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Abstract Adherens junction (AJ) assembly under force is essential for many biological processes

like epithelial monolayer bending, collective cell migration, cell extrusion and wound healing. The

acto-myosin cytoskeleton acts as a major force-generator during the de novo formation and

remodeling of AJ. Here, we investigated the role of non-muscle myosin II isoforms (NMIIA and

NMIIB) in epithelial junction assembly. NMIIA and NMIIB differentially regulate biogenesis of AJ

through association with distinct actin networks. Analysis of junction dynamics, actin organization,

and mechanical forces of control and knockdown cells for myosins revealed that NMIIA provides

the mechanical tugging force necessary for cell-cell junction reinforcement and maintenance. NMIIB

is involved in E-cadherin clustering, maintenance of a branched actin layer connecting E-cadherin

complexes and perijunctional actin fibres leading to the building-up of anisotropic stress. These

data reveal unanticipated complementary functions of NMIIA and NMIIB in the biogenesis and

integrity of AJ.

DOI: https://doi.org/10.7554/eLife.46599.001

Introduction
Tissue integrity and plasticity rely on cell-cell adhesion and cell contractility. The formation, remodel-

ing and disassembly of cell-cell adhesions are fundamental events accompanying all stages of mor-

phogenesis, tissue homeostasis and healing. AJ mediated by E-cadherin/catenin complexes are key

elements of epithelial cell-cell adhesions and the first ones to assemble upon contact initiation

(Adams et al., 1998; Green et al., 2010; Takeichi, 2014). They provide strong mechanical coupling

between neighboring cells through association with the acto-myosin cytoskeleton (Mège and Ish-

iyama, 2017).

The assembly of de novo AJ is crucial for cell-cell rearrangement (Cavey et al., 2008;

Maı̂tre et al., 2015), tissue closure (Jacinto et al., 2002) and the maintenance of epithelial cell

integrity during wound healing or cell extrusion (Harris et al., 2014; Kocgozlu et al., 2016;

Wood et al., 2002). During de novo cell-cell contact formation, initial contact between facing lamel-

lipodia induces immediate clustering of cadherin molecules by trans- and cis-oligomerization

(Adams et al., 1998; Yap et al., 1997; Strale et al., 2015; Mège et al., 2006). Subsequent signaling

events involving Rho GTPases trigger local remodeling of the actin cytoskeleton through Arp2/3- or

formin-mediated actin polarization in the vicinity of AJs (Grikscheit et al., 2015; Kovacs et al.,

2002; Yamada and Nelson, 2007). These cytoskeletal rearrangements drive the expansion of cell-

cell contacts and inter-cellular adhesion strengthening (Green et al., 2010; Krendel and Bonder,

1999; Chu et al., 2004).

Heuzé et al. eLife 2019;8:e46599. DOI: https://doi.org/10.7554/eLife.46599 1 of 30

RESEARCH ARTICLE

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.7554/eLife.46599.001
https://doi.org/10.7554/eLife.46599
https://creativecommons.org/
https://creativecommons.org/
http://elifesciences.org/
http://elifesciences.org/
http://en.wikipedia.org/wiki/Open_access
http://en.wikipedia.org/wiki/Open_access


Non-muscle Myosin II (NMII) has emerged as a fundamental player in force-generation and force-

transmission at AJ both in vitro and in vivo (Borghi et al., 2012; Curran et al., 2017; Ladoux and

Mège, 2017). NMII is essential for epithelial tissue architecture (Salomon et al., 2017), epithelial tis-

sue morphogenesis (Munjal and Lecuit, 2014), tissue repair (Tamada et al., 2007; Begnaud et al.,

2016) and cell extrusion (Rosenblatt et al., 2001). NMII protects junctions from disassembly during

development (Weng and Wieschaus, 2016) and provides the mechanical tugging force necessary

for AJ reinforcement (Liu et al., 2010). In endothelial cells, NMII is recruited early in filopodia-medi-

ated bridge bundles and its activity is required for accumulation of VE-cadherin in nascent AJs

(Hoelzle and Svitkina, 2012). In epithelial cells, NMII favors local concentration of E-cadherin at cell-

cell contacts (Shewan et al., 2005; Smutny et al., 2010) and it is enriched at the edges of elongat-

ing junctions where it drives contact expansion in response to RhoA (Yamada and Nelson, 2007;

Krendel and Bonder, 1999).

In mammalian cells, NMII heavy chains exist as three different isoforms: NMIIA, NMIIB and NMIIC

encoded by MYH9, MYH10 and MYH14 genes, respectively (Conti and Adelstein, 2008; Vicente-

Manzanares et al., 2009). NMIIA and NMIIB are widely expressed whereas NMIIC is not detected in

several tissues (Ma et al., 2010). Despite structural similarities, NMIIA and NMIIB isoforms have

been assigned both redundant and specific functions depending on cell types and processes

(Beach and Hammer, 2015). NMIIA and NMIIB exhibit different ATPase activities and actin-binding

properties (Wang et al., 2003; Kovács et al., 2003; Kovács et al., 2007; Billington et al., 2013), in

addition to their specific C-terminal tails that confer them unique functions (Sandquist and Means,

2008; Juanes-Garcia et al., 2015; Chang and Kumar, 2015). These two isoforms can exist as acti-

vated monomers in cells, but they can also co-assemble as homotypic and heterotypic filaments

(Shutova et al., 2014; Beach et al., 2014). NMIIA and NMIIB play both unique and overlapping

roles in vivo (Skoglund et al., 2008; Wang et al., 2011; Haque et al., 2017; Ridge et al., 2017;

Conti et al., 2004; Tullio et al., 1997). In cells migrating on 2D surfaces, NMIIA localizes at the cell

front, limits lamellipodial protrusive activity and reduces 2D cell migration speed by regulating focal

adhesions dynamics and traction forces (Doyle et al., 2012; Betapudi et al., 2006; Cai et al., 2006;

Jorrisch et al., 2013). NMIIB localizes at the cell rear and is required for front-back polarity and tail

retraction (Betapudi et al., 2006; Cai et al., 2006; Jorrisch et al., 2013; Kolega, 2003;

Sandquist et al., 2006; Vicente-Manzanares et al., 2008; Vicente-Manzanares et al., 2011; Beta-

pudi, 2010; Shutova et al., 2017). In 3D, NMIIA favors cell displacement (Doyle et al., 2012;

Betapudi et al., 2006; Cai et al., 2006; Jorrisch et al., 2013; Shih and Yamada, 2010) while NMIIB

drives nuclear translocation (Thomas et al., 2015). NMIIB also plays a determinant role in durotaxis

(Raab et al., 2012).

While the roles of NMII isoforms in cell motility on ECM have been extensively studied, very little

is known on their respective functions in AJs organization. Yap and collaborators have reported that

NMIIA and NMIIB both localize at apical junction complexes of polarized MCF-7 cells

(Smutny et al., 2010; Gomez et al., 2015). Upon specific isoform expression silencing, they further

proposed that NMIIA may favor the accumulation of E-cadherin in the AJ belt while NMIIB may sta-

bilize the associated perijunctional actin ring, reinforce junctions and prevent them from disruptive

forces (Smutny et al., 2010). Ozawa reported using CRISPR-Cas9 gene invalidation that NMIIA was

required to assemble junctional complexes (Ozawa, 2018). Svitkina and collaborators reported an

association of NMIIA with contractile actin bundle running parallel to linear AJ in endothelial cells,

but failed to precisely localize NMIIB (Efimova and Svitkina, 2018). Here we further explore the

functions of NMII isoforms in epithelial AJ biogenesis using an in vitro system based on chemically-

switchable micro-patterns, whereby we can control the time and location of a new contact forming

between two single cells on a matrix-coated surface.

Results

In vitro system for the study of early cell-cell contacts
In order to study early AJ biogenesis, pairs of GFP-E-cadherin expressing MDCK cells were plated

on arrays of 5 mm-distant fibronectin-coated micro-patterns surrounded by switchable cytorepulsive

surfaces (van Dongen et al., 2013). After complete spreading, the confinement imposed by the

micro-patterns was released by addition of an RGD-motif containing modified peptide that switched
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Figure 1. Development of an in vitro system for the study of junction biogenesis. (a) Sequential steps for controlled initiation and visualization of

junction biogenesis. The two cells are initially confined on a pair of fibronectin-coated 5 mm-away patterns (T0). When desired, the cell confinement is

released by addition of BCN-RGD peptide, inducing cell spreading and kissing within a few hours. Scale Bar: 10 mm. (b) Spinning disk image sequence

showing contact extension between two MDCK cells expressing GFP-E-cadherin and stained with Hoechst. Scale bar: 10 mm. (c) Kymographs of the

junction forming in panel b, generated from the yellow line, shown in green and in pseudocolor to highlight GFP-E-cadherin accumulation at junction

tips. The junction axis was realigned horizontally for some time points in order to generate the kymograph on a long time scale. Scale bar: 5 mm. (d)

Representative confocal images of b-catenin-stained junctions from MDCK cell doublets. The arrow points at small holes frequently observed within

Figure 1 continued on next page
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the surface surrounding patterns from a cytorepulsive to an adhesive surface (Figure 1a and Fig-

ure 1—figure supplement 1a). Junction biogenesis was monitored by confocal spinning disk micros-

copy (Figure 1b, Video 1). Within 2 hr, cells extended lamellipodia in random directions and

approximately 50% of the pairs of cells contacted within 12 hr. The junction extended reaching a pla-

teau at 40–45 mm length in around 3 hr (Figure 1c,e). As previously described (Yamada and Nelson,

2007), GFP-E-cadherin accumulated at the edges of the junction (Figure 1c). Once reaching this

maximal length, the junction was maintained while showing dynamic retraction-elongation events

(Figure 1c). Importantly, in 98 + /- 2% of the cases, cell-cell contacts were stable and lasted above 3

hr and up to 22 hr (Figure 1c,f). Analysis of the

nucleus-centrosome axis relative to the junction

axis showed a relocalization of the centrosome

towards the lamellipodia opposite to the cell-cell

Figure 1 continued

Y27-treated junctions. The cells were fixed 20 hr after addition of BCN-RGD alone or BCN-RGD + Y27 (50 mM). Scale bar: 10 mm. (e) Graphs showing

the evolution of junction length in function of time after contact initiation in Ctrl and Y27-treated MDCK cell doublets. Y27 (50 mM) was added with

BCN-RGD. Data are represented as mean + /- SEM. n = 13 and 12 cell doublets from two and three independent experiments, respectively. (f) Bar

graph of the percentage of cell doublets that stay in contact for more than 3 hr in Ctrl and Y27-treated MDCK cells, respectively. Data are represented

as mean + /- SEM. n = 13 and 12 cell doublets from two and three independent experiments, respectively. Bonferroni statistical tests were applied for

p value. (g) Spinning disk image sequence of GFP-E-cadherin-expressing MDCK cells pre-stained with Hoechst in the presence of Y27 (50 mM). The

sequence starts 3 hr after addition of BCN-RGD + Y27. The arrows highlight transient contacts forming under these conditions. Scale bar: 10 mm.

DOI: https://doi.org/10.7554/eLife.46599.002

The following source data and figure supplements are available for figure 1:

Source data 1. Development of anin vitrosystem for the study of junction biogenesis.

DOI: https://doi.org/10.7554/eLife.46599.005

Figure supplement 1. Reversal of nucleus-centrosome polarity axis after cell-cell contact.

DOI: https://doi.org/10.7554/eLife.46599.003

Figure supplement 1—source data 1. Reversal of nucleus-centrosome polarity axis after cell-cell contact.

DOI: https://doi.org/10.7554/eLife.46599.004

Video 1. Dynamic of junction formation on reversible

micropatterns. Spinning disk movie showing contact

formation between two MDCK cells expressing GFP-E-

cadherin and stained with Hoechst. Scale bar: 10 mm.

DOI: https://doi.org/10.7554/eLife.46599.006

Video 2. Dynamic of junction formation in Y27-treated

cells. Spinning disk movie of MDCK cells expressing

GFP-E-cadherin, stained with Hoechst and treated with

50 mM Y27. Scale bar: 10 mm.

DOI: https://doi.org/10.7554/eLife.46599.007
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contact within one hour (Figure 1—figure supplement 1b–d), as previously reported in different

systems and cell types (Desai et al., 2009; Dupin et al., 2009; Burute et al., 2017; Rodrı́guez-

Fraticelli et al., 2012). However, although MDCK cells antipolarized in the doublet as if they were

initiating a contact inhibition of locomotion, they remained attached to each other in contrast to

more mesenchymal cells that proceed with cell separation following repolarization (Stramer and

Mayor, 2017). Together, these observations show that this in vitro model system is suitable for the

study of early cell-cell contacts at high spatial-temporal resolution.

NMIIA and NMIIB orchestrate junction biogenesis
To evaluate the involvement of NMII-generated actomyosin contractility in junction biogenesis, we

monitored junction formation in cells treated with the ROCK inhibitor Y27632 (Figure 1g and

Video 2). Y27-treated cells exhibited irregular junctions with small digitations and empty spaces and

did not elongate as much as control cells (Figure 1d,e). They were strongly affected in their capacity

to maintain cell-cell contacts, half of the doublets separating before 3 hr (Figure 1f,g and Video 2).

Similar results were observed after treating cells with the NMII ATPase activity inhibitor blebbistatin

(data not shown) indicating that NMII activity is required for proper junction elongation and stabiliza-

tion. Furthermore, NMII was required for the centrosome repolarization, as we could not observe

any preferential orientation of the nucleus-centrosome axis in Y27-treated doublets (Figure 1—fig-

ure supplement 1d).

Next, we explored the involvement of the two NMII isoforms in junction biogenesis. NMIIA has

been reported to be by large the major isoform of NMII expressed in MDCK cells (Ma et al., 2010).

However, immunostainings revealed that the three isoforms, NMIIA, NMIIB and NMIIC could be

detected in MDCK cells. NMIIA and NMIIC fully co-localized to similar structures, which was not the

case for NMIIB (Figure 3—figure supplement 1a,b). For these reasons, we decided to focus on

NMIIA and NMIIB isoforms. Expression of each isoform was silenced in GFP-E-cadherin MDCK cells

by stable transfection of specific ShRNA encoding plasmids, leading to an inhibition of expression of

around 60–70% (Figure 2a,b and Figure 2—figure supplement 1a,b). The analysis of cell-cell con-

tact formation in cell doublets by live-imaging (Video 3) revealed that NMIIB knock-down (NMIIB

KD) cells formed and extended intercellular junctions very similar to control (Ctrl) cells (Figure 2c–f).

In contrast, almost half of NMIIA knock-down (NMIIA KD) cell doublets were unable to sustain con-

tacts more than 3 hr, and when they did so, these contacts remained shorter than for Ctrl or NMIIB

KD cell doublets (Figure 2c–f), similar to what was observed in Y27-treated cell doublets. NMIIB KD

doublets, despite their ability to maintain cell-cell contacts for longer times, formed twisted junctions

that were significantly less straight than Ctrl and NMIIA KD cells and deviated significantly more

from their initial orientation (Figure 2g,h). These defects in NMIIB KD cells were already observed at

early stages of junction biogenesis and were associated to the formation of large extensions of junc-

tional membrane (Figure 2i, arrows). Together, these results show that both NMIIA and NMIIB are

required for the biogenesis of stable AJs, albeit with different contributions; NMIIA favors temporal

stability whereas NMIIB ensures the straightness and spatial stability of the junctions, which is in

agreement with different contributions of NMIIA and NMIIB in mature junctions (Smutny et al.,

2010).

NMIIB preferentially localizes to a junctional actin pool distinct from
perijunctional NMIIA-associated contractile fibres
To better understand the respective roles of NMIIA and NMIIB in junction biogenesis, we next stud-

ied their subcellular localization at nascent cell-cell contacts in cell doublets. Immunostainings

revealed a differential localization of the two isoforms relative to the junction. Anti-NMIIA antibodies

stained actin bundles that were parallel to the junction, setting at 1 to 2 mm from it, but did not stain

the junctional area. NMIIA was also found associated to actin cables parallel to the cortex of non-

junctional membranes (Figure 3a,c and Figure 3—figure supplement 1a) in addition its association

to the classical ventral stress fibres. NMIIB immunostaining was also present on some perijunctional

actin bundles but, in contrast with NMIIA, was strongly associated with the junctional plasma mem-

branes as well as with a cytoplasmic network (Figure 3b,d and Figure 3—figure supplement 1b),

that was identified as the vimentin intermediate filament network as reported by Menko and
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colleagues (Menko et al., 2014) in lens epithelial cells. Importantly, the localization of each isoform

was not affected by the silencing of the other isoform (Figure 3—figure supplement 1c).

NMIIA and NMIIB were previously reported to localize to apical epithelial junctions in polarized

MCF-7 cells (Smutny et al., 2010; Gomez et al., 2015) with however some divergencies. Thus, we

followed the localization of both isoforms during apico-basal polarization of MDCK cells (Figure 3e–

g and Figure 3—figure supplement 2a). After one day of culture, NMIIB and NMIIA were differen-

tially localized in sub-confluent cell clusters. NMIIA was associated to stress fibres and excluded

from junctional membranes while NMIIB colocalized with E-cadherin at cell-cell contacts. After 3

days of culture, confluent MDCK cells started to develop an apico-basal polarization and the two iso-

forms associated to apically positioned zonulae adherens. However, even at these stages, only

NMIIB colocalized with E-cadherin, while NMIIA was accumulated perijunctionnally as previously

reported in MCF-7 cells (Gomez et al., 2015). At the basal side, they were both associated to stress

fibres. To confirm the differential localization of the two isoforms we analysed the distribution in

transiently transfected MDCK cells of GFP-NMIIA and of mCherry-NMIIB (Figure 3—figure supple-

ment 1d,e). mCherry-NMIIB accumulated at junctional membranes while GFP-NMIIA accumulated in

perijunctional areas as reported in Ozawa (2018). These differential distributions at the early stages

of AJ formation were not specific to MDCK cells, and were observed as well in small clusters of

Caco2 cells (Figure 3—figure supplement 2b).

Considering recent findings showing a possible

interaction between NMIIB and a-catenin

(Vassilev et al., 2017), we hypothesized that

NMIIB could be recruited to the junction through

a-catenin/E-cadherin complexes. Accordingly, in

a-catenin KD MDCK cells (Benjamin et al.,

2010), NMIIB was relocalized to NMIIA-enriched

stress fibres and circumnuclear actin cables (Fig-

ure 3—figure supplement 2c,d), indicating that

a-catenin is required for NMIIB junctional

recruitment.

Figure 2. NMIIA and NMIIB are both required for proper junction biogenesis. (a, b) Left panels: Representative immunoblots showing the isoform

specific knockdown of NMIIA (a) and NMIIB (b) in NMIIA KD and NMIIB KD MDCK cells. GAPDH expression levels were used as loading controls. Right

panels: Bar graphs showing the relative expression level of NMIIA and NMIIB proteins in Ctrl, NMIIA KD and NMIIB KD cells normalized to GAPDH

expression levels. Data are represented as mean + /- SEM from three independent experiments. Kruskall-Wallis statistical tests were applied for p

value. (c) Representative epifluorescence image sequences of GFP-E-cadherin over a time course of 5 hr showing the dynamics of junction formation at

low magnification in Ctrl, NMIIA KD and NMIIB KD MDCK cells. The arrows indicate the position and the orientation of the junctions. Scale bar: 10 mm.

(d) Bar graph of the percentage of cell doublets that stay in contact for more than 3 hr. Data are represented as mean + /- SEM. Tukey’s multiple

comparison statistical tests were applied for p value. n = 36, 37 and 31 cell doublets for Ctrl, NMIIA KD and NMIIB KD cells respectively, from three

independent experiments. (e) Plots showing the evolution of junction length in function of time for Ctrl, NMIIA KD and NMIIB KD cell doublets. Data

are represented as mean + /- SEM. n = 40, 43 and 35 cell doublets for Ctrl, NMIIA KD and NMIIB KD cells respectively, from four independent

experiments. (f) Box and whiskers graphs representing the junction length after 3 hr after contact, for Ctrl, NMIIA KD and NMIIB KD cell doublets.

n = 34, 21 and 28 cell doublets for Ctrl, NMIIA KD and NMIIB KD cells respectively, from four independent experiments. (g) Box and whiskers graphs

showing the junction straightness (calculated as the euclidean/accumulated length ratio) in Ctrl, NMIIA KD and NMIIB KD cell doublets 2 hr after

contact. n = 12, 15 and 17 cell doublets for Ctrl, NMIIA KD and NMIIB KD cells respectively, from three independent experiments. (h) Box and whiskers

graph showing the angular deviation of junctions during the three first hours of contact in Ctrl, NMIIA KD and NMIIB KD cell doublets. n = 35, 30 and

32 cell doublets for Ctrl, NMIIA KD and NMIIB KD cells respectively, from four independent experiments. (f–h) Mann-Whitney statistical tests were

applied for p value. (i) Representative spinning disk GFP-E-cadherin image sequences over a time course of 4 hr showing the dynamics of junction

formation at high magnification in Ctrl, NMIIA KD and NMIIB KD MDCK cells. The red arrows point at junctional extensions typically observed in NMIIB

KD doublets. Scale bar: 10 mm.

DOI: https://doi.org/10.7554/eLife.46599.008

The following source data and figure supplement are available for figure 2:

Source data 1. NMIIA and NMIIB are both required for proper junction biogenesis.

DOI: https://doi.org/10.7554/eLife.46599.010

Figure supplement 1. Isoform-specific NMII Knock-down in MDCK cells.

DOI: https://doi.org/10.7554/eLife.46599.009

Video 3. Dynamic of junction formation in Ctrl, NMIIA

KD and NMIIB KD cells. Epi-fluorescence movies of

Ctrl, NMIIA KD and NMIIB KD MDCK cells expressing

GFP-E-cadherin. Scale bar: 10 mm.

DOI: https://doi.org/10.7554/eLife.46599.011
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To better characterize the organization of the actomyosin cytoskeleton at nascent AJs, co-stain-

ings of NMIIA, NMIIB, F-actin and b�catenin performed on control MDCK cells were imaged using

structured illumination microscopy (SIM). NMIIA was associated to thick F-actin bundles running par-

allel to, and located a few microns away from the junctional membranes (Figure 4a,c,d), as reported

for NMIIA localization in linear junctions of endothelial cells (Hoelzle and Svitkina, 2012;

Efimova and Svitkina, 2018). We confirmed at this resolution that NMIIA did not colocalize with

b�catenin-labeled cadherin-catenin complexes. Interestingly, NMIIA appeared distributed on acto-

myosin bundles in sarcomere like structures as described before in other cellular contexts

(Choi et al., 2016; Ebrahim et al., 2013). NMIIB junctional staining colocalizing with b�catenin was

associated with a 200 nm to 1 mm thick fuzzy F-actin network (Figure 4a–d), that also contained

both Arp2/3 (Figure 3—figure supplement 2e) and cortactin (Figure 5b–d), two known molecular

markers of branched actin meshwork. Looking at short junctions that probably corresponded to

nascent cell-cell contacts, we could also observe the strong enrichment of NMIIB and the exclusion

of NMIIA at the contact zone (Figure 4e,f).

Altogether, these observations reveal that early during AJ biogenesis, NMIIB is associated to a

juxtamembrane actin meshwork, structurally distinct from the perijunctional contractile actin bundles

running parallel to the junction where NMIIA is preferentially associated.

NMIIA regulates the organization of perijunctional actin bundles while
NMIIB regulates the organization of a juxtamembrane actin layer
Based on these observations and previous studies (Smutny et al., 2010; Efimova and Svitkina,

2018), we subsequently explored the possibility that NMIIB and NMIIA could differentially regulate

actin organization at the junction, thereby maintaining its structural integrity. Using SIM microscopy,

we analyzed the organization of junctional actin cytoskeleton in NMIIA KD and NMIIB KD cells.

NMIIA KD cells exhibited shorter actin bundles running parallel to the junction, while their juxtamem-

brane F-actin meshwork was comparable to the one of Ctrl cells, both in terms of morphology and

cortactin staining (Figure 5a,e,f and Figure 5—figure supplement 1a,b). In contrast, NMIIB KD cells

presented a strongly enlarged area of junctional F-actin meshwork colocalizing with b�catenin that

corresponded to overlapping membrane extensions stained with cortactin (Figure 5a,e,f and Fig-

ure 5—figure supplement 1a,b). In addition, while they retained some of the perijunctional actin

bundles, we could observe numerous oblique actin bundles directed toward the junction (Figure 5a

and Figure 5—figure supplement 1a,b). These results show that NMIIA supports the organization

of perijunctional actin bundles while NMIIB contributes to restrain the extent of the juxtamembrane

F-actin meshwork that couples perijunctional bundles to the plasma membrane, thus restraining

lamellipodial activity at the junction.

An Arp2/3-nucleated actin network at the zonula adherens has been shown to regulate junctional

tension in epithelial monolayers (Verma et al., 2012). On the other hand, junctional tension has

been shown to associate with the presence of a-catenin molecules under open conformations

(Ishiyama et al., 2018; Yonemura et al., 2010). Moreover, a direct link between a�catenin and

NMIIB has been reported (Vassilev et al., 2017), suggesting that NMIIB recruitment, a-catenin

molecular unfolding and regulation of branched actin polymerization could be tightly linked. Thus,

we performed immunostainings with the a18 monoclonal antibody recognizing the open conforma-

tion of the protein (Yonemura et al., 2010). Strikingly, the ratio of a18 on total a�catenin junctional

staining was decreased by four times in NMIIB KD cells compared to Ctrl cells, while it was not

affected in NMIIA KD cells. This suggests that junctional a-catenin molecules were significantly

turned to the closed conformational state in NMIIB KD cells (Figure 5g–i). In contrast, the total a-

catenin junctional levels were significantly reduced in NMIIA KD cells, as shown by others

(Shewan et al., 2005; Smutny et al., 2010). Taken together, these results strengthen complemen-

tary contributions for NMIIB and NMIIA where NMIIB is the main isoform required for the organiza-

tion of juxtamembrane actin cushion and NMIIA for organization of perijunctional contractile actin

fibres.

Heuzé et al. eLife 2019;8:e46599. DOI: https://doi.org/10.7554/eLife.46599 8 of 30

Research article Cell Biology Physics of Living Systems

https://doi.org/10.7554/eLife.46599


a GFP-E-cadherin NMIIA

GFP-E-cadherin
NMIIA

0 1 2 3 4 5

0

50

100

%
 o

f 
m

a
x
im

a
l 
in

te
n

s
it
y

GFP-E-cadherin NMIIB

0 1 2 3 4 5

0

50

100

GFP-E-cadherin
NMIIB

Distance from upper point (µm)

%
 o

f 
m

a
x
im

a
l 
in

te
n

s
it
y

c

b

d

Distance from upper point (µm)

f
E-cadherin

D
a

y
 1

D
a

y
 3

NMIIA E-cadherin

Basal

Apical

NMIIB

Basal

Apical

D
a

y
 1

D
a

y
 3

Basal

Apical

Basal

Apical

g

-0.5

0.0

0.5
***

***
ns

P
e
a
rs

o
n
's

 c
o
e
ff
ic

ie
n
t

IIA
/E

-c
ad

IIB
/E

-c
ad

IIA
/E

-c
ad

IIB
/E

-c
ad

IIA
/E

-c
ad

IIB
/E

-c
ad

Day 1 Basal Apical

Day 3

e

Figure 3. NMIIB, but not NMIIA, localizes to early AJs. (a, b) Representative confocal images and zoom boxes of GFP-E-cadherin-expressing MDCK cell

doublets fixed 20 hr after BCN-RGD addition and immuno-stained for NMIIA (a) or NMIIB (b) Scale bar: 10 mm. (c, d) Relative intensity profiles (raw and

smoothed data) of GFP-E-cadherin and NMIIA (c) or NMIIB (d) signals along the lines represented in (a) and (b) respectively. (e) Box and whiskers

graphs showing the Pearson’s coefficient values that reflects the co-localization of NMIIA, NMIIB with E-cadherin quantitatively. n = 9 to 24 junctions.

Mann-Whitney statistical tests were applied for p value. (f, g) Representative confocal images of WT MDCK cells plated on fibronectin-coated glass for

1 or 3 days and stained for F-actin, NMIIA (f) and NMIIB (g). Scale bar: 10 mm.

DOI: https://doi.org/10.7554/eLife.46599.012

The following source data and figure supplements are available for figure 3:

Source data 1. NMIIB, but not NMIIA, localizes to early AJs.

Figure 3 continued on next page
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NMIIA is required for the generation of forces at E-cadherin adhesions
while NMIIB favors their transmission through F-actin anchoring
The formation of cell-cell junctions in cell doublets is concomitant with the formation of cell-matrix

adhesions and the tugging force applied on cell-cell contacts must be compensated by traction of

the cells on cell-matrix adhesion complexes (Liu et al., 2010; Maruthamuthu et al., 2011; Ng et al.,

2014). To further understand the contributions of NMII isoforms in junction biogenesis, we thus

experimentally decoupled these two adhesion systems. We first investigated the role of NMII iso-

forms in cell-matrix adhesion by seeding single Ctrl, NMIIA KD and NMIIB KD cells on fibronectin-

coated glass. NMIIA KD cells spread 1.7 times more than Ctrl and NMIIB KD cells on fibronectin and

their actin cytoskeleton was highly perturbed exhibiting a strong decrease in ventral stress fibres

and cortical actin bundles together with an enlargement of their lamellipodia (Figure 6—figure sup-

plement 1a,b). NMIIA KD cells also formed significantly less focal adhesions (Figure 6—figure sup-

plement 1a,c). In contrast, NMIIB KD cells showed no defect in actin organization, cell spreading or

focal adhesion formation (Figure 6—figure supplement 1a–c). Next, we measured by TFM the mag-

nitude of traction forces applied by single cells on deformable fibronectin-coated 30 kPa PDMS gels.

NMIIA KD cells exerted lower traction forces than Ctrl cells as reported by others (Jorrisch et al.,

2013; Shutova et al., 2017). NMIIB KD cells, on the contrary, did not show any defect in traction

force generation on this substratum (Figure 6—figure supplement 1d,e). These results, in agree-

ment with previous studies (Jorrisch et al., 2013; Sandquist et al., 2006), show that NMIIA is the

isoform regulating cell spreading, cell adhesion, traction force generation and organization of con-

tractile actin structures on fibronectin. In contrary MNIIB is not contributing at all to the cell-matrix

adhesion, focal adhesion formation, actomyosin reorganization and traction forces on fibronectin.

To explore the contribution of NMII isoforms to E-cadherin-mediated cell-cell adhesion per se,

we seeded single cells on E-cadherin-coated substrates (Figure 6—figure supplement 2a,b). After

6 hr, Ctrl and NMIIA KD cells had spread similarly with mean areas of 1178 ± 40 mm2 and 1031 ± 37

mm2 respectively, while NMIIB KD cell spreading was significantly reduced (mean area = 515 ± 21

mm2) (Figure 6—figure supplement 2a,c). Ctrl cells organized thick circumnuclear actin arcs, as well

as radial actin fibres connected to peripheral b-catenin clusters (Figure 6—figure supplement 2a),

as previously described (Gavard et al., 2004; Collins et al., 2017). NMIIA KD cells, while spreading

as Ctrl cells on E-cadherin lacked the circumnuclear actin arcs and formed fewer large and small cad-

herin clusters (Figure 6—figure supplement 2a,d). In particular they could not organize large clus-

ters aligned along actin cables, as reported in MCF7 cells (Smutny et al., 2010). NMIIB KD cells

kept the organization of circumnuclear actin arcs, but were depleted of radial actin bundles, did not

form significant b-catenin clusters and failed to spread on E-cadherin (Figure 6—figure supplement

2a,c,d). Contrasting with data obtained in MCF7 cells (Smutny et al., 2010), these data indicated

that NMIIB plays a major role in the clustering and stabilization of E-cadherin/catenin complexes

that in turn promote cell spreading. Our findings also suggest that NMIIA is required for the forma-

tion of contractile actin fibres that apply traction forces on the cadherin adhesions. We thus mea-

sured the capacity of these cells to transmit forces through E-cadherin complexes by TFM, seeding

them on E-cadherin-coated 15 kPa PDMS elastic gels. Compared to Ctrl cells, NMIIA KD cells exhib-

ited very low forces on E-cadherin substrate (Figure 6—figure supplement 2e,f), confirming that

NMIIA generates the forces transmitted to E-cadherin adhesions. NMIIB KD cells, that failed to clus-

ter cadherin/catenin complexes, also generated lower traction forces than Ctrl cells, albeit to a lesser

Figure 3 continued

DOI: https://doi.org/10.7554/eLife.46599.017

Figure supplement 1. NMIIA and NMIIB exhibit differential localizations in early AJs.

DOI: https://doi.org/10.7554/eLife.46599.013

Figure supplement 1—source data 1. NMIIA and NMIIB exhibit differential localizations in early AJs.

DOI: https://doi.org/10.7554/eLife.46599.014

Figure supplement 2. NMIIB, but not NMIIA, localizes to early epithelial AJs.

DOI: https://doi.org/10.7554/eLife.46599.015

Figure supplement 2—source data 1. NMIIB, but not NMIIA, localizes to early epithelial AJs.

DOI: https://doi.org/10.7554/eLife.46599.016
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extent than NMIIA KD cells (Figure 6—figure supplement 2e,f). Even though both NMII isoforms

contribute to cell-generated forces on E-cadherin substratum, they have complementary contribu-

tions. NMIIA is required for the formation of stress fibres while NMIIB would rather regulate the
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Figure 4. NMIIB localizes to a junctional actin network distinct from NMIIA-associated actin. (a–b) SIM (Structured Illumination Microscopy) images of

WT MDCK cells fixed 20 hr after addition of BCN-RGD and stained as indicated. Scale bar: 3 mm. (c) Relative intensity profiles (raw and smoothed data)

of NMIIB, NMIIA and F-actin signals along the line represented in (a). (d) Box and whiskers graphs showing the Pearson’s coefficient values that reflects

the co-localization of F-actin and NMIIA or NMIIB in junctional and peri-junctional areas. n = 18 to 33 junctions. For p values, pairwise t tests were

applied to compare junctional vs perijunctional data for the same isoform and Mann-Whitney statistical tests to compare the two isoforms. (e, f). SIM

images of nascent contacts formed between WT MDCK cells. Scale bar: 3 mm.

DOI: https://doi.org/10.7554/eLife.46599.018

The following source data is available for figure 4:

Source data 1. NMIIB localizes to a junctional actin network distinct from NMIIA-associated actin.

DOI: https://doi.org/10.7554/eLife.46599.019
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Figure 5. NMIIB supports juxtamembrane actin organization and regulates a-catenin unfolding. (a) SIM (Structured Illumination Microscopy) images of

junctional areas from Ctrl, NMIIA KD and NMIIB KD cells fixed 20 hr after addition of BCN-RGD and stained for F-actin and b-catenin. Scale bar: 5 mm.

(b) Representative confocal images with zoom boxes of Ctrl MDCK cells. (c) Relative intensity profiles of cortactin and NMIIA or NMIIB signals along the

lines represented in (b, d). Box and whiskers graphs showing the Pearson’s coefficient values for co-localization of cortactin with NMIIA or NMIIB at cell-

Figure 5 continued on next page
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transmission of force and the coupling of actin stress fibres to the cadherin-catenin complexes. Slight

divergences on localizations and effects of silencing reported here compared to data obtained in

MCF7 cells (Smutny et al., 2010; Gomez et al., 2015) may relate to the reported changes in homo/

heteropolymerization of NMIIA and NMIIB (Shutova et al., 2014; Beach et al., 2014) which could

depend on relative levels of expression and/or maturation of contractile actin fibres.

NMIIA and NMIIB are required for proper organization of inter-cellular
junctional stress
To directly determine how NMIIA and NMIIB contribute to traction force generation and transmis-

sion during AJ biogenesis, we mapped traction forces before and after cell-cell contact formation in

cell doublets. Hotspots of traction forces were generated at the periphery of the doublet where

lamellipodia arise (Figure 6a). As expected from the TFM data obtained with single cells seeded on

fibronectin, NMIIA KD doublets, compared to Ctrl and NMIIB KD ones, exhibited lower traction

forces both before and after cell-cell contact formation (Figure 6a–c). NMIIB KD doublets developed

traction forces similar in magnitude to those developed by Ctrl ones, with however different pat-

terns. Hotspots of forces frequently appeared in the junctional area in NMIIB KD doublets that were

generally absent in Ctrl and NMIIA doublets (Figure 6a). We quantified these differences by analy-

sing the spatial repartition of forces in the peripheral and central subdomains of the junction, and

their orientation relative to main junction axis (parallel, F//, and perpendicular, F?, components).

NMIIB KD doublets generated higher F? in the central part of the junction and lower values of F//
with respect to Ctrl doublets in both the peripheral and the central part (albeit not significantly) of

the junction (Figure 6—figure supplement 3a,b). As a consequence, the ratios of parallel/perpen-

dicular forces in the central and peripheral part of the junction were lower in NMIIB KD doublets

compared to Ctrl doublets (Figure 6—figure supplement 3c). The mechanical perturbation induced

by knocking down NMIIB leads to a redistribution of transmitted forces in the junctional area at both

cell-cell and cell-substrate interfaces. These results show that NMIIB plays an important role in the

repartition of traction forces under the junction and that NMIIA is essential for the generation of

traction forces in general. We next quantified the capacity of NMIIA KD and NMIIB KD cells to trans-

mit forces across the junction. Following Newton’s laws, the net traction force exerted by an isolated

doublet is zero, up to the measurement noise. Conversely, the net traction forces exerted by each of

the two cells are equal in magnitude and opposite in direction, compensating exactly (Liu et al.,

2010; Maruthamuthu et al., 2011; Ng et al., 2014). We thus calculated the resultant vectorial sum

of forces per cell (Figure 6b). In all conditions, the resultant force per cell before contact was within

the level of noise as expected for isolated cells and increased within 30 min after contact to reach a

plateau, attesting the capacity of all three cell lines to transmit intercellular tugging forces across the

junction (Figure 6b,c). However, in NMIIA KD cells, the resultant forces per cell at the plateau was

significantly lower than in Ctrl and NMIIB KD cell doublets (Figure 6c), which is consistent with the

inability of these cells to apply strong traction forces on fibronectin substratum.

Using traction force measurement data, we then computed the intracellular stress in the cell dou-

blets (Nier et al., 2016) (Figure 6a). The in-plane stress is represented by a tensor with three

Figure 5 continued

cell junctions n = 31 and 36 junctions respectively, Mann-Whitney statistical tests were applied for p value. (e) Ctrl, NMIIA KD and NMIIB KD cells

stained for NMIIA, NMIIB and cortactin as indicated. Scale bars: 10 mm in original and 5 mm in zoomed images. (f) Relative intensity distribution profiles

of cortactin signal along lines drawn perpendicular to junction in Ctrl, NMIIA KD and NMIIB KD cells, n = 15 cell-cell junctions respectively. (g)

Representative confocal images of junctional area from Ctrl, NMIIA KD and NMIIB KD cells stained for a-catenin and a-cat18. Scale bar: 10 mm. (h, i)

Scatter plots with mean + /- SEM showing the ratio of junctional a-cat18/a-catenin signals (h) and the mean intensity levels of a-catenin signal at the

junction (i) n = 27, 20, 25 cell doublets for Ctrl, NMIIAKD and NMIIBKD, respectively from two independent experiments. Kruskal-Wallis statistical tests

were applied for p value.

DOI: https://doi.org/10.7554/eLife.46599.020

The following source data and figure supplement are available for figure 5:

Source data 1. NMIIB supports juxtamembrane actin organization and regulates a-catenin unfolding.

DOI: https://doi.org/10.7554/eLife.46599.022

Figure supplement 1. NMIIB supports junctional actin organization.

DOI: https://doi.org/10.7554/eLife.46599.021
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independent components: two components of normal stress denoting either tension (positive values)

or compression (negative values) along the corresponding directions, and one component of shear

stress, except in the basis of the tensor’s principle directions, where there is no shear stress. The

ellipse representation in Figure 6a shows that the stress is highly anisotropic, and the cells are

mostly under tension except for regions of very small compression associated to high tension in the

other direction. The NMIIA KD cells show lower tension, consistent with the lower amount of traction

forces they exert. We focused on the normal stress within the region of cell-cell junction, as AJs pro-

vide a mechanical link that drives transmission of forces between cells and thus organize inter-cellular

stress (Nier et al., 2016; Saw et al., 2017). We thus computed the perpendicular (s?) and parallel

(s//) components of normal stress relative to the junction axis, which characterize the tension across

and along the junction respectively. Within 30 min after contact formation, the junction was submit-

ted to a rise of s? in all three cell lines, consistently with the emergence of a cell-cell tugging force

(Figure 6—figure supplement 3d,e). However, in Ctrl cells, the normal stress parallel to the junction

s//, remained higher than s? (Figure 6d). Strikingly, this was not the case in NMIIB KD and NMIIA

KD cells that exhibited equal amounts of normal stress parallel and perpendicular to the junction,

denoting a more isotropic distribution of junctional tension (Figure 6d).

Altogether, these results show that NMIIA and NMIIB are both required for mechanical integrity

of the junction. NMIIA is necessary for generation of a high junctional inter-cellular stress through

production of tugging forces compensated by traction applied at cell-matrix adhesions. NMIIB, on

the other hand, is necessary for the establishment of an anisotropic stress at the junction, sustaining

high tension along the cell-cell interface.

Discussion
Here, we explore for the first time the involvement of NMII isoforms during early steps of epithelial

junction formation. We show that NMIIA and NMIIB associate with distinct pools of actin and

Figure 6. NMIIA and NMIIB are both required for establishment of proper inter-cellular stress. (a) Heat map with vectorial field of traction forces (left

panels) and ellipse representation of intra-cellular stress (right panel, the two axes represent the direction and magnitude of the principal components

of the stress tensor, positive values in red, negative values in blue) of inter-cellular stress (right panels) in Ctrl, NMIIA KD and NMIIB KD cell pairs

before, during and after contact on fibronectin-coated PDMS deformable substrate (30 KPa). Cell contours are drawn in black. The red arrows indicate a

hotspot of traction forces observed frequently in NMIIB KD cell doublets. Scale bar: 10 mm. (b) Linear graphs representing the resultant forces of cell

doublets and individual cells before, during and after contact in Ctrl, NMIIA KD and NMIIB KD. Data are represented as mean + /- SEM. (c) The same

data as in (b) were represented as bar graph with mean + /- SEM for statistical comparisons between Ctrl, NMIIA KD and NMIIB KD cells 30 min before,

during and 30 min after contact. Bonferroni statistical tests were applied for p value. (d) Scatter plots with mean + /- SEM representing inter-cellular

stress in the junctional area in Ctrl, NMIIA KD and NMIIB KD cells within the first 3 hr of contact. For each junction, six values corresponding to 30 min

time points are plotted. The stress orientation was divided in the parallel and perpendicular components relative to the main axis of the junction.

Pairwise statistical t tests (for intra-group comparisons) and Mann-Whitney statistical t tests were applied for p value. (b–d) n = 25, 26 and 28 cell

doublets for Ctrl, NMIIA KD and NMIIB KD, respectively, from three independent experiments.

DOI: https://doi.org/10.7554/eLife.46599.023

The following source data and figure supplements are available for figure 6:

Source data 1. NMIIA and NMIIB are both required for establishment of proper inter-cellular stress.

DOI: https://doi.org/10.7554/eLife.46599.030

Figure supplement 1. NMIIA regulates cell adhesion and traction forces on fibronectin.

DOI: https://doi.org/10.7554/eLife.46599.024

Figure supplement 1—source data 1. NMIIA regulates cell adhesion and traction forces on fibronectin.

DOI: https://doi.org/10.7554/eLife.46599.025

Figure supplement 2. NMIIB favors E-cadherin clustering on E-cadherin-coated substrate.

DOI: https://doi.org/10.7554/eLife.46599.026

Figure supplement 2—source data 1. NMIIB favors E-cadherin clustering on E-cadherin-coated substrate.

DOI: https://doi.org/10.7554/eLife.46599.027

Figure supplement 3. NMIIA and NMIIB are both required for establishment of proper inter-cellular stress.

DOI: https://doi.org/10.7554/eLife.46599.028

Figure supplement 3—source data 1. NMIIA and NMIIB are both required for establishment of proper inter-cellular stress.

DOI: https://doi.org/10.7554/eLife.46599.029
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cooperate to initiate the formation of epithelial AJ before the acquisition of the apico-basal polariza-

tion (See Figure 7).

Our careful examination by SIM during junction biogenesis revealed precise patterns of NMII,

actin and E-cadherin localization whereas other studies mostly focused on actin and NMII in mature

junctions (Smutny et al., 2010; Gomez et al., 2015). While NMIIA associated to actin bundles paral-

lel to- and distant from the junction, NMIIB was sitting at junctional membranes in association with a

juxtamembrane actin network, distinct from NMIIA-associated actin. The existence of two distinct

actin networks at adherens junctions had already been observed in early junctions between hepato-

cytes (Krendel and Bonder, 1999) and in endothelial cells where VE-cadherin was shown to colocal-

ize with Arp2/3 complex-positive actin networks in-between distal actin-NMII bundles (Efimova and

Svitkina, 2018). The localization of NMIIA is reminiscent of what has been observed previously in lin-

ear AJ of endothelial cells (Efimova and Svitkina, 2018). Strikingly, we show here an unexpected

association of NMIIB with a juxtamembrane actin cushion that links the junctional membrane to

NMIIA-associated perijunctional contractile actin bundles. Our data support a role of NMIIB in link-

ing adhesion complexes and perijunctional actin bundle and on restraining lamellipodial activity at

the junction. We believe that these are properties common to the early stage of AJ formation in

many cell types that then mature to elaborate zonulae adherens in epithelial cells where both actin

organizations persist but become tightly packed to the junctional membrane. Interestingly, in the

absence of a-catenin, the localization of NMIIB was not restricted any more to junctional mem-

branes. Instead, NMIIB co-assembled with NMIIA on the same actin fibres, likely in heretotypic mini-

filaments, as observed in previous studies (Beach and Hammer, 2015; Shutova et al., 2017),

indicating that a-catenin is responsible for the junctional recruitment of NMIIB, as reinforced by a

recent publication reporting NMIIB and a-catenin interaction in glioblastoma cells (Vassilev et al.,

2017).

These distinct localization patterns at early junctions are correlated to differential contributions of

NMIIA and NMIIB in junction biogenesis. Upon contact formation, NMIIA KD cells were unable to

elongate the junction and to sustain long-lived cell-cell contacts. They also lacked the capacity to

produce traction forces on E-cadherin-coated substrates. Our observations thus identify NMIIA as

the major isoform responsible for the NMII-dependent mechanical tugging force required for junc-

tion growth (Liu et al., 2010). This was confirmed by traction force and stress analysis data revealing

a decrease of the forces as well as a reduction of both parallel and perpendicular stresses at the

junction for NMIIA KD cells. In contrast, NMIIB KD cells transmitted elevated tugging forces and

maintained cell-cell contacts, but their junctions appeared enlarged and twisted with a lower parallel

stress. These results are remarkable given that NMIIB was found to be expressed 100 times less than

NMIIA in MDCK cells (Ma et al., 2010). NMIIB was required for efficient E-cadherin clustering on

E-cadherin substrates and for the connection of the contractile actin network to these clusters.

NMIIB was required for the proper organization and spatial restriction of the juxtamembrane actin

network and was also the main isoform responsible for the maintenance of a-catenin in an opened

conformation. However, we observed a reduced junctional recruitment of a-catenin in NMIIA KD

cells, suggesting also a contribution of NMIIA in a-catenin activation in agreement with a previous

report (Ozawa, 2018).

Given that E-cadherin complexes have been shown to biochemically interact with both Arp2/3

(Kovacs et al., 2002; Verma et al., 2012) and NMIIB (Vassilev et al., 2017), one hypothesis could

be that NMIIB and Arp2/3 are both recruited to E-cadherin/catenin complexes upon cell-cell contact

initiation. NMIIB could thus serve as a cross-linker of the junctional actin network. Hence, the

absence of NMIIB may keep a-catenin in a closed conformation and induce a local softening of AJs

which in turn leads to increased junctional lamellipodial extension. It is also in agreement with a pre-

vious study showing that Arp2/3-nucleated actin network at the zonula adherens regulates junctional

tension and integrity (Verma et al., 2012). NMIIB, by associating both with cadherin-catenin com-

plexes and the branched actin, could somehow rigidify and regulate the thickness of this F-actin

cushion sitting between the membrane and the contractile actin fibres associated to NMIIA. This

could be achieved through the specific biochemical properties of NMIIB towards actin that provide

it with the capacity to transmit tension within actin filaments at low energetic cost (Kovács et al.,

2007; Ma et al., 2007; Ma et al., 2012). Along this line, it is striking to note that we never observe

in early AJ any sign of organization of NMIIB in minifilaments in the junctional area as observed for

NMIIA in perijunctional actin bundles.
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Figure 7. Proposed model for the role of NMIIA and NMIIB during junction biogenesis. Upper panels: organization of early cell-cell contacts of Ctrl,

NMIIA KD and NMIIB KD cells. Lower panels: proposed molecular organization of early junctions. Middle panels: distribution of intercellular stress. Ctrl

cells establish stable and straight junctions maintained under an anisotropic intercellular stress preeminent parallel to the junction. NMIIB associates to-

and organizes the junctional branched actin meshwork. NMIIA, which provides mechanical tugging force, sits on distant perijunctional actin bundles

parallel to the junction. NMIIA KD cells fail to maintain stable cell-cell contacts exhibit shorter junctions, weak traction forces and weak intercellular

stress. Perijunctional actin bundles are smaller and disorganized. NMIIB KD cells establish persistent but wavy junctions from which lamellipodial

extensions and traction force hotspots arise. The junctional branched actin meshwork is disorganized which probably prevents a-catenin opening and

induces the formation of lamellipodial extensions. The anchoring of perijunctional actin bundles to the junction is perturbed, despite the presence of

NMIIA. There is, in these cells, no preferential orientation of intercellular stress.

DOI: https://doi.org/10.7554/eLife.46599.031
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Inter-cellular stress is generated at cell-cell adhesions, although this remained poorly character-

ized (Maruthamuthu et al., 2011; Ng et al., 2014). Here, we evaluated the amount and the orienta-

tion of intercellular stress generated during junction biogenesis. Within one hour of cell-cell contact,

an anisotropic intercellular stress appeared at the junction, with a preferential orientation parallel to

the junction, favoring the elongation and the stability of the nascent junction. Both isoforms were

required for proper establishment and orientation of this intercellular stress. NMIIA silencing had a

global impact on the amount of intercellular stress generated, which was not surprising given its role

on traction force production both at cell-matrix and cell-cell adhesions. On the other hand, NMIIB

favored the production of a higher parallel intercellular stress, probably by driving the crosslinking

and stiffening of the junctional actin network that couples the perijunctional contractile actin to the

plasma membrane.

In conclusion, we demonstrate here that both NMIIA and NMIIB contribute to the early steps of

AJ biogenesis and are necessary for mechanical integrity of the junction, albeit implicated in very dif-

ferent aspects of adhesion complexes and actin pools organization. These findings open new ave-

nues in the understanding of how distinct pools of actomyosin, associated to different myosin

isoforms, build up and integrate mechanical forces to regulate adherens junction remodeling and

intercellular stress in vertebrate cells in order to achieve large scale tissue remodeling during

embryogenesis and tissue repair.

Materials and methods

Key resources table

Reagent type
(species)
or resource Designation

Source or
reference Identifiers Additional information

Cell line
(Canis familiaris,
dog)

MDCK ATCC ATCC CCL-34

Cell line
(H. sapiens)

Caco-2 ATCC ATCC HTB-37 Kindly provided
by S.Robine
(Institut Cuire/
CNRS, Paris)

Antibody anti-NMIIA
rabbit polyclonal

Biolegend 909801 1/100 for IF and
1/1000 for WB

Antibody anti-NMIIA
mouse monoclonal

Abcam ab55456 1/100 for IF and
1/1000 for WB

Antibody rabbit anti-
NMIIB polyclonal

Biolegend 909901 1/100 for IF and
1/1000 for WB

Antibody anti-b-catenin
rabbit polyclonal

Sigma-Aldrich C2206 1/100 for IF

Antibody anti-b-catenin
mouse monoclonal

BD Biosciences 610156 1/100 for IF

Antibody recombinant anti-
paxillin rabbit
monoclonal antibody

Abcam Ab32084 1/100 for IF

Antibody mouse anti-
GAPDH

ProteinTech 60004–1-Ig 1/100 for IF

Antibody mouse anti-Arp3 Sigma-Aldrich A5979 1/100 for IF

Antibody mouse anti-E-
cadherin

BD Biosciences 610181 1/100 for IF

Antibody rabbit anti-a-
catenin polyclonal

Sigma-Aldrich C-2081 1/100 for IF

Antibody rat anti-a18-
catenin monoclonal

generously provided
by A. Nagafuchi,
(Kumamoto Unive
rsity, Japan)

1/100 for IF

Continued on next page
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Continued

Reagent type
(species)
or resource Designation

Source or
reference Identifiers Additional information

Antibody Alexa488- Life Technologies A11039,
A11055,
A11013

1/250 for IF

Antibody Alexa568- Life Technologies A11004,
A11011,
A11077

1/250 for IF

Antibody Alexa647- Life Technologies A31571,
A31573

1/250 for IF

Chemical
compound, drug

Alexa (488) -
coupled phalloidins

Invitrogen A12379 1/250 for IF

Chemical
compound, drug

Alexa (555 or 647) -
coupled phalloidins

Life Technologies A34055,
A22287

1/250 for IF

Other Hoechst 34580 ThermoFisher H3570 1/10000 for IF

Antibody Horseradish
peroxidase-
coupled anti-
mouse IgGs

Sigma-Aldrich A9044 1/10000 for WB

Antibody Horseradish
peroxidase-
coupled anti-
rabbit IgGs

Pierce 1/10000 for WB

Chemical
compound, drug

Mitomycin C Sigma-Aldrich M2487 10 mg/ml for 1 hr

Chemical
compound, drug

Y-27632 dihydro
chloride

Sigma-Aldrich Y0503 50 mM

Other APP (Azido-Poly-lysine
Poly (ethylene glycol))

Inspired protocol
from M. van
Dongen, Matthieu Piel

https://doi.
org/10.1002/
adma.201204474

Inspired protocol
from M. van Dongen,
Matthieu Piel

Peptide,
recombinant
protein

BCN-RGD peptide
(BCN: bicyclo[6.1.0]-
nonyne, coupled to
RGD: peptide sequence
Arg-Gly-Asp)

Inspired protocol from
M. van Dongen,
Matthieu Piel

https://doi.org/10.1002/
adma.201204474

Inspired protocol
from M. van Dongen,
Matthieu Piel

Commercial
assay or kit

DMEM (containing
Glutamax,
High Glucose and
Pyruvate)

Life Technologies 31966–021

Commercial
assay or kit

Fluorobrite
DMEM

Thermo Fisher A18967-01

Commercial
assay or kit

Penicillin/
Streptomycin

Life Technologies 15140–122

Commercial
assay or kit

Foetal Bovine
Serum

Life Technologies S1810-500 10% FBS in DMEM

Commercial
assay or kit

geneticin Life Technologies 10131–019

Chemical
compound, drug

Trypsin Life Technologies 25300–054

Genetic
reagent (Plasmid)

pLKO.1-puro Sigma-Aldrich SHC002

Genetic
reagent (Plasmid)

MYH9 Sigma-Aldrich transcript ID:
ENSCAFT0
0000002643.3

TTGGAGCCATA
CAACAAATAC for NMIIA

Genetic
reagent (Plasmid)

MYH10 Sigma-Aldrich transcript ID:
ENSCAFT00000027478

TCGGGCAGCTCTA
CAAAGAAT for NMIIB

Continued on next page
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Continued

Reagent type
(species)
or resource Designation

Source or
reference Identifiers Additional information

Genetic
reagent (Plasmid)

RFP-Pericentrin kindly provided
M. Coppey, Institut
Jacques Monod, Paris

kindly provided M.
Coppey, Institut J
acques Monod, Paris

Genetic
reagent (Plasmid)

m-Cherry cortactin kindly provided
by Alexis Gautreau,
Biochemisty laboratory,
Ecole polytec
hnique, France

https://portail.po
lytechnique.edu/bioc/
en/gautreau

pcDNA5-FRT-GFP-
mCherry-3pGW back
bone (1740-pcDNAM FRTPC-
mCherry Cortactine)

Genetic
reagent (Plasmid)

mCherry Myosin IIB Addgene 55107

Genetic
reagent (Plasmid)

CMV-GFP-
NMHC II-A

Addgene 11347

Chemical
compound, drug

protease inhibitor
cocktail

Roche 27368400

Chemical
compound,
drug

phosphatase
inhibitor
(Phosphostop)

Roche 4906837001

Commercial
assay or kit

Bradford assay BioRad 500–0006

Commercial
assay or kit

4–12% Bis-Tris gel Novex NP0335

Commercial
assay or kit

Supersignal west
femto maximum
sensitivity substrate

ThermoFisher 34095

Commercial
assay or kit

LookOut
Mycoplasma
PCR detection Kit

Sigma-Aldrich MP0035

Chemical
compound,
drug

paraform
aldehyde

Thermo Scientific 22980

Chemical
compound, drug

Fluoromount-G
mounting media

Southern Biotech

Peptide,
recombinant
protein

fibronectin Merck Millipore FC010

Chemical
compound,
drug

APTES Sigma-Aldrich A3648

Chemical
compound,
drug

EDC-HCl Thermo Scientific 22980 2 mM freshly
prepared in 0.1M
MES pH4.7

Chemical
compound,
drug

NHS Sigma-Aldrich 130672 5 mM

Peptide,
recombinant
protein

recombinant
human E-cadherin

R and D systems 8505-EC 1 mg

Chemical
compound,
drug

Cy 52–276 A and
Cy 52–276 B silicone
elastomer

Dow corning

Chemical
compound,
drug

carboxylated
red fluorescent
beads

Invitrogen F8801

Continued on next page
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Continued

Reagent type
(species)
or resource Designation

Source or
reference Identifiers Additional information

Software,
algorithm

FIJI-Image J https://imagej.net
/Fiji/Downloads

Image analysis
were done using
Fiji-Image J and
plugins

Software,
algorithm

MATLAb MATLAB Traction force,
PIV analysis were
done using
alogorithms
developed in
lab to analyse
traction force

Software,
algorithm

Photoshop
and Illustrator

Adobe Images were
mounted
using these
softwares

Software,
algorithm

GraphPad prism GraphPad
Prism

Graphs and
statistical tests
were done using
GraphPad Prism

Antibodies and reagents
The following primary antibodies were used: rabbit anti-NMIIA polyclonal (Biolegend) or mouse anti-

NMIIA monoclonal antibodies (Abcam, for co-immunostainings with anti-NMIIB antibodies); rabbit

anti-b-catenin polyclonal (Sigma-Aldrich) or mouse anti-b-catenin monoclonal (BD Biosciences) anti-

bodies; recombinant rabbit anti-paxillin monoclonal antibody (Abcam); mouse anti-GAPDH (Protein-

Tech), mouse anti-Arp3 (Sigma-Aldrich) and mouse anti-E-cadherin (BD Biosciences) antibodies;

rabbit anti-a-catenin polyclonal (Sigma-Aldrich) and rabbit anti-NMIIB polyclonal (Biolegend) anti-

bodies; rat anti-a18-catenin monoclonal antibody (generously provided by A. Nagafuchi (Kumamoto

University, Japan) (Yonemura et al., 2010). Alexa488-, Alexa568- and Alexa647-conjugated second-

ary antibodies were purchased from ThermoFisher, Alexa (488 or 555 or 647) -coupled phalloidins

from Invitrogen and Hoechst 34580 from ThermoFisher. Horseradish peroxidase-coupled anti-mouse

IgGs (Sigma-Aldrich) and anti-rabbit IgGs (Pierce) were used for immunoblotting. Mitomycin C and

Y-27632 dihydrochloride were purchased from Sigma-Aldrich. The APP (Azido-Poly-lysine Poly (eth-

ylene glycol)) and the BCN-RGD peptide (BCN: bicyclo[6.1.0]- nonyne, coupled to RGD: peptide

sequence Arg-Gly-Asp) were prepared as previously described (van Dongen et al., 2013).

Cell culture
MDCK (ATCC CCL-34) and C2C12 (ATCC CRL-1772) cells originate from the American Type Culture

Collection (ATCC). E-cadherin-GFP (Adams et al., 1998) and a-catenin KD MDCK cell lines

(Benjamin et al., 2010) were kindly provided by W.J. Nelson (Stanford University, Palo Alto).

Caco2BBE cells (ATCC HTB-37) were kindly provided by S. Robine (Institut Curie/CNRS, Paris). Cells

were maintained at 37˚C, 5% CO2 in DMEM (containing Glutamax, High Glucose and Pyruvate, Life

Technologies) supplemented with 100 mg/mL Penicillin/Streptomycin (Life Technologies) and Foetal

Bovine Serum (Life Technologies) at 10% for MDCK and C2C12 cells and at 20% for Caco2 cells.

Ecadherin-GFP cells and a-catenin KD MDCK cells were maintained in media containing 5 mg/ml

geneticin (Life Technologies).

Generation of isoform-specific NMII knock-down MDCK cell lines
For generation of isoform-specific NMII Heavy chain knock-down cells, isoform-specific shRNA

sequences, inserted in a back bone standard vector pLKO.1-puro, were designed and synthetized by

Sigma-Aldrich technical services, based on the sequences of Canis lupus familiaris transcripts for

MYH9 (NMIIA, transcript ID: ENSCAFT00000002643.3) and MYH10 (NMIIB, transcript ID:

ENSCAFT00000027478). The sequences used were the following: TTGGAGCCATACAACAAATAC

for NMIIA and TCGGGCAGCTCTACAAAGAAT for NMIIB. As a control, the pLKO.1-puro non-
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mammalian shRNA Control Plasmid DNA was used (SHC002, Sigma-Aldrich). Two million Ecadherin-

GFP MDCK cells were electroporated (Neon Transfection System Invitrogen) with 3–5 ug shRNA

encoding plasmids in one pulse of 20 ms at 1650 V. Twenty four hours later, cells were put under

selection pressure by adding puromycin (2.5 mg/ml) in media. After 10 days, single cells were sorted

in 96 well plates by flow cytometry using Influx 500 sorter-analyzer (BD BioSciences) and clonal pop-

ulations then selected based on NMII isoform expression levels by immunoblot and immunofluores-

cence. Control, NMIIA KD and NMIIB KD MDCK cells were maintained in media containing geneticin

(5 mg/ml) and puromycin (2.5 mg/ml), cells were tested and verified for absence of mycoplasma using

LookOut Mycoplasma PCR detection kit (sigma-aldrich MP0035).

For simultaneous visualization of E-cadherin and centrosome, Ecadherin-GFP MDCK cells were

transiently transfected with a plasmid driving the expression of RFP-Pericentrin (kindly provided M.

Coppey, Institut Jacques Monod, Paris), using the protocol described above, one or two days before

the experiment. m-Cherry cortactin plasmids (kindly provided by Alexis Gautreau, Biochemisty labo-

ratory, Ecole polytechnique, France) were transfected in Control, NMIIA KD and NMIIB KD MDCK

cells and the m-cherry expressing cell population was sorted by flow cytometry using Influx 500

sorter-analyzer (BD BioSciences). For expression of exogenous NMIIA and NMIIB in MDCK cells, the

WT MDCK cells were transiently transfected with a plasmid driving the expression of GFP-NMIIA

(Addgene 11347) or m-cherry NMIIB (Addgene 55107), using the protocol described above.

Western blotting
Confluent cells were lysed in 100 mM Tris pH 7.5,150 mM NaCl, 0.5% NP40, 0.5% triton-X100, 10%

glycerol,1X protease inhibitor cocktail (Roche) and 1X phosphatase inhibitor (Phosphostop, Roche)

for 20 min at 4˚C. Insoluble debris were centrifuged for 15 min at 13000 g and supernatants were

recovered. Protein concentration was quantified by Bradford assay (BioRad), SDS PAGE and electro-

transfer were performed on 4–12% Bis-Tris gel (Novex) using mini gel tank and iBlot transfer systems

(Invitrogen). Non-specific sites were blocked with 5% non-fat dry milk in PBS 0.1% Tween 20. Primary

antibodies were diluted (1/1000) in PBS 0.1% Tween 20 and incubated overnight at 4˚C. After three

washes in PBS 0.1% Tween 20, secondary HRP antibodies diluted in PBS 0.1% Tween 20 (1/10000)

were incubated for 1 hr and washed 3 times with PBS 0.1% Tween 20. Immunocomplexes of interest

were detected using Supersignal west femto maximum sensitivity substrate (ThermoFisher) and visu-

alized with ChemiDoc chemoluminescence detection system (Biorad). Quantification of Western

blots by densitometry was performed using the Gel analyzer plug in from Image J. GADPH was used

as a loading control to normalize the quantification.

Immunofluorescent staining
Cells were fixed with pre-warmed 4% formaldehyde in PBS for 15 min at RT and then washed 3

times with PBS, followed by permeabilization and blocking with 0.05% saponin/0.2% BSA in PBS for

15 min at RT. The primary antibodies diluted (1/100) in Saponin/BSA buffer were then incubated

overnight at 4˚C. After three washes in Saponin/BSA buffer, the samples were incubated with sec-

ondary antibodies (1/250) and Alexa-coupled phalloidin, diluted at 1/200 in the same buffer for 1 hr

at RT. The preparations were washed twice in Saponin/BSA buffer, once in PBS, and then mounted

with the DAPI Fluoromount-G mounting media (Southern Biotech).

Preparation of fibronectin-coated and cadherin-coated substrates
For fibronectin coating, glass coverslips were first cleaned by sonication in 70% ethanol and air

dried. They were coated for 1 hr with 50 mg/mL human plasma fibronectin (Merck Millipore) diluted

in PBS and washed three times with PBS.

The protocol for E-cadherin coating was inspired from a previous study by Lee and colleagues

(Lee et al., 2016). Briefly, the cleaned glass coverslips were silanized with 10% 3-aminopropyl trie-

thoxysilane (APTES, Sigma-Aldrich) in 100% ethanol for 10 min at RT, washed once in 100% ethanol

and dried at 80˚C for 10 min. The surface was then functionalized by incubation for 1 hr with 2 mM

EDC-HCl (Thermo Scientific)/5 mM NHS (Sigma-Aldrich) and 1 mg of recombinant human E-cadherin

(R and D systems). Coverslips were then washed two times with PBS.

Cells were plated at very low density (typically 1 105 cells for a 32 mm diameter coverslip) on the

coated coverslips in complete medium containing 10 mg/mL mitomycin C. After 1 hr incubation at
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37˚C, the preparations were washed twice with complete media and incubated 2–6 hr or overnight

at 37˚C before imaging or fixation, for cadherin coating and fibronectin coating, respectively.

Preparation of switchable micro-patterns and imaging
Micropatterns were made as previously described with some modifications (van Dongen et al.,

2013). Briefly, air dried cleaned glass coverslips were activated with deep UV for 5 min, and coated

for at least 1 hr with the repellent compound APP (0.1 mg/ml in HEPES 10 mM pH7.4). After three

washes with deionized water, the coverslips were exposed to deep UV for 7 min through a chrome

photomask. The coverslips were then washed with deionized water three times, coated with 50 mg/

mL human plasma fibronectin for 1 hr and washed twice with deionized water and once with PBS.

When indicated, the coating was done with a 2:1 ratio of non-coupled:Cy3-coupled fibronectin pre-

pared with Cy3 Mono-Reactive Dye Pack (GE Healthcare) as recommended by the manufacturer.

Cells were resuspended at 4.102 cells/mm2 in medium containing 10 mg/mL mitomycin C and

deposited on the patterned slide. After 1 hr of incubation at 37˚C, cells were washed 3 times with

fresh medium to remove mitomycin C and cells that remained in suspension. The cells that adhered

on micro-patterns were left overnight in the incubator. The day after, confinement was released by

addition of 20 mM BCN-RGD peptide diluted in DMEM media or, in case of live-imaging experi-

ments, in Fluorobrite DMEM (Thermo Fisher) supplemented with 10% FBS and 1% Penicillin/Strepto-

mycin. For ROCK inhibition experiments, 50 mM Y-27632 was added at the same time as BCN-RGD.

Samples were then immediately imaged under a microscope or left in the incubator for 20 more

hours and fixed as described above. When indicated for live-imaging experiments, nuclei were

stained before adding BCN-RGD peptide by incubating the preparations with 5 mg/mL Hoechst

34580 in the medium for 20 min at 37˚C followed by two washes with fresh media.

Image acquisition and analysis
For live-microscopy experiments, the samples were placed in a chamber equilibrated at 37˚C under

5% CO2 atmosphere. Images were acquired with a Yokogawa-Andor CSU-W1 Spinning Disk confo-

cal mounted on an inversed motorized Leica DMI8 microscope and equipped with a sCMOS Orca-

Flash 4 V2+ camera (Hamamatsu) and a 63 X oil immersion objective or a 20 X dry objective, with

multi-positioning and a resolution of 0.5–3 mm z-stacks. Alternatively, the samples were imaged with

an Olympus IX81 wide-field fluorescence microscope equipped with a Coolsnap HQ CCD camera

and a 60X oil immersion objective or a 20 X dry objective. For some experiments, the Nikon Biosta-

tion IM-Q microscope was also used with 10X or 20X objective and multi-positioning.

For fixed samples, images were acquired with a Zeiss Apotome fluorescence microscope

equipped with a 63 X oil immersion objective or with a Zeiss LSM 780 confocal microscope equipped

with a 63 X oil immersion objective at a resolution of 0.3 mm z-stacks.

Image processing and analysis were done on Fiji software. Analysis of junction parameters

(length, straightness and angle deviation) was done manually with Fiji software based on phase con-

trast and GFP-Ecadherin signal. Cell spreading, focal adhesions and a-catenin clustering were ana-

lyzed by thresholding the image and applying an ‘Analyze particles’ which gives the number of

objects and its area. To calculate the ratio of a-cat to a18-cat intensities, the mean gray intensity

value for the two channels were measured within the manually-defined junction. Tracking of single

cells on fibronectin was done using the Manual Tracking plugin. For colocalization analysis, Pearson’s

correlation coefficient was calculated using the Coloc2 Plugin from image J, on an ROI correspond-

ing to the junction area. For relative intensiy profiles, a line was drawn on the ROI and the line scan

was done using the plot profile plugin in image J, the values obtained were then normalized to the

maximal intensity of each channel.

Traction force microscopy
Soft silicone elastomer substrates for TFM (Traction force microscopy) were prepared as described

previously with some modifications (Vedula et al., 2014). Cy 52–276 A and Cy 52–276 B silicone

elastomer components (Dow corning) were mixed in a 5:5 (elastic modulus ~15 kPa for E-cadherin-

coating) or a 5:6 ratio (elastic modulus ~30 kPa for fibronectin-coating). 0.08 g of elastomer was

deposited on 32 mm glass coverslips and allowed to spread progressively. The substrate was silan-

ized with 10% (3-aminopropyl triethoxysilane (APTES, Sigma) in 100% ethanol for 10 min at RT,
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washed once in 100% ethanol and dried at 80˚C for 10 min. The surface was coated for 10 min at RT

with carboxylated red fluorescent beads (100 nm, Invitrogen) diluted at 2-3/1000 in deionized water.

After washing with deionized water, the surface was finally functionalized with protein (fibronectin or

E-cadherin) as described above. Seeded cells together with fluorescent beads were imaged either

on an Olympus-CSU-W1 Spinning Disk confocal microscope with a 10 X dry objective and 3 mm z

stacks or on an Olympus-IX81 wide field inverted fluorescence microscope with a 20 X dry objective

for 2 to 24 hr, at a frequency of 1 frame every 10 min, at 37˚C under 5% CO2 atmosphere. At the

end of the acquisition, 100–200 mL of 10% SDS was added in the media to detach cells and image a

reference frame. For force calculation, matPIV was used to analyse the displacement vectors of the

beads, which were further translated into forces using the FTTC plugin in ImageJ. The vector quiver

plots and heat map of magnitude force was plotted using Matlab. Mean (resp. resultant) forces

exerted by cells and doublets were obtained by computing the average of the magnitude (resp. the

vectorial sum) of traction forces within manually defined masks. For the analysis of tractions forces

below cell-cell junctions, the junction masks and corresponding midline were first manually defined

based on the E-cadherin-GFP pictures. Then, the midline was used to define the average orientation

of the junction, and all force vectors within the junction mask were projected onto the directions par-

allel and perpendicular to this orientation. The mask was divided in four quarters along this mean

orientation. The ‘junction centre parallel (resp. perpendicular) force’ is defined as the averaged abso-

lute value of the parallel (resp. perpendicular) component of traction forces in the two central quar-

ters of the mask, while the ‘junction periphery parallel (resp. perpendicular) force’ is the averaged

absolute value of the parallel (resp. perpendicular) component of traction forces in the two outer-

most quarters.

T_(parallel/perpendicular)̂(center/periphery)=h|T_(parallel/perpendicular) |i_(center/periphery)

Calculation of inter-cellular stress
Computing the junctional stress components s = ands?, respectively parallel and perpendicular to

the cell junction (Figure 6d), required both the determination of the cell junction location and the

estimation of the inter-cellular stress tensor. The cell junction domain was defined as the overlap

between two masks representing the area covered by each cell in the doublet. Given the stress ten-

sor, the parallel and perpendicular stress components were obtained by rotation from the cartesian

basis. As exemplified in Figure 6a, we found in most cases that the cell junction domain was roughly

straight: the mean orientation of the cell junction domain determined the rotation angle. We

checked that following the cell junction contour did not significantly modify our estimates. Finally,

each junctional stress component was spatially-averaged over the cell junction domain.

Intercellular stress was estimated by Bayesian inversion (Nier et al., 2016), with a dimensionless

regularization parameter L = 105 (see Harris et al., 2014 for details). The spatial domain for stress

estimation was for each image the smallest rectangle encompassing the cell doublet. For simplicity,

we implemented free stress boundary conditions on the straight boundaries of the rectangular

domain, instead of following the cell doublet boundaries. As a consequence, the stress estimation

was qualitative, but sufficed to evaluate differences between conditions. Note that height variations

within the cell doublet were also neglected in the estimation of the 2D inter-cellular stress field.

SIM microscopy
Super-resolution structured-illumination microscopy was performed on a Zeiss Elyra PS.1 microscope

with a 63 X objective (Plan Apo 1.4NA oil immersion) and an additional optovar lens 1.6 X. Cells

grown on 0.17 mm high-performance Zeiss coverslips were fixed and prepared for immunostaining,

then with DAPI Fluoromount-G mounting media (Southern Biotech). Laser lines 488 nm, 561 nm and

641 nm were directed into the microscope, passing through a diffraction grating. For 3D SIM imag-

ing, the diffraction grating was rotated along three directions (angles 120o) and translated (five lat-

eral positions) throughout the acquisition. Typically, 20–30 slices of 110 nm were acquired for each

cell corresponding to an imaging height of 2–3 mm. The fluorescence signal was detected with an

EMCCD camera (iXon-885, Andor, 1004 � 1002, pixel size 8 mm, QE = 65%). Processed SIM images

were aligned via an affine transformation matrix of predefined values obtained using 100 nm multi-

color Tetraspeck fluorescent microspheres (Thermo Fisher Scientific).
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Data display and statistics
Images were mounted using Photoshop and Illustrator. Graphs and statistical tests were done using

GraphPad prism software.
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