell detection [24] and that
the commonly used approach based on spatial information [25] requires a high running
speed of animals and does not consider the repeatability of place cell firing each time the
animal visits the place field, we used a conservative approach, where we checked both the
spatial and temporal persistence of place cell firing. The entire track space was divided
into 20 sectorial bins sized 5 × 7.5 cm. For each cell, an overall number of calcium events
was calculated for each bin and the distribution of calcium events was smoothed with
a Gaussian kernel (sigma = 1.25), normalized and thresholded by a value of 0.5. Then,
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centroids of all subthreshold peaks were considered putative place field centers. Width of
place fields was evaluated as width of subthreshold peaks + 1 bin from each side. Place
fields wider than a half of the track were excluded from further analysis. Next, for each
place field, we checked whether the correspondent cell fired in all epochs when the animal
attended a given place field. For this purpose, for each attendance of a given place field,
we calculated the selectivity score as a ratio of the number of events within the attendance
epoch over the total number of events within this epoch and adjacent epochs between visits
(Figure 2F). For each place field, we smoothed the selectivity score sequence with a Gaussian
filter (sigma = 1). Only epochs of attendance with smoothed selectivity scores more than
0.5 were considered relevant; place cells without at least three subsequent relevant epochs
were discarded from the analysis. The tuning latency for each place field was calculated
as the number of epochs (or as time in seconds) before the beginning of the first sequence
of three or more relevant epochs. We considered that the cognitive map retained between
sessions in case of significant similarity of the distribution of place field location shifts
between sessions to a normal distribution around zero (p < 0.05, Chi-square test).

2.5. Dimensionality Reduction

In this paper, we used the Laplacian eigenmaps method, which constructs a discrete
approximation to a continuous low-dimensional representation that naturally arises from
the geometry of the manifold [26]. Before dimensionality reduction, the calcium data for
each animal were presented in the form of the matrix DN×T , where N is the number of
selected cells and T is the total duration of recording. Therefore, Dij stands for the calcium
activity of the neuron i at the timeframe j. Only neurons with 5 or more calcium events
during the recording were considered.

We built a similarity graph G based on the data in the original high-dimensional space.
Each vector Vt was considered a point in RN . Thus, each column of the matrix DN×T was
treated as a single N-dimensional vector of neural activity at a certain timeframe. Hence,
we obtained T multidimensional vectors in RN , representing neural activity in different
moments in time: {Vt}, t ∈ [0, T]. To simplify the graph construction procedure and reduce
the computation time, we applied mean filtering to the initial time series of calcium activity
with window size w = 2, 4, 8. We made sure that the choice of the window size did not
qualitatively affect our results. This is because the calcium signal hardly changes during
the time corresponding to the window sizes of 40, 80, or 160 ms, respectively. All results
here were obtained for window size w = 8. Thus, the effective signal length and number of
nodes in G was Te f f = T/w.

For each of the Te f f similarity graph nodes, exactly k nearest neighbors were calculated
using Euclidean distance. The number of nearest neighbors k was the only free parameter
in our dimensionality reduction procedure. It tended to be chosen as small as possible
(however, its value should have ensured the integrity of the resulting graph). Keeping k
small is motivated by the local linearity assumption: if k becomes sufficiently large, the
Euclidean distance may not reflect the proximity relations between data points because
of the possible nonlinear curvature of the underlying manifold. The situation is also
complicated by the dimensionality curse in the initial space [27].

The resulting graph adjacency matrix was explicitly made symmetric to preclude
directed edge formation. This means that the “nearest neighbor” relation is made mutual:
if some node i is connected to a node j, the reverse is also true. It should be noted that, due
to the symmetrization procedure, the number of nearest neighbors k sets only the minimal
number of edges for a given node, but not a precise one. The similarity graph was ensured
to be connected. If it had more than one connected component after the construction
procedure, the largest one was taken (if the total share of discarded points did not exceed 5%;
otherwise, dimensionality reduction for a given k was considered unsuccessful). The time
moments corresponding to the excluded points were not considered further in the analysis.

Once a similarity graph was constructed, it was presented in the form of an adjacency
matrix A = {aij} with matrix elements aij = aji taking non-negative values. The absence of
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self-loops implies the vanishing of the diagonal elements: aii = 0. The matrix elements were
considered binary: aij = 1, if the nodes i and j 6= i are connected, and aij = 0 otherwise. The
next step was constructing a discrete Laplacian—a symmetric, positive semidefinite matrix
that can be considered a diffusion operator on the graph G. The spectral decomposition of
the graph Laplacian matrix can be used to optimally embed the graph in a low-dimensional
space [26]. According to the Laplacian eigenmaps algorithm, we considered the following
generalized eigenvalue problem:

Lv = λDv (1)

Here, D is the degree matrix of the network, whose elements are defined as
dij = deg(ni) if i = j and dij = 0 otherwise, where deg(ni) is the degree of the node i:
deg(ni) = ∑

j
aij. L stands for the graph Laplacian matrix, which is defined as

L = D− A (2)

The algorithm utilizes first m+ 1 solutions {fi}, i ∈ [0, m] of the generalized eigenvalue
problem (1) (ordered by the associated eigenvalues {λi} in the ascending order) to construct
an optimal embedding of the graph in Rm. To be precise, the k-th component of an
eigenvector ui defines an i-th coordinate of a low-dimensional embedding for a data point
vk ∈ RN . Since the dimensionality of ui is equal to the number of nodes in the graph, the
first m non-trivial eigenvectors are enough to construct a m-dimensional embedding for
each data point.

The first eigenvector v0 corresponding to λ0 = 0 was left out because its components
were constant. It is known that a Laplacian matrix of a graph with c connected components
has c zero eigenvalues [28]. However, we restricted ourselves to the case of connected
graphs, which was ensured by the construction procedure. Hereinafter, we assume that, for
our graph, the problem (1) has a single zero eigenvalue.

To measure the reconstruction error of the track geometry, we calculated the residual
variance (RV) [29] between real mouse coordinates and points in the latent space. The
residual variance was calculated as RV = 1− ρ2(Dh, Dl), where ρ defines the Pearson
correlation, and elements of Te f f × Te f f matrices Dh and Dl denote the pairwise Euclidean
distances calculated over the original trajectory points over the low-dimensional embedding
points, respectively.

3. Results

In the previous studies [13,14,18,30], we developed a non-rewarded paradigm, where
mice with a head-mounted NVista HD miniscope explored a custom-made O-shaped
circular track surrounded by curtains with distinctive visual cues (Figure 1B). Mice demon-
strated vigorous exploratory behavior, making on average 19 laps across the track during a
15 min imaging session. It should be noted that since mice were able to arbitrarily change
the moving direction, the number of laps varied significantly from session to session, and
some of the laps were not full.

The mice were transfected with AAV vectors carrying different calcium indicators
(namely GCaMP6s, GCaMP7f, NCaMP7 and FGCaMP7; detailed information can be seen in
Table A1 of Appendix A). All mice underwent identical surgical, imaging and behavioral
protocols. Mice explored the track at one, two or three consequent sessions, and the first
time the context was absolutely novel for them. We isolated neuron locations, calcium traces
and detected place-selective cells. For this, we selected candidate cells by the presence
of distinct peaks in the overall (across entire session time) spatial distribution of calcium
events of a given cell, and then checked if this cell fired or not each time the animal entered
its putative place field. Only candidate cells with stable firing statistics throughout the
session were considered place-selective (for more details, see Methods). We allowed each
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cell to have multiple place fields; however, the majority (85% on average) of place cells had
single place fields.

On the first day, all animals demonstrated a uniform distribution of place fields across
the track, without any distinct fluctuations in the vicinity of visual cues or other locations
in the track. We matched cell activity across days and monitored the place selectivity of
the same cell on all days. It turned out that, on the second day, 3 of 8 imaged mice had
cognitive maps similar to the first day (Figure 3). In the other five mice, cognitive maps
were not preserved, which may have been partially due to cells that were not active on the
first day.

3.1. Selectivity Score and Tuning Latency

To assess the spatial selectivity of place cells to their fields, we used the selectivity
score: for each place field, it was calculated whenever the animal attended the place
field as the ratio of the number of in-field calcium events of the place cell over the total
number of calcium events across the current lap (which may be not full). A selectivity
score of 1 corresponded to a cell that fired exclusively in its place field and a score of 0
took place when the place cell did not fire at its place field during this visit. The time and
the number of attendances when the smoothed selectivity score hits the threshold value
of 0.5 are considered as the tuning latency or time of specialization. Since each mouse
had its own trajectory and some mice explored the track faster than others, the number of
visits appeared to be a more universal parameter for the estimation of the tuning dynamics
of individual place cells rather than time itself. The distributions of tuning latency both
in the time and number-of-visits domains are shown in Figure 4A. On the first day, a
notable percentage (25.1%) of place fields were established at the very first attendance,
while an average place field was formed at the 7th attendance. In the time domain, 23.1%
of fields appeared within the first minute in the environment, while the average tuning
latency equaled 247 s. On the second and third days, the average tuning latency of place
fields decreased to values of 193 and 159 s, respectively, values that correspond to the 5th
attendance of the place field. The improvement of tuning latency nominated in visits on
the 2nd day was found significant (Figure 4C).

3.2. Selectivity Score Dynamics within Session and across Days

Regarding the selectivity score itself, its evolution was distributed in a similar manner
(Figure 4B) across all animals, characterized by strong decay of the rate of cells with longer
tuning latency. The mean selectivity score significantly increased from the first to the last
attendance on each day of the experiment, but the between-days difference in selectivity
score at the first and the last attendance appeared to be not significant (Figure 4D,E).
Moreover, no significant difference in selectivity score improvement was observed on the
2nd day between mice with a retained cognitive map versus mice in which the map was
not retained. Since we did not observe any cumulation of average selectivity score between
days, we searched for it at the level of individual place cells. Importantly, the improvement
in tuning latency appeared to be independent of the place field shift between sessions, i.e.,
cells that preserved their place field did not improve their tuning latency better than cells
whose place field shifted (Figure 4F–H).

Taken together, these data suggest that the selectivity of place cell firing rose faster
with each new day of the experiment, but without any significant cumulation. The retaining
or remapping of the spatial representation in mice does not correlate with significantly
higher selectivity scores or faster tuning dynamics. However, since these results are based
only on individual place cell firing statistics, and since not only place cells can contribute to
spatial coding [4,31], we performed a population analysis to confirm our results.
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Figure 3. (A) Distribution of place fields across days in a case of retained representation (left) and in
a case of remapping (right). Each line in a block corresponds to overall activation rate across the track
space of each individual place cell in three consequent sessions. Upper row: cells sorted by their peak
firing locations on the 1st day. Lower row: cells sorted by their peak firing locations on the 3rd day.
(B) Heat maps of place cells that changed their place field locations between days. Multiple place
fields of the same place cell are scored as fractions. N, not a place cell. Between-day transitions with
the retention of the map result in heat maps with distinct diagonals, while remapping transitions do
not. (C) Distribution of place field shifts for single-place-field place cells (between 1st and 2nd days
and between 2nd and 3rd days). Between-day transitions with the retention of the map show sharp
peaks in such distributions while remapping transitions show uniform distributions.
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Figure 4. (A). Distribution of tuning latency both in the number-of-visits domain and in the time domain.
(B). Sample of selectivity score distribution in one individual mouse on three consequent days (place
fields are sorted independently for each session). Red triangles denote the number of visits where the
specialization occurred (n_spec). (C) Tuning latency significantly decreases on the second day, while no
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difference is observed between retained-map and remapped mice. Two-way ANOVA, * p = 0.0488
factor day, ns—not significant (p > 0.05). (D) Evolution of mean selectivity score across days in all mice.
Mean scores for each animal are represented in thin lines. (E) Mean selectivity score significantly rises
within the first and the second day from the first to the last visit to a place field, while no difference is
observed between starting or ending selectivity score on the 1st versus that on the 2nd day. Two-way
ANOVA and post hoc Bonferroni test, ** p = 0.0261, *** p = 0.0006, ns—p > 0.05. (F) Scatter plot of
individual cell variance between 2nd and 1st days in n_spec (n_spec shift) versus place field shift for
retained-map mice (above) and remapping mice (below). Only one-field place cells were taken into
account. (G) Shifts in n_spec do not differ significantly between retained-map and remapped mice.
Unpaired Student’s t-test, p = 0.2544. (H) Distribution of n_spec shifts across all one-field place cells
for mice with the retention of the map and for mice with remapping.

3.3. Nonlinear Dimensionality Reduction Reveals Track Geometry from Multidimensional Place
Cell Activity

We performed a populational analysis of the neural data of the first six mice with a
sufficient (>200) number of detected cells on the 1st day and reduced the dimensionality of
the data with Laplacian eigenmaps (see Methods). The first two axes of the low-dimensional
space coincided with the coordinates of the mouse in the physical environment that it was
exploring (with the accuracy of rotation by a fixed angle: Figure 5A,B). It is important
to note that the algorithm did not receive any information about the real position of the
mouse as an input. This result could not be reproduced with PCA, indicating the nonlinear
nature of the problem (Figure 5C). The best result was achieved using low-energy Laplacian
eigenmodes of the similarity graph of neuronal activity vectors (Figure 5D).

Figure 5. (A) Round track with visual cues, (B) pointwise track representation, (C) first two axes of
PCA embedding, (D) first two axes of LE embedding (eigenvectors of the graph Laplacian).
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3.4. Dependence of Geometry Coding Quality on Population Size

Next, we estimated the quality of the decoding of the space. The reconstruction error
of the track space in the embedding (residual variance, RV) decreased with the number
of registered cells (Figure 6A). We attribute this to the fact that nonlinear dimensionality
reduction is able to distinguish “population” variables from the aggregate activity of
many cells.

Figure 6. (A) Negated mean selectivity score plus one (unselectivity score), which was interpolated,
smoothed with running average filter (window length 250 s) and plotted in the time domain. (B) Evo-
lution of reconstruction error within the timeline of the 1st day session. Dimensionality reduction
was performed for a sliding time window of length 250 s. Shadings represent standard deviations
for LE with different graph construction parameters. NC stands for the number of cells registered.
(C) Residual variance of the embedding depends on the number of detected cells. (D) Distribution of
mean 1-selectivity score and of mean reconstruction error across different animals. These distributions
demonstrate cosine similarity of 0.968 ± 0.047.
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3.5. Representation Quality Dynamics over Time

The residual variance of track representation decreased over time as the mice became
familiar with the environment explored (Figure 6 B). This effect was stronger the more
cells were recorded for a given animal. We attribute this to the gradual formation of a
population code in which information about the environment is distributed among many
neurons. We compared these data with the negated average selectivity score for each
mouse. The mousewise distributions of mean reconstruction error and of mean selectivity
score demonstrate cosine similarity of 0.968 (Figure 6D). This result shows the consistency
of different measures of quality of spatial coding.

4. Discussion

The main finding of this study is that place representations are promptly formed
in mice during free exploration in a completely novel environment. This is consistent
with the previous study by Muller et al. [32], where it was shown that place-selective cell
firing began within a few minutes in rats exploring a novel environment. Moreover, recent
data [8] show a similar distribution of place field forming times, nominated in laps, for mice
navigating in a regular manner in a virtual environment. Here, we extend these results to a
natural environment with completely free navigation conditions, where mice were capable
of arbitrarily choosing the moving direction.

It is known that several types of spatial representation remapping may occur between
different navigating sessions, including full, partial and rate remapping [33,34]. However,
the retention of the cognitive maps was also observed [3,35]. The ratio of animals with
preserved cognitive maps on the 2nd day in our experiments appeared to be consistent
with the previous study [7], where it was shown that the global remapping is a stochastic
process and several distinct cognitive maps can coexist in the same animal. Importantly,
multiple visual cues, distal and proximal, were used in this study, which also is consistent
with our experimental design. This could serve as an additional verifier that the mice
trained in our paradigm demonstrated normal parameters of spatial representations even
in the absence of reinforcement and goal-directed behavior.

The selectivity score dynamics that we observed suggest that the strength of place
coding of the imaged CA1 population increases within each session, but without significant
cumulation on further sessions. Nevertheless, we observed a reduction in average tuning
latency on the second day, when the environment was familiar to the animals. This can
be interpreted in the following manner: the strength of place coding starts from similar
levels each session but increases faster in a familiar environment than in a novel one. Such
dynamics can be associated with a gradual improvement in place coding between trials [36].
However, in this case, one could expect a more robust rise in the selectivity score in mice
with retained representations or at least in place cells preserving their place fields, but we
have not observed any significant difference. This implies that faster tuning of cognitive
maps may be conditioned by some mechanisms not at the level of individual place cells
but at the level of the whole CA1 population. Additional research should be done to clarify
this question.

It is known that not only place cells may contribute to spatial coding [4,31,37]. By
means of a population analysis, we demonstrated that a population of all registered cells as
a whole can encode the space of the environment and that the quality of such encoding
complements the average selectivity score. This can provide a basis for the estimation of
the exact contribution of non-place cells to spatial code by excluding the activity of place
cells from population activity, which will be a subject of further analysis.

We have not considered the direction specificity of place cells. It is known that, in
one-dimensional tracks, there are direction-specific place fields and one cell can have
place fields that are specific in different directions [38,39]. However, given the complete
arbitrariness of the animals’ trajectories in our paradigm, it is difficult to take the direction
into account due to unequal statistics of directions. Given this, we targeted our procedure
of place cell detection to omnidirectional place cells, taking into account only continuous
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statistics of selective cell firing during sequential animals’ entrances in the place field in
any direction.

One could expect some improvement in spatial code stability evoked by edge, border
and object-specific cells [40]. There are no distinct edges and borders within our behavior
paradigm, though some cells may be specifically tuned at distal and proximal visual cues
around the circular track. However, the evaluation of the exact contribution of such putative
cue-specific cells to spatial coding, as well as their precise identification, are obstructed
by the overlap of their activity with the activity of “regular” place cells, since cues are
integral parts of the environment. Additional modifications to the experimental setup will
be required to isolate the contribution of cue-specific cells in further studies.

Due to the dispersion in the number of cells detected across different animals, we
checked the consistency of our statistical comparison by excluding mice #8–9 with the
lowest number of detected neurons (see Table A1 of Appendix A). As a result, the p-value
of the factor day for the comparison of t_spec decreased from a value of p = 0.0488 to a
value of p = 0.0436 (Figure 4C), and the p-values of the comparison of selectivity score
between the first and the second visit to a field changed from values of p = 0.0261 and
p = 0.0006 to values p = 0.0153 and p = 0.0003 for the first and the second session, respectively
(Figure 4E). This change did not alter the statistical significance of the results, and therefore
we retained mice #8 and 9 in the analysis.

According to [41,42], place codes can be modulated by the exploratory behavior of
animals. We did not find any clear behavioral triggers or environmental cues that could
activate place cell tuning. Given the relatively high (25%) fraction of immediate early-tuned
(at the first visit to a field) place fields, special attention should be paid to the precise
registration of all behavior parameters from the first seconds of the mouse’s entry into
the environment. Nevertheless, at the level of discrete behavior acts, no behavior acts can
be completed within such time, which poses a question about some internal states of the
network activity leading to the rapid emergence of observed specializations.

Such mechanisms were suggested in studies by Dragoi and Tonegawa [43,44], which
reported a possibility that some pre-existing representations supply immediate place coding
in a novel environment. However, the contribution of such representations to overall place
coding may be accomplished by hippocampal replays between consequent sessions, which
may lead to the engagement of so-called "slowly-firing cells" of higher plasticity [45]. Taken
together, these approaches may explain the further distinction and completion of novel and
familiar environments.

Despite the clear geometric and physical meaning of the LE algorithm utilized in
our study, this approach has several drawbacks, which are common for many manifold
learning methods. In particular, this method does not scale well with increasing amounts
of accumulated data, because its implementation relies on the spectral decomposition
of the affinity matrix or related operators, such as the Laplacian or the transition matrix.
In general, this leads to a computational complexity of O(na), 2.4 < a < 3, depending on
the particular implementation. There is also no natural method for constructing a low-
dimensional embedding for the neural activity vector, which was not represented in the
initial data and, therefore, did not contribute to the formation of the graph. For this purpose,
one has to construct special approximate nonlinear operators [46], which is not always
possible. This limits the possibility of using the constructed embedding to analyze new
data. To address this issue, we are working on new robust neural network-based methods
for the dimensionality reduction of calcium signal data.
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5. Conclusions

We have estimated the basic parameters of place cell selectivity within an imaging
session at the first and second days of circular maze exploration. On the first day, the mean
tuning latency of all place fields in all mice equaled 247 s. On average, place specialization
was attained at the seventh visit of an animal to a place field, while 25.1% of place fields were
established at their first attendance. On the second day, 3 of 8 mice demonstrated retention
of their spatial representation, while 5 of 8 mice did not. In both cases, tuning latency on the
second day was significantly lower than on the first day. On each day, the mean selectivity
score significantly rose within the session. However, no cumulation was observed on
the second day, and the initial and ultimate selectivity scores did not differ significantly
between the first and the second day. Moreover, no difference in selectivity score or tuning
latency dynamics was detected between the mice that had map retention or underwent
remapping, neither at the level of individual cells nor at the level of average values.

Additionally, our nonlinear dimensionality reduction performed on CA1 neuronal
activity data revealed the geometry of the environment explored by the mice. The recon-
struction error for the six most informative mice on the first day of exploration corresponded
to the negated mean selectivity score of these mice.

Taken together, these results reveal the fast emergence and tuning dynamics of place
cell codes and demonstrate the applicability of novel calcium indicators NCaMP7 and
FGCaMP7 for the light-controlled analysis of neural functions in behaving mice.
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Appendix A. Extended Data Tables and Figures

Table A1. Mousewise statistics for each registered session. 1PF Cells, single-field place cells. N spec
and T spec, the average number of visit to a place field and correspondent time in seconds, since
which this place field is considered tuned. First visit and Last visit sel.sc., the average values of
selectivity score at the first and at the last attendance of a place field.

Mouse Session Calcium
Sensor Cells Place

Cells
Place
Fields

1PF
Cells N Spec T Spec

First
Visit
sel.sc.

Last
Visit
sel.sc.

Mouse 1
1

GCaMP6s
207 59 63 55 8.63 217.8 0.23 0.38

2 235 24 28 21 8.79 219.2 0.10 0.30
3 233 30 34 26 5.59 177.8 0.06 0.38

Mouse 2
1

GCaMP6s
263 90 101 79 10.10 237.3 0.20 0.30

2 297 88 102 74 5.69 146.5 0.23 0.38
3 228 80 92 68 7.37 196.4 0.19 0.41

Mouse 3
1

GCaMP6s
320 121 135 107 4.83 170.4 0.34 0.45

2 315 106 114 98 2.21 152.2 0.41 0.44
3 301 113 127 99 2.14 127.0 0.41 0.36

Mouse 4 1 GCaMP6s 562 257 298 218 3.90 256.4 0.32 0.49
2 487 247 294 202 4.07 246.6 0.30 0.49

Mouse 5 1 NCaMP7 283 74 82 66 7.99 252.1 0.20 0.35
2 317 86 96 77 6.58 186.0 0.09 0.46

Mouse 6 1 NCaMP7 200 26 30 22 6.63 245.1 0.15 0.33
2 189 11 13 9 4.62 208.8 0.09 0.58

Mouse 7 1 GCaMP7f 292 130 174 87 11.26 305.6 0.16 0.31
2 239 72 81 63 6.70 153.9 0.21 0.35

Mouse 8 1 FGCaMP7 95 10 10 10 6.10 144.4 0.31 0.31
2 123 35 38 32 5.68 102.4 0.30 0.47

Mouse 9 1 NCaMP7 103 12 19 7 7.26 271.5 0.23 0.35

Table A2. Cell matching and remapping rate statistics between sessions. We considered that the
cognitive map retained between sessions in case of the significant similarity of the distribution of place
field location shifts between sessions to a normal distribution around zero (p < 0.05, Chi-square test).

Mouse Sessions
Compared Cells Matched Retention

p-Value
Retention of

Map

Mouse 1
1 vs. 2 157 0.886 no
2 vs. 3 179 0.657 no
1 vs. 3 153 0.839 no

Mouse 2
1 vs. 2 127 0.839 no
2 vs. 3 138 0.552 no
1 vs. 3 116 0.006 yes

Mouse 3
1 vs. 2 229 <0.001 yes
2 vs. 3 217 <0.001 yes
1 vs. 3 116 <0.001 yes

Mouse 4 1 vs. 2 396 <0.001 yes

Mouse 5 1 vs. 2 208 <0.001 yes

Mouse 6 1 vs. 2 120 0.456 no

Mouse 7 1 vs. 2 69 0.457 no

Mouse 8 1 vs. 2 77 0.237 no
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Figure A1. (A) Samples of histology sections indicating GRIN lens implantation locations stained
with Hoechst. (B) Samples of raw NVista HD video screenshots. Scale bars, 100 µm.

Figure A2. Samples of cell matching between sessions. Matched population is marked in green.
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