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Abstract: Assessing climate-related ecological changes across spatiotemporal scales meaningful to
resource managers is challenging because no one method reliably produces essential data at both
fine and broad scales. We recently confronted such challenges while integrating data from ground-
and satellite-based sensors for an assessment of four wetland-rich study areas in the U.S. Midwest.
We examined relations between temperature and precipitation and a set of variables measured on the
ground at individual wetlands and another set measured via satellite sensors within surrounding
4 km2 landscape blocks. At the block scale, we used evapotranspiration and vegetation greenness
as remotely sensed proxies for water availability and to estimate seasonal photosynthetic activity.
We used sensors on the ground to coincidentally measure surface-water availability and amphibian
calling activity at individual wetlands within blocks. Responses of landscape blocks generally
paralleled changes in conditions measured on the ground, but the latter were more dynamic, and
changes in ecological conditions on the ground that were critical for biota were not always apparent
in measurements of related parameters in blocks. Here, we evaluate the effectiveness of decisions
and assumptions we made in applying the remotely sensed data for the assessment and the value of
integrating observations across scales, sensors, and disciplines.

Keywords: wetland landscapes; water; evapotranspiration; snow-off; Normalized Difference
Vegetation Index (NDVI); climate; start-of-season; growing season; scale; Moderate Resolution
Imaging Spectroradiometer (MODIS)

1. Introduction

Multidisciplinary research integrated across scales can provide resource managers and other
stakeholders valuable, useful information they need to manage resources adaptively in the face of
global change. Using remotely sensed data in concert with data measured on the ground to describe
changes in ecological conditions and processes across landscapes is one such research approach.
This approach potentially can be powerful, but poses nontrivial challenges due to an unavoidable mix
of direct and proxy measurements taken at different scales [1]. Ground-based measurements are critical
to understanding specific habitat changes and effects on populations, for example, but can be labor- and
travel-intensive and limited in scale/replicate field sites and in their area of inference. Satellite-based
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observations can cover broader portions of the landscape unhindered by such limitations or physical
boundaries and provide much-needed landscape context for ground measurements taken at finer scales.
However, relating remotely sensed, broad-scale data to ecological events and processes measured at
finer scales can be challenging [2,3]. Thus, selecting effective remotely sensed measurements that also
are useful for linking information across scales requires careful consideration and evaluation.

We have been studying how seasonal weather patterns and climate affect environmental
conditions and processes in temperate, wetland-rich landscapes in the U.S. Midwest. We study
amphibian populations because individuals of most amphibian species require both wetland and
upland habitats over the course of a year. Amphibians have semipermeable skin [4] and are ectothermic,
which renders them sensitive to changes in water and temperature conditions across a landscape [4] and
can make them useful bellwethers of changing environmental conditions [5]. Declines of amphibian
populations reported from around the world provide evidence of their susceptibility to loss or alteration
of habitat, climate change, disease and pathogens, exposure to harmful chemicals, commercial trade,
and introduced predators, among other global-change factors (e.g., [6–12]).

Assessing the presence of water over time is important not only to understand vegetation
responses and the statuses of amphibian populations on these landscapes, but also to understand the
potential for effects on other sympatric species and on the values of vital water-dependent ecosystem
services [13,14] these landscapes provide, such as floodwater and sediment storage, filtering of
contaminants, recreation, and climate regulation [15,16]. The presence of water on a landscape can be
highly dynamic [17,18] and affected directly by changes in climate [19–21]. But, the science community
largely lacks comprehensive information on long-term relations between climate, water availability
in palustrine wetlands, and the presence of water across linked upland areas and how amphibian
populations respond to changes in these landscape conditions that are fundamentally essential to
their persistence. Thus, wetland-upland landscapes generally are critically important to humans and
biodiversity and are not well-characterized in terms of impacts from changing climate dynamics. These
landscapes also are potentially well-suited for integrated studies based upon collecting data on the
ground and via satellite sensors to help address the need for such fundamental information.

Since 2008, we have repeatedly measured wetland water levels and the presence of calling
amphibians at select replicate wetlands within four study areas in the U.S. Midwest. Individuals
of most amphibian species in these areas require wetlands for reproduction and adjacent upland
habitats for foraging and, typically, overwintering. We annually deployed sensors to measure water
levels and acoustic recorders to sample amphibian calls hourly throughout the growing season.
We analyzed these data in concert with data from nearby automated weather stations to assess relations
among amphibian breeding behavior and potential reproduction success, wetland surface-water
availability, air temperature, and precipitation. Understanding how these interactions fit within the
larger landscape requires data from a range of scales [22]. We incorporated remotely sensed data on
snow presence, evapotranspiration, and vegetation phenology and condition in local landscape blocks
to provide broader ecological context to what we learned at individual wetland sites.

We used evapotranspiration (ET) and vegetation response as proxies for water availability in
the landscape. ET represents the movement of moisture from waterbodies, soil, and vegetation to
the atmosphere as a function of energy input, atmospheric demand, and aerodynamic conditions.
ET therefore may afford us a more functional understanding of environmental conditions relative
to moisture. Vegetation condition is informative not only about moisture availability, but also about
the suitability of ambient air temperatures for plant growth. We can study annual differences in
growing-season conditions by monitoring the timing and strength of the photosynthetic response,
which we did using the Normalized Difference Vegetation Index (NDVI), a metric with a long history
of use in the remote sensing community that has been applied throughout the world to map response
of green biomass in visible-red and near-infrared wavebands (e.g., [23–26]). NDVI also has been linked
with biodiversity in studies of trophic interactions [3]. We brought all these measurements into an
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integrated analysis of inter- and intraseasonal processes and characteristics across the study areas for
the first five years of data collection, from 2008 to 2012 [27].

In analyzing these first five years of data, we considered the decisions and assumptions we
made in selecting remotely sensed variables to use and determining how to summarize the data
most effectively. Our results illustrate not only how differentially sensitive data from ground- and
satellite-based sensors can be for detecting weather-induced, ecologically important changes in water
availability, but also how nuanced the effects on results may (or may not) be from the decisions we made
in applying the remotely sensed data in our analyses. In this paper, we evaluate the overall effectiveness
of our approach in executing the assessment to determine if further refinements are needed before
moving forward. We specifically consider whether: (1) the ET and NDVI variables that we used were
sensitive to the onset of the growing season and to changes in growing conditions (moisture availability
and air temperature) throughout the season in temperate, wetland-rich landscapes; (2) our units of
analysis preserved the information from the variety of original resolutions of source datasets; and
(3) the definitions we developed and implemented to capture events at the start of the growing season
(snow-off, start of vegetation green-up, and onset of ET activity) ultimately were appropriate. Our
findings potentially are relevant for other researchers intending to integrate ground- and satellite-based
measurements for their studies.

2. Materials and Methods

2.1. Study Areas

We studied palustrine wetlands and their surrounding, interconnected uplands in four areas
in the U.S. Midwest (Figure 1): Tamarac National Wildlife Refuge (“Tam”, inference area 182 km2)
in Minnesota, St. Croix National Scenic Riverway (“SC”, inference area 331 km2) in Wisconsin and
Minnesota, North Temperate Lakes Long-term Research Area (“NTL”, inference area 229 km2) in
Wisconsin, and Upper Mississippi River floodplain (“UMR”, inference area 621 km2) in Wisconsin.
Tam is located in a transitional zone of tallgrass prairie, eastern broadleaf forest, and northern needleleaf
forest and is dotted with lakes, temporary ponds, marshes, bogs, and swamps [28]. SC is a network of
protected riverways vegetated with fine-scaled patches of broadleaf, needleleaf, and mixed forests,
shrubland, and tallgrass prairie intermixed with wet meadows, marshes, swamps, bogs, and fens [29].
NTL sites are within the Northern Highland-American Legion State Forest, a managed timber resource
with stands of needleleaf, broadleaf, and mixed forests rich in lakes, ponds, marshes, bogs, and
swamps [30]. The UMR includes the Upper Mississippi River National Wildlife and Fish Refuge,
the Trempealeau National Wildlife Refuge, and Perrot State Park and is characterized by floodplain
marshes and meadows, bottomland hardwoods, grasses, and shrubland, and adjacent uplands of
broadleaf forest [31,32]. UMR wetlands are on the list of Ramsar Convention wetlands of international
importance [33].

We sampled individual wetlands on the ground to characterize how temperature and precipitation
were associated with surface-water availability and amphibian calling activity (which is related to
their breeding). We studied 2 km × 2 km landscape blocks that included our individual wetland
sites with satellite-derived variables of moisture availability and vegetation response to compare
how they related to ground-based temperature and precipitation and responses we measured at
individual wetlands.

2.2. In-Situ Measurements

We designed a satellite-based assessment approach that would complement our ground-based
measurements at wetland sites. We briefly describe the in-situ measurements here because (1) they
were the basis for determining the locations of the landscape blocks; (2) they provided support for
our use of precipitation and air temperature data from weather stations outside the landscape blocks;
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and (3) we include example results from in-situ observations in connection with the remotely derived
variables later in this paper.Sensors 2018, 18, x 4 of 38 

 

 
Figure 1. Map of the four study areas (in red): (a) Tamarac National Wildlife Refuge; (b) St. Croix 
National Scenic Riverway; (c) North Temperate Lakes Long-term Research Area; and (d) Upper 
Mississippi River floodplain. Inset maps show distribution of landscape blocks. 

Figure 1. Map of the four study areas (in red): (a) Tamarac National Wildlife Refuge; (b) St. Croix
National Scenic Riverway; (c) North Temperate Lakes Long-term Research Area; and (d) Upper
Mississippi River floodplain. Inset maps show distribution of landscape blocks.



Sensors 2018, 18, 880 5 of 38

Wetland sites were selected by positioning a rectangular grid of 25 ha cells across each study area,
randomly selecting cells (10 from Tam, SC, and NTL and five from UMR), then surveying the selected
cells from the ground to locate the first wetland in each cell that we confirmed was, or that appeared to
be, an amphibian breeding site [27]. We deployed field sensors at individual wetlands beginning in
2008 (details provided in [27]). Acoustic recorders were installed as soon as thawing permitted and
prior to when amphibians began calling to record amphibian calling hourly throughout each breeding
season. We installed pressure sensors and measured water levels hourly throughout the reproduction
season at all wetlands except those that were too deep to wade or were not accessible by kayak or
canoe. In 2012 we deployed air-temperature loggers at all study wetlands to evaluate how closely
temperature data we obtained from nearby weather stations aligned with conditions at individual
sites. We similarly installed a tipping-bucket rain gauge at two wetland sites each for Tam, SC, and
NTL to compare daily rainfall observations with rainfall recorded at nearby weather stations. From
the rainfall and air temperature records we determined that weather conditions at our wetland study
sites were similar to those measured at nearby weather stations. We therefore assumed the longer-term
data record from weather stations (described below) provided reasonable representations of weather
conditions at our sites for both ground- and satellite-based analyses.

2.3. Data from Weather Stations

We used daily data from the weather stations nearest to our field sites and associated landscape
blocks that had the most complete set of annual records for 2008–2012 to relate with satellite-derived
variables to determine the onset of growing conditions for plants and the influence of seasonal
precipitation and air temperature dynamics. We selected automated over analog weather stations
when we had the choice. We selected 12 stations to provide data for the 33 landscape blocks that
contained our 35 field sites (note, in two cases a single landscape block encompassed two wetland
field sites; see Appendix A for descriptions of “primary” weather stations). We screened weather data
for completeness and for spurious entries (e.g., excessively high air temperatures in winter months)
and replaced spurious or missing observations with data from five additional, nearby stations when
deemed appropriate (“mitigation” stations in Appendix A).

We analyzed temperature and precipitation data to evaluate how well satellite-derived variables
for ET and NDVI related to the onset of growing-season temperatures and seasonal accumulated
precipitation. We used growing degree units (“GDU”, also commonly called growing degree-days)
as a metric that translated air temperature into units meaningful for plant growth and ET response.
GDU represent the number of degrees the average daily temperature exceeds a baseline during a
24 h period and generally are cumulated over the growing season [34]. The concept typically is used
to estimate seasonal conditions for timing and development of different crop types [35], and the
baseline is selected accordingly [36,37]. Scientists have employed GDU successfully to interpret NDVI
responses (e.g., [36,38–41]).

We used 10 ◦C as a baseline temperature for assessing vegetation response (represented by NDVI)
to air temperatures and set an upper limit of 30 ◦C, above which we expected growth rates to slow.
This range commonly is applied for the major crop types grown in the areas we studied, although
our specific research sites are non-agricultural and may have thermal limitations that differ from
crops. We implemented the GDU calculation following Method 2 in McMaster and Wilhelm [35].
We examined relations between the onset of GDU, which we defined as the first week of the year
that median daily GDU was ≥1, and the first week we observed the start-of-season production of
green biomass (via NDVI) and a total ET ≥1 mm. We used a weekly time step to summarize the
daily weather observations because our satellite-derived products (described below) were based on
seven-day and eight-day composite intervals.
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2.4. Satellite-Derived Measurements

We applied a weekly time step to standardize analysis units across ground- and satellite-based
variables. 1–7 January represented week 1; 8–14 January represented week 2; and so on through
week 34, around the end of August after the growing season had peaked (see Appendix B, Tables A2–A4
for cross-referencing the various product time steps with weeks). We converted all satellite-derived
products to a common map projection, the Albers equal-area conic projection typically used by the US
Geological Survey for products spanning the conterminous United States (e.g., see metadata for [42]).

As described in Section 2.1, we analyzed satellite-based variables at the scale of landscape blocks
to assess their temporal relations with ground-based measurements of GDU and precipitation [27].
We chose 2 km × 2 km as the block size because it accommodated the approximate averages of
published home ranges and maximum distances traveled for amphibian species that live in our study
areas [43–46]. This block size, which was larger than the pixel sizes of the remote-sensing products we
used, also helped to overcome an inhibiting effect on NDVI and ET responses that could have occurred
when standing water occupied a large proportion of a pixel in our study areas. Moreover, the NDVI
product we used had masked areas of perennial open water [47], which sometimes included our study
wetlands (blocks locations are available at [48]). We delineated landscape blocks by overlaying a
2 km × 2 km grid across the Midwest and extracting those cells that contained the study wetlands.
In this paper, we consider how the decision to use landscape blocks might have influenced results
compared with results we would have obtained analyzing data from an individual pixel of ET, NDVI,
or Snow associated with an individual wetland study site.

2.4.1. ET

We used a dataset of estimated actual (in contrast with estimated potential) ET that is being
generated operationally for the conterminous United States [49]. The dataset is produced with
the Operational Simplified Surface Energy Balance (SSEBop) model, which uses an energy-balance
approach to estimate ET, applying remotely sensed land-surface temperature to solve for the latent
heat energy component as a product of ET fraction (0–1.0) generated from land-surface temperature
and atmospheric demand (potential ET) estimated using the Penman-Monteith equation. Output
from the model has a spatial resolution of 1 km2 and represents total actual ET in millimeters
per eight-day interval throughout the year [49]. Principal inputs to SSEBop are eight-day average
land-surface temperature from the Moderate Resolution Imaging Spectroradiometer satellite sensor
(MODIS; product MOD11A; see [50]), air temperature in the form of gridded surfaces interpolated and
extrapolated from daily meteorological observations by the Daily Surface Weather and Climatological
Summaries (DAYMET) model [51,52], and potential ET [53] derived from weather fields produced by
the Global Data Assimilation System (GDAS; [54]). A comprehensive performance evaluation of the
SSEBop model in the conterminous United States has been reported by Velpuri et al. [55].

We obtained estimated actual ET data in their native latitude/longitude system for our study
areas for 2008 through 2012 (a similar global product is available online [56]). We fitted the data to the
4 km2 block framework by calculating the average estimated ET across the four pixels within each
block (data available from [48]). We assigned each eight-day composite period of ET output to the
week to which it best aligned (Table A4). The 46 eight-day composite intervals per year left us without
matches for week numbers 5, 13, 21, and 29 from January through August, which we treated as missing
data in our statistical analyses. We compared the onset of ET activity (i.e., first week of the year when
total ET was ≥1 mm) with the timing of the onset of growing degree conditions. We also evaluated
(correlation analysis) whether the ET values at the block scale differed much from those at the scale of
the individual pixel associated with each wetland site.
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2.4.2. NDVI

We used an NDVI product generated with data from “eMODIS” (available online [57]),
a system developed at the US Geological Survey’s Earth Resources Observation and Science (EROS)
Center [47,58]. The EROS NDVI dataset was derived with input from Collection 5 level-1B files
from both Terra and Aqua MODIS. Data represented atmospherically corrected surface reflectance
at a spatial resolution of 250 m processed as seven-day rolling composites. These data were further
processed to remove noise from snow, clouds, atmospheric haze, and other interference as part of
the EROS phenology database [59]. This approach applied a weighted least-squares linear regression
to a moving temporal window to calculate a regression line for each time step in the series [60].
The resulting family of regression lines associated with a data point was averaged for each point and
interpolated between points to yield a continuous, smoothed vegetation signal. The smoothing process
incorporated a weighting factor that favored peak points over sloping or valley points to lessen the
influence of environmental or instrumental phenomena that introduce noise and typically reduce
NDVI values. This approach provides a statistical basis for smoothing the data, and the smoothed
NDVI curves provide a closer approximation of the growth cycle than do the original, noisy NDVI data.

We obtained these smoothed NDVI data in their native Lambert azimuthal equal-area projection.
We also obtained a derivative product identifying the annual start-of-season time (SOST), served
through the EROS phenology database portal [59,61]. The SOST metric was produced via a curve
derivative method that employed a backward-looking or delayed moving average [25,62]. Delayed
moving average values were predicted based on previous observations along the time series NDVI
curve for each pixel to identify departures from the established trend. The point (day of year) where
the NDVI values first became larger than those predicted by the delayed moving average was labeled
as the start-of-season time.

We converted the smoothed NDVI data to a weekly time step based on the week in which the
majority of the (rolling seven) composited days occurred (refer to Table A3). We then fitted the NDVI
data to the 4 km2 block framework by calculating the average NDVI value across all 250 m pixels
within each block (data available from [48]). We also averaged the day-of-year timing identified
by the SOST metric across the pixels within each block and subsequently checked the sensitivity of
SOST through correlation with the onset of growing degree temperatures. We evaluated (correlation
analysis) how NDVI values at the scale of individual pixels compared with values averaged across
blocks. A characteristic of the original NDVI data products was that water pixels were masked (treated
as “no data”) to eliminate spurious results for non-vegetated pixels. Some of our field study sites
coincided with water-masked areas. In such cases we used the SOST from an adjacent, non-masked
pixel (that we subjectively determined represented the wetland locale) to compare results based on
wetland pixels with those based on study blocks.

Our initial analysis of the SOST metric revealed that its algorithm may, at times, have identified
false green-up events during winter through early spring. False green-up can result from cycles of
snowmelt followed by new snowfall, which exposes and then re-blankets evergreen and senescent
vegetation. To help ensure we did not treat false green-ups as real, we derived an alternate start-of-season
metric (altSOST). We visually examined the NDVI response curves from 2008 to 2012 for each landscape
block to determine the winter background level for vegetation, which we defined as the highest NDVI
values during the heart of winter. We calculated the average of the background levels across all blocks
within each study area and used these averages (Tam = 0.34, SC = 0.45, NTL = 0.51, UMR = 0.31)
as thresholds to signal when a rising NDVI curve had exceeded the winter background NDVI. We
correlated the resulting altSOST dates with GDU to help evaluate whether the altSOST metric provided
a more useful indicator than SOST for the onset of green-up.

2.4.3. Snow-Off

We used a NASA-supported product generated from MODIS Collection 5 data (MOD10A2 [63])
and provided in a sinusoidal projection to characterize the timing and duration of snowpack.
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The product represented maximum snow extent for each eight-day composite period at a spatial
resolution of 500 m. A pixel was labeled as “snow” if it had snow cover on one or more days during
the composite period.

We assembled time-series snow data from 2008 to 2012 to obtain the snow status of the pixels
within the block encompassing each study wetland. We determined the snow-free date for the pixels
within each block and averaged the dates to derive a block-wide estimate (data available from [48]).
We defined “snow-free” as the beginning date of two contiguous, snow-free, eight-day composite
intervals that occurred after February (i.e., after the winter months). We imposed the requirement for
two intervals because the U.S. Midwest often receives intermittent snowfall during late winter through
spring. Snow from these late storms tends to be ephemeral, often melting within the same 24 h period
in which it falls, as air temperatures become milder and photoperiods become longer. We ignored
consecutive snow-free intervals when they occurred during winter months because plant growth was
unlikely, given cold air temperatures (and assumed cold soil temperatures) and short photoperiods.
We evaluated the suitability of our criteria for identifying the start of seasonal snow-free conditions by
determining how often snow recurred after the snow-free date we identified. We also compared the
differences of pixel-scale versus block-scale snow-off dates (correlation analysis) to assess any apparent
bias based upon scale.

2.4.4. Integrated Analyses

We brought together data from the ground and remote sensors to learn the extent to which they
respectively tracked changes resulting from temporal patterns of precipitation and air temperatures at
the wetland study sites/blocks. We focused our evaluations on: (1) ecological events around the onset
of the growing season, a critical time for biota [64–67]; and (2) seasonal trajectories of responses past
the peak of the season (near the end of August). In this paper, we share examples of results from the
wetland ground-based data to highlight considerations and issues related to complementing these
measurements with satellite-based measurements. Specifically, we examined the relative sensitivity
of the remote measurements to changes in moisture availability and air temperature on the ground,
versus the sensitivity to these changes exhibited by the in-situ measurements, and considered the ways
in which the coarser spatial and temporal scales of the remote data could influence perceptions of
conditions on the ground.

3. Results

3.1. Start of Season

3.1.1. Weather Characteristics, Including Snow Cover

Summarizing key weather characteristics helped us interpret how well our remotely derived
metrics performed and highlighted patterns of seasonal variation. Years with earlier snowmelt, 2010
and 2012 at all our study areas (Figure 2), generally also were years when growing degree temperatures
occurred earlier (Figure 3). Conversely, years with later snowmelt, 2008 and 2011 at all study areas,
were years when low temperatures lingered later into the year. The year 2009 contrasted with these
patterns by having early snowmelt at the SC, NTL, and UMR study areas, but accompanied by cooler
air temperatures. The onset of growing degree temperatures occurred a month or more sooner in an
early year than in a later year. Rainfall occurred earlier in both SC and NTL during 2012 in addition to
the earlier warm air temperatures. In contrast, rain fell earlier at the Tam study area in 2009. Rainfall
occurred very early in all years in the UMR.

Regarding our criteria to identify snow-free conditions, results indicated that, had we required
only a single snow-free interval following February to designate snow-off, we would have observed
recurrence of snow a substantial percent of the time at all study areas (Table 1, column (a)). By requiring
two consecutive snow-free intervals we identified a snow-free date that rarely was followed by
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additional snowfall (Table 1, column (b)). We compared the timing of snow-off between the scales
of individual 500 m pixels and study blocks associated with each wetland site and found them to be
highly correlated (Table 1, column (c)). Values ranged from a Pearson’s correlation coefficient of 0.99
for SC to 0.93 for UMR.Sensors 2018, 18, x 9 of 38 

 

 
Figure 2. Timing of snow-off. These boxplots show average snow-off timing (beginning date of the 
first two consecutive, post-February snow-free intervals) across the set of 4 km2 blocks assessed 
within each study area. Tam = Tamarac National Wildlife Refuge. SC = St. Croix National Scenic 
Riverway. NTL = North Temperate Lakes Long-term Research Area. UMR = Upper Mississippi River 
floodplain. 
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each study area. Tam = Tamarac National Wildlife Refuge. SC = St. Croix National Scenic Riverway.
NTL = North Temperate Lakes Long-term Research Area. UMR = Upper Mississippi River floodplain.
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Figure 3. Cumulative growing degree units (GDU) and precipitation averaged across the weather
stations we used for each study area (see Appendix A for list of stations). Tam = Tamarac National
Wildlife Refuge. SC = St. Croix National Scenic Riverway. NTL = North Temperate Lakes Long-term
Research Area. UMR = Upper Mississippi River floodplain.
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Table 1. Timing of snow-off. (a) Frequency that snow recurred after the first single (post-February)
snow-free interval from 2008–2012; (b) Frequency that snow recurred after the first two-week
(post-February) snow-free interval from 2008–2012; (c) Comparison (Pearson correlation coefficient) of
snow-free timing at the scale of cells versus blocks.

Study Area
(a) Proportion (and Percentage)
of Sites Where Snow Recurred
after One Snow-Free Interval

(b) Proportion (and Percentage)
of Sites Where Snow Recurred
after Two Snow-Free Intervals

(c) Correlation between
Timing of Snow-Off at the

Cell vs. the Block Scale

Tam 1 18/50 (36%) 2/50 (4%) 0.98
SC 2 10/50 (20%) 0/50 (0%) 0.99

NTL 3 9/50 (18%) 2/50 (4%) 0.97
UMR 4 7/25 (28%) 0/25 (0%) 0.93
1 Tam = Tamarac National Wildlife Refuge. 2 SC = St. Croix National Scenic Riverway. 3 NTL = North Temperate
Lakes Long-term Research Area. 4 UMR = Upper Mississippi River floodplain.

3.1.2. Onset of ET Activity

We observed some differences among years in total ET during spring months (Figure S1), but the
ET data did not appear sensitive to the timing of the onset of growing degree temperatures. Interannual
differences in spring monthly total ET were perhaps most distinctive in Tam, the study area with the
most diversity in land-cover features (Figure S1). Interannual variability in spring ET activity was least
evident in NTL blocks and UMR blocks.

We used air temperature data from nearby weather stations to determine when the median
weekly growing degree units first equaled or rose above 1 each year (solid purple lines in Figure 4).
We compared these dates with the timing of when total weekly ET values first began to rise in study
blocks (dotted lines in Figure 4). For a given landscape block, we found that the onset of ET activity
was similar from year to year and did not mirror the interannual pattern of the onset of growing degree
temperatures. For example, the onset of GDU for Tam was different each year, ranging from week
15 in 2009 to week 10 in 2012; yet, most blocks showed little variation in the annual initiation of ET
activity. The NTL study area exhibited the greatest interannual variability in the onset of ET activity,
but the temporal patterns bore little relation to the annual timing of the onset of GDU.

Onset of ET activity was earlier than growing degree temperatures in 2008 in all blocks in all study
areas, and in 2009 in all Tam blocks and some SC and UMR blocks, though not in NTL blocks (Figure 4).
In 2011, the onset of ET activity preceded growing degree temperatures in all Tam blocks and in some
blocks at the other three study areas. The onset of ET activity aligned best with the onset of growing
degree temperatures in 2010 and 2012. Temperatures sufficiently above freezing to potentially cause
evaporation (but too low for plants to respond, i.e., transpire) occurred by week 9 (the end of February)
in all years for SC, NTL, and UMR, and in 2009, 2010, and 2012 for Tam (temperatures above freezing
were first observed in week 10 for 2008 and 2011 at Tam). Hence, although the onset of ET activity
preceded growing degree temperatures, air temperatures were above freezing when we identified
initial ET activity.
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Figure 4. First week of the year when total weekly evapotranspiration was ≥1 mm for study blocks 
(symbols connected by dotted lines) compared with first week that median weekly growing degree 
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3.1.3. Vegetation Green-Up

SOST values indicated that new growth of vegetation occurred after the onset of GDU, but
sometimes earlier than we would expect to observe leaf-unfolding, based on field visits and considering
that soil warming (to enable plants to access water and nutrients) lags behind warming of air
temperatures [68]. The altSOST metric typically (though not always) identified a later start to green-up
than did the SOST metric (Figure 5) and was better correlated than the SOST metric with the onset of
GDU (Table 2). The earliest SOST dates (week 11) for SC and NTL all occurred in 2010. The earliest
dates identified for Tam and UMR (week 13) were equally split between 2010 and 2012. The altSOST
metric identified the earliest dates for Tam as week 11 in 2012, week 11 in both 2010 and 2012 for SC
and NTL, and week 7 in 2012 for UMR.

Table 2. Comparison (Spearman rank correlation) of original start-of-season timing (SOST) and
alternate start-of-season timing (altSOST) with the first week that median daily growing degree units
were ≥1.

Study Area SOST altSOST

all areas 0.2076 0.4271
Tam 1 −0.0011 0.6456
SC 2 0.1701 0.3053

NTL 3 0.3399 0.5007
UMR 4 0.1571 0.3722

1 Tam = Tamarac National Wildlife Refuge. 2 SC = St. Croix National Scenic Riverway. 3 NTL = North Temperate
Lakes Long-term Research Area. 4 UMR = Upper Mississippi River floodplain.

3.2. Seasonal Summaries

3.2.1. Weather

The largest total GDU occurred in 2012 in all study areas (Figure 3). The ranking of total GDU,
from high to low, for the other years we studied was 2010, 2011, 2008, and 2009, although the total
GDU for Tam was similar in 2010 and 2011 (with the rate of increase somewhat faster in 2011). Notably,
2011 was a year of late snowmelt and a correspondingly late onset of GDU, but the cumulative GDU
was still relatively high.

The coolest growing-season temperatures occurred in 2009, which also was a year of low total
precipitation from January through August (Figure 3). The relatively lower precipitation in 2009 might
have been an extension of relatively lower precipitation after mid-July in 2008, which included a very
light snowpack during the winter of 2008/2009. In contrast, 2012 was the warmest year, with relatively
high rainfall totals in Tam, SC, and NTL. However, total rainfall in the UMR in 2012 was the lowest for
the five years we studied. The highest total January–August precipitation occurred in 2010 in all study
areas, which also was the second warmest year during our study.

3.2.2. Seasonal ET Dynamics

We compared seasonal ET dynamics with variation in weather variables across our study blocks.
Four-week total ET, incremented weekly, for the SC blocks in Figure 6 is one example (see Figure S2a–c
for seasonal ET trajectories for the remaining study areas). We used four-week totals to represent a
standardized monthly time step similar to Walter’s construction of climatographs [69] and to recognize
that plants (depending on species) can access water resources deeper in the soil profile [70], as well
as at the surface, potentially representing precipitation inputs over several weeks or longer. Peak ET
levels for 2009, the coolest, driest year (Figure 3), were lower across all study areas than in other years.
We observed the highest peak ET values in 2010 and/or 2012, the warmest years. Temperatures were
warm and rainfall occurred early in 2012, relative to the other years, but we did not detect an early
season response in ET. Based upon weather-station data, we found that the previous year (2011) ended
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with drier than usual conditions, likely leaving low soil moisture at the beginning of 2012 (see Palmer
Drought Severity Index [71,72] graphed in Figure S3). Spring rise in ET for most SC sites was earliest
in 2008 and 2011 (Figure 6), the years with the latest snowmelt (Figure 2), and may have been due to
ablation of the snowpack.Sensors 2018, 18, x 14 of 38 
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Figure 6. Four-week total evapotranspiration (ET), incremented weekly, for blocks in the St. Croix
National Scenic Riverway study area. Sites SC12DA4 and SC12DAI1 occur within the same study
block, as do sites SC4DB9 and SC4DBI2.

We compared block-level ET values with ET values for the individual pixel (native resolution = 1 km2)
associated with each wetland site for 2008 to 2012 to evaluate whether results at the coarser scale
altered the outcomes of our analyses. We observed a tendency for ET estimates at the block scale to be
slightly higher than at the pixel scale, although Pearson correlation coefficients between blocks and



Sensors 2018, 18, 880 16 of 38

pixels were very high for all study areas (Tam = 0.9950; SC = 0.9959; NTL = 0.9930; UMR = 0.9909).
One of our motivations for using landscape blocks was to reduce the potential for persistent excessive
water in pixels to inhibit the sensitivity of the SSEBop model to changes in landscape conditions.
We used the National Land Cover Database (NLCD) thematic map for 2011 (pixel size = 30 m) to
estimate the possible extent of surface water in blocks versus in pixels. We found that for 2011, the ET
pixels at seven of 34 wetland sites had 50% or more area mapped as water or wetland. Similarly, seven
of 33 landscape blocks contained at least 50% of their area mapped as water or wetland. Therefore,
upscaling from pixels to blocks preserved the proportion of landscape area in water/wetlands while
including some block pixels that represented sufficient upland area to exhibit variation in ET responses.

3.2.3. Seasonal NDVI Dynamics

Within-season NDVI values aligned with coinciding cumulative precipitation and GDU
(see Figure 7 for examples for some SC blocks; Figure S4a–d shows seasonal NDVI trajectories for all
blocks by study area). We used four-week totals for the same reason described for ET. NDVI values
indicated that green-up occurred earlier in 2012 than in other years, in association with warmer air
temperatures. Late snowmelt delayed green-up in 2011 and, especially, 2008. Green-up progressed
more slowly in 2009, a year with cooler air temperatures and drier conditions. We observed a very early
increase in NDVI for a few SC sites (SC8DAI1, SC10DB1, SC10DD1) in 2008 as a result of snow melting
then re-blanketing the landscape for another month. Such false green-up events also were apparent
in other years when snowmelt briefly exposed dormant winter vegetation, including evergreens
(for example, during 2012 at most SC sites and 2009 at SC10DD1 and SC12DA4).

NDVI values for blocks were highly correlated with NDVI values for pixels, but slightly less
so than the correlations we observed between ET block and pixel values. However, ET pixels, sized
at 1 km2, were closer in area to block size (4 km2) than were NDVI pixels (approximately 0.06 km2).
Pearson correlation coefficients for NDVI block values versus pixel values were 0.9865 for Tam, 0.9829
for SC, 0.8981 for NTL, and 0.9512 for UMR. The proportion of times (from January through August)
that NDVI values differed by more than 15% (a level we chose arbitrarily) between blocks and pixels
was 1.0%, 0.9%, 13.0% and 8.8% for Tam, SC, NTL, and UMR, respectively. At UMR these differences
always were due to NDVI values for blocks being lower than NDVI values for pixels, whereas we did
not observe any directionality to such differences for the other study areas.

Seven of the 35 NDVI pixels associated with our field sites had more than 50% of their surface area
mapped as water or wetland in the NLCD 2011 product (although, we note that wetlands may support
dense stands of aquatic vegetation [73]). Several of those pixels were masked in the NDVI product
because of perennial water cover. We used study blocks to help avoid data gaps from masked pixels,
as blocks could provide NDVI information over a larger, but still local, area. As stated previously,
seven of 33 landscape blocks also contained at least 50% of their area mapped as water or wetland;
therefore, upscaling from NDVI pixels to study blocks preserved the proportion of potential wet areas
in the landscape and enabled us to ameliorate the influence of data gaps from masked pixels.

3.2.4. An Integrated Look at the Variables

We overlaid seasonal measurements and events identified from data we acquired in situ and by
satellite to compare how they tracked with respect to precipitation and air temperatures. We show
examples for two SC sites (SC10DD1 and SC4DB9) in Figure 8. ET activity (grey line) generally
followed temporal patterns of GDU (red vertical bars), but additionally would have been affected
by precipitation inputs (blue vertical bars) and, at the beginning of the growing season, timing and
amount of snowmelt (not shown). These same factors would have influenced NVDI values (green line),
as would the annual cumulative increases in leaf area from initial bud burst through peak season.
Water levels (black line) behaved differently from one another at these two sites, with substantially
more episodes of drying and rewetting over the study years in SC10DD1 in contrast with more
consistency in SC4DB9. Amphibians typically starting calling (light green vertical bar) with the onset
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of warming temperatures; however, these temperatures did not necessarily need to be high enough
to support plant growth (i.e., the minimum threshold required for GDU). Amphibian calling ceased
when wetlands dried early, as shown in the calling record for Pseudacris crucifer (spring peeper) plotted
against water levels recorded for SC10DD1 across the five years we studied (Figure 9).
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Figure 8. Overlay of seasonal measurements and events for sites SC10DD1 and SC4DB9 from the
St. Croix study area. Red vertical bars depict weekly total growing degree units (GDU) and blue vertical
bars depict weekly total precipitation (Precip) from weather station data. We show satellite-derived
measurements with the green line for the weekly Normalized Difference Vegetation Index (NDVI)
value and the grey line for weekly total evapotranspiration, the latter interpolated between data gaps
for weeks 5, 13, 21, and 29 to render this graph (we did not use interpolated data in our analyses,
though). The black line indicates the daily median water level measured by pressure sensors in the
wetland at each site and the light green vertical bar is the interval in which we identified the first
amphibian calls of the season from site acoustic recorders.
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Figure 9. Amphibian calling activity during the reproductive season for 2008–2012 for Pseudacris crucifer
(spring peeper), an early breeding frog species, compared with median daily water depths for site
SC10DD1 in the St. Croix study area. Calling is represented as integrands (area under the curve) for
daily sound intensity based on dB levels of P. crucifer calls recorded for five minutes every hour over
the course of each season. P. crucifer did not call during dates lacking integrand values. Daily median
water depths were calculated from hourly samples recorded on pressure loggers installed just above
the sediments at the deepest location in the wetland.

4. Discussion

Few scientific data are available for understanding how changing climate actually is affecting
key ecological conditions and processes on wetland-upland landscapes, such as those we studied
in the U.S. Midwest. Yet, these data are necessary for resource managers and other stakeholders to
understand the nature of real changes, not those simply predicted by risk models [21], and to manage
resources effectively and adaptively in the face of climate change. This lack of critical information
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motivated us to design and implement a study integrated across scales, sensors, and disciplines to
assess recent relations among temperature, precipitation, wetland and upland water availability, and
the statuses of amphibian populations in our study areas [27]. Our analysis of the first five years of
data collection provided an opportunity to further evaluate our approach for executing the remote
sensing component of the assessment.

A limited number of previous reports have described long-term studies with integrated remotely
sensed and ground measurements collected over a variety of sensors and scales [74–78]. These
efforts illustrate various considerations in selecting which variables to measure and in determining
approaches to summarize the variables in meaningful and complementary ways. Clearly, the scientific
questions being addressed largely dictate the types of measurements that are necessary to ultimately
conduct effective analyses, but selecting the best metrics can be complex and nuanced. For example,
measurements of air temperature are key to climate-related research, but could be analyzed as
individual observations at some periodicity, averages per unit time, high or low readings per unit
time, or cumulative observations or derivatives (such as GDU). As White et al. [62] demonstrated
for start-of-spring metrics calculated with NDVI, no single metric necessarily works best under
all circumstances or in all geographic settings, as illustrated by the range of metrics chosen by
researchers studying effects of climate change in different geographic areas or on different taxa
or species (e.g., [79–82]).

Relations of precipitation and water availability are crucially important to measure for assessing
climate’s effects on biota. However, studying wetland-rich landscapes via satellite sensors is
challenging because water presence can be highly dynamic and also amplify ambiguity in spectral
signatures of land cover measured by such sensors. For example, drought typically will depress NDVI
values, but so will too much water on the landscape, even if plant growth is vigorous, because water
absorbs energy in the portions of the spectrum used to derive NDVI [83]. The presence of water
can especially complicate the optical signal in sensors like MODIS with wide optical bandwidths.
Using remote sensing to determine water availability in wetlands in wooded settings is particularly
difficult because most wetlands are small, relative to sensor resolutions, and are obscured by overstory
vegetation [84]. Thus, wetlands are notoriously difficult to map with consistent and high accuracy [84]
(e.g., see results in [85–90]) and their high spectral, spatial, and temporal variability present special
challenges for phenological studies [91]. Recent mapping products and/or algorithms provide new
opportunities to characterize the presence and dynamics of water in the landscape [17,18,92–94] by
capitalizing on water’s distinctive signature across parts of the energy spectrum used by remote-sensing
scientists to monitor changes on the Earth’s surface [83,95]. Yet, these new advances are best suited
for moderate-sized or larger wetlands or bodies of open water, and mapping small to midsized
waterbodies and wetlands accurately at ecologically meaningful time scales remains difficult [84].
The release of the Global Surface Water Explorer [18,96] is advancing our understanding of water
dynamics globally over the past three decades, but the time steps of the underlying Landsat data are
irregular, in contrast to the consistent seven- and eight-day products we used, and results presented in
the Global Surface Water Explorer typically pertain to waterbodies that are larger than the wetlands
we studied and that are not obscured by the overstory and/or emergent vegetation that shrouded
many of our study wetlands. For all these reasons we used variables that did not rely directly on
remotely observing the dynamics of surface water, but rather on vegetation responses and ET activity
as proxies for water availability over time.

4.1. Onset of Growing-Season Conditions

The timing and duration of the transitional period from winter to spring weather is important
because they drive the timing of events for individuals of a species, as well as for the food sources
and biotic and abiotic conditions that ensure the availability of suitable habitat required by those
individuals. Early breeding amphibians in the U.S. Midwest, for example, require breeding wetlands to
remain sufficiently warm once thawed, with ample water availability and suitable food sources to allow
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successful breeding, hatching, larval development, and metamorphosis to occur sequentially over a
season. Unusually early winter thaws, followed by freezing temperatures or insufficient precipitation
to sustain wetland water levels, can reduce the fitness of breeding amphibians that entered wetlands
early in response to warm temperatures and snowmelt [43]. We used satellite-derived variables to
try to detect the onset of spring conditions within landscape blocks as an indicator of when warm
temperatures and snowmelt triggered changes in conditions across these larger areas, all in relation to
what we observed at our individual study wetlands.

Given plants require suitable combinations of temperature and water availability, along with
sunlight, to photosynthesize and grow, we considered the ET variable we used as a functional indicator
of such conditions across landscape blocks, especially water availability when temperatures and
insolation were above physiological thresholds [97]. We observed interannual differences in total
monthly ET during spring months, but the timing of initial ET activity was not sensitive to the
timing of the onset of GDU. The onset of ET activity, as we defined it, frequently began during the
same week from year to year at a given site, regardless of differences in air temperatures or snow
presence. This may have been because ET estimates likely included noise from random errors caused
by parameterization of the SSEBop model, as well as poor data quality from cloud contamination in
the land surface temperature data. The relative impact of such errors tends to be higher at small ET
estimates, such as during the early part of the growing season. Therefore, it may be appropriate for us
to alter the way in which we define the onset of ET activity.

We used NDVI as an indicator of vegetation responses to seasonal temperature and precipitation
dynamics within landscape blocks, particularly for the timing of spring green-up. Prior studies
have highlighted the strengths and weaknesses of NDVI for estimating the onset of the growing
season and have shown variability in accuracy of estimates depending on plant functional types [98].
For example, the extraction method used to generate the SOST metric compared favoriably with others
tested for estimating the start-of-season over temperate deciduous forests and grasslands [62], but as
Hmimina et al. [99] pointed out, using MODIS-derived NDVI in evergreen-dominated landscapes
may not provide consistent nor detectable phenological patterns. We found that the onset of greenness
indicated by the SOST metric appeared at times to be influenced by false local minima and maxima in
NDVI response curves that probably were related to pre-season snow-on/off conditions, especially
in settings with evergreens [100]. This resulted in some SOST dates that likely indicated pre-season
exposure of dormant vegetation, rather than onset of green-up. For example, the SOST metric for
Tam site TA1DB1 in 2009 estimated the onset of green-up in Week 16, around mid-April, whereas the
altSOST metric indicated onset in Week 18, the beginning of May. We visited that site in mid-May
of 2009 and observed the early stages of leaf-out, which could have been underway for two weeks
(i.e., Week 18), but likely were not underway during the middle of April (i.e., Week 16; see photos in
Figure S5).

We selected NDVI for studying phenology because it is straightforward to calculate and has
been, by far, the vegetation index most frequently applied for phenological studies [25,39,62,101–103].
NDVI has been shown to agree well with the start of carbon uptake by plants [104]. However, the
Enhanced Vegetation Index (EVI) has been gaining popularity since MODIS data became available in
2000. EVI remains sensitive to canopy variation even at high levels of leaf area where NDVI has been
to shown to saturate [105–108]. EVI-derived start-of-season estimates have been better correlated with
ground-based start-of-season in deciduous forests, especially in the eastern and northern United States;
however, in our study region, green-up dates estimated from NDVI were significantly correlated with
those estimated from EVI [107]. Thus, we believe only modest improvements in identifying SOST for
our study areas might be gained with EVI.

As others have stated, accounting for winter background levels of NDVI is important for avoiding
false green-up signals [100]. To address this we estimated altSOST for each landscape block based
on a threshold representing the study area winter background level of NDVI averaged across each
area’s individual blocks. In retrospect, we might have observed greater concordance between the
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start of green-up and GDU if we had used background NDVI levels specific to each landscape block,
as the averages we used could introduce noise based upon study-area-wide land-cover heterogeneity.
Winter NDVI values were quite high at some of our sites (such as those shown in Figure 8), but not at
others within the same study area. Using altSOST helped us reduce the influence of false green-up
signals when we were trying to identify the start of growing conditions, but a more refined SOST
algorithm that could directly, or by some proxy, locally self-calibrate for winter background conditions
potentially would be more effective.

Researchers have various perspectives on relations between snow cover/snowmelt and
land-surface phenology [109]. Snow is considered by some as a source of noise that introduces error in
phenology estimates [110,111]. Others have recognized that the presence of snow (e.g., snow moisture
equivalent) can be strongly related to the timing of the start of the growing season [112]. For example,
NDVI values generally will rise during snowmelt, and this rise may or may not coincide with a
similar increase in actual vegetation activity [113,114]. Bottcher et al. [114] found close correspondence
between the beginning of photosynthetic activity (from in-situ CO2 fluxes) and the timing of snowmelt
as the ground in coniferous forest began to be exposed. Results by Sadinski et al. [27] suggest it is
difficult to ignore snow/snowmelt in studying land-surface phenology, as they found green-up to
be closely aligned with the timing of snowmelt in years when snow melted later, but not in years
when snow melted earlier. Ultimately, we need an improved method for addressing the influence of
snow on our ability to detect the onset of green-up, as a good estimate for SOST is critical not only for
studying changes in weather/climate conditions in relation to biological responses at the start of the
growing season, but also because SOST is used in calculating additional phenological metrics, such as
time-integrated NDVI and the length of the season [25].

The snow product we used was composited at eight-day intervals, a coarser time step than we
preferred for identifying the start of growing conditions. The snow dataset was accompanied by binary
information about daily snow presence during each of the eight days in a composite interval. However,
a “1” indicated that snow was detected on a given day, but “0” did not distinguish between snow
being absent and clouds or other interference obscuring the Earth’s surface from the sensor. NASA did
offer a daily snow product [63], which conceivably would have allowed us to describe snow presence
more accurately, but the volume of daily data was beyond our capacity to process them. The resolution
of the snow product we used also was spatially coarse relative to the ability of amphibians to move
across the ground to access breeding wetlands when snow cover was spatially discontinuous [27]
within a “snow pixel.” It therefore was reasonable to have detections of snow on the ground during an
eight-day period in which amphibians also called for the first time that season.

4.2. Tracking Growing-Season Conditions

4.2.1. Seasonal ET Dynamics

At the block level we analyzed dynamics of water availability within and across growing seasons.
ET exhibited interannual differences (e.g., Figures 6 and S2a–c) that we could relate generally to
seasonal differences in precipitation and air temperatures among years. For example, ET for SC
was lower in years that were drier and/or cooler and higher in years that were wetter and warmer
(Figure 6, with reference to SC in Figure 3). ET values were relatively more similar among years
for the other three study areas, but for differing reasons. Tam sites (Figure S2a) likely had more
consistent supplies of shallow groundwater [115,116], which, other than in 2012, may have helped
maintain water in wetlands and moisture in the rooting zones of upland plants. NTL (Figure S2b)
had more evergreen needleleaf vegetation than occurred in the other study areas, which provided
more consistent vegetation cover than afforded by deciduous vegetation or grasses. UMR blocks
(Figure S2c) included high proportions of standing water, which could moderate the detection of
changing conditions in the upland areas of the study blocks.
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Interpreting the status of moisture in our study landscapes via ET activity is less straightforward
than interpreting the direct presence of standing water. For example, the reduced presence of standing
water typically means reduced moisture in the landscape, which could result in lower ET; but ET
activity also could lessen because of cooler air temperatures or reduced insolation. Thus, using ET
to assess water conditions requires that we consider the interplay among current and recent surface
temperatures, moisture inputs, and insolation, as well as local land cover. The strength of a variable
like ET, however, is that it does integrate multiple facets of the environment (ambient environmental
conditions, land cover, and vegetation condition, life history, and phenological stage) and can provide
a relatively more holistic perspective than any of its individual component variables.

The SSEBop model that produced the ET data was developed mainly to quantify irrigation water
use, where there is a clear contrast in surface temperature between irrigated and non-irrigated lands.
SSEBop’s application in more water-rich areas can challenge model parameterization and interpretation.
SSEBop is a two-parameter model that creates an ET fraction from land surface temperature by
expressing the relative magnitude of land surface temperature between a lower and upper limit.
The lower limit (cold/wet) is determined using a vegetation index (NDVI) to identify well-watered
vegetation that transpires at the maximum rate. Finding such pure pixels for calibrating SSEBop in
water-rich areas is challenging because the water signal reduces the NDVI. This is particularly true
early in the growing season, when it is hard to find pixels with high NDVI (>0.7). In such cases,
SSEBop will be calibrated using NDVI from locations that are farther from the study area, which can
introduce uncertainty in the model calibration. Cloud contamination and haze also can interfere with
accuracy of SSEBop’s performance. Although the model is capable of detecting clouds because of
their extreme cold temperatures, haze and partial cloud contamination will introduce errors in the
estimation of land surface temperature and, thus, ET. The end result is an exaggeration of ET from
cooler land surface temperatures as a result of clouds or from limited emitted radiation reaching
satellite sensors because of haze [117]. Issues with geometric registration of the MODIS thermal data
(spatial resolution = 1 km2) can further influence the quality of the ET data. Haynes and Senay [118]
identified a spatial shift and mismatch between NDVI and land surface temperature from MODIS by
as much as 2 km. Additionally, the coarse size of the thermal pixels mean that SSEBop is responding to
a mix of signals coming from the landscape. Such mixed pixels, along with source-data misregistration,
make it more difficult to parameterize the wet/cold lower boundary of SSEBop well and further
complicate interpreting ET results with respect to landscape properties and responses. Challenges like
these can be addressed using datasets with higher spatial resolution, such as from Landsat, which
offers a thermal signal approximately 100 times finer than that of MODIS, but the tradeoff is a lower
repeat interval for observations.

4.2.2. Seasonal NDVI Dynamics

NDVI exhibited a wider range of annual responses than did ET to changes in temperature
and moisture conditions. This could have been because NDVI was computed directly from a
relation between two bands of the energy spectrum measured by a single sensor, whereas ET was
estimated from several sources of remote measurements and an energy-balance equation and, thus,
included more inherent error. We found that the NDVI phenological curves were relatively easy to
interpret (Figure S4a–d), given the temporal characteristics of snow-on/off (Figure 2) and dynamics of
precipitation and growing degree temperatures (Figure S6a–d). The NDVI seasonal trajectories in Tam,
for example, began to rise once snow was gone and air temperatures were sufficient for plant growth.
Late snowmelt delayed green-up in 2008 and 2011, whereas cool temperatures likely delayed green-up
in 2009 (a year with early snowmelt). These differences in environmental conditions corresponded
with phase offsets we observed in growth curves across the five years (Figure S4a). The Tam blocks also
revealed interesting within-season characteristics among the NDVI trajectories. The years 2012 and
2010 were the first and second warmest growing seasons, respectively, in the historical climate record
dating back to 1895 [72]. NDVI response curves ascended earliest in those two years. Interestingly,



Sensors 2018, 18, 880 24 of 38

the 2010 curve started to descend around week 22 (beginning of June), during a part of the season when
NDVI responses in other years were hitting peak greenness. This could have been due to Tam receiving
only average precipitation in 2010 while cumulative evapotranspirative demand was high. A boost in
precipitation starting around week 26 (beginning of July) that year was associated with an uptick in
the NDVI curve towards peak greenness and ultimately contributed to 2010 being the wettest growing
season of the five we studied. In contrast, wetlands we sampled in situ in Tam did not dry (with
one exception) prematurely in 2010. Their water levels presumably were maintained by underlying
shallow groundwater [115,116], but water levels did increase from the boost in precipitation that began
in July [27]. Wetland hydroperiods were relatively short in Tam during 2012, the warmest year on
record, when precipitation after week 32 (mid-August) was limited. The Tam sites already had reached
peak greenness by that time in 2012, so the influence of drying conditions on NDVI was more subtle
than in 2010.

4.3. Other Considerations

We knew that the native pixel resolutions of the satellite-derived products available to us for
this study would preclude us from observing detailed spatial and temporal dynamics of ET and
NDVI within our landscape study blocks. Thus, we had to consider important nuances inherent in
analyzing remotely sensed data, such as how best to analyze data associated with different pixel sizes
across a given space, to try to maximize the ecological relevance of the remote-sensing outcomes
to the finely detailed biotic and abiotic data we were collecting on the ground at individual study
wetlands. Though it might appear paradoxical that we chose a block size that was four times larger
than our coarsest satellite-derived product, we did so primarily because a spatial expanse of 4 km2

was relevant ecologically for the amphibians that reproduced in our individual study wetlands [43],
as well as for many other species that inhabited our study areas. Also, surface-water availability, a key
variable we measured in our individual study wetlands located within the blocks, is linked inextricably
to physical, vegetative, and edaphic factors on the surrounding landscape [119]. We hypothesized
that measures of ET and NDVI across a surrounding, 4 km2 area would reflect changes relevant for
surface-water availability in our individual wetlands, and vice versa. Given resources did not allow us
to sample more wetlands intensively within blocks, the remotely sensed data for each block provided
us complementary and spatially continuous observations across seasons, which enabled us to describe
a broader context for interpreting how weather and climate conditions were affecting water availability
and the statuses of amphibian populations across landscape matrices of wetlands and uplands within
our study areas [27].

The different data we used were produced at different time steps. Weather-station data were
daily summaries; snow and ET data were composited at eight-day intervals; and NDVI data were
composited over seven-day rolling intervals. We measured surface-water levels and amphibian calling
activity hourly at individual study wetlands, which we typically summarized at a daily scale [27]. After
considering these various time frames, we decided to standardize all the remotely sensed variables
and associated summaries of weather-station data to seven-day intervals, beginning with the first
day of January each year. We accepted that we would have certain weeks with no assigned eight-day
products (see Table A4), but chose that option over expunging some of the NDVI data to accommodate
the coarser, eight-day time step of the ET and snow data. The source data for the remote products
originated with daily acquisitions by MODIS sensors, but it was beyond the scope of our resources to
investigate to what extent daily data could have improved the temporal sensitivities of our analyses.
We might have realized improved precision on pinpointing the timing of weather-related events,
but we also would have inherited the cloud contamination that the composited products overcame.
We hypothesize that the overall shapes of the seasonal trajectories for ET and NDVI generated from
daily data would have been comparable with those we generated from the composited products.

Using remotely sensed data for long-term studies implies working across satellite sensors and/or
data collections. In our case, we used remotely sensed products generated with Collection 5 data



Sensors 2018, 18, 880 25 of 38

from MODIS. The Collection 5 data are known to have radiometric instability and sensor degradation
affecting the red and NIR channels, and thereby time-series NDVI [120–122]. However, Collection 5
data were the best available observations at the time of our study and, although our analyses may have
been impacted by MODIS sensor degradation apparent after 2007, we were able to identify logical
relations between the Collection 5-derived variables and those measured at weather stations. Global
historical Collection 6 MODIS data became available shortly after we completed our analyses and will
provide an improved source of observations and products for our future analyses.

The satellite-based data gave us spatially continuous information across our study areas, making
it easy to co-locate remotely sensed data with field sites. We did not have such flexibility with the
locations of long-term weather stations, which were not positioned within close proximity to some
study blocks. Although our comparisons of temperature and precipitation data that we measured at
some individual wetlands showed they were similar to data we obtained from the nearest weather
station, data from the more distant stations might have introduced noise into some of our results,
particularly for precipitation totals. This potentially was most problematic for Tam, where the closest
continuous long-term weather record for any of the study blocks was from a single station 20–35 km
away. Assuming a network of several weather stations for each study area is not realistic, improvements
to future analyses might result from using spatially continuous surfaces generated from weather-station
data for climate variables, such as those produced by the Daymet model [51,52]. Our analyses were
limited to data from stations that provided continuous observations over the period of our study,
but Daymet, which builds surfaces of 1 km2 spatial resolution using data from a network of stations,
can incorporate information even from stations with shorter periods of observation. So the resultant
products from Daymet are based upon a richer data record than we could accommodate with our
approach. Our cursory assessment indicated Daymet precipitation and temperature surfaces looked
reasonable in comparison with data from surrounding weather stations.

Climate-related remote-sensing or modeling studies commonly use total or cumulative
precipitation, but researchers have used a wider variety of ways to summarize air temperature
(e.g., [79,123–131]). We used GDU calculated with average daily air temperatures, which we then
cumulated over the growing season or used as interval-based events that potentially were relevant as
a trigger for the onset of plant growth. Alternatively, Piao et al. [132] suggested that leaf unfolding
dates correlated well with maximum daily temperatures, a metric also incorporated by others [133].

We assessed ET and NDVI for all landscape blocks within a study area without regard for
differences in cover types. Within blocks, mixtures of cover types can challenge successful pinpointing
of phenological events [134]. Even differences in microclimate can cause substantial spatial variability
in the timing of leaf onset within distances less than 100 m [135]. Results from past studies have
provided ample evidence that different cover types, indeed species, respond differently to changes
in water availability in the landscape (e.g., [136–141]), and heterogeneity in vegetation may retard
detection of drying conditions, as different species can access soil moisture from different depths in
the rooting zone after surface water has dried in wetlands [142–144]. We could expand our future
analyses to investigate the degree to which ET, NDVI, and the duration of snow cover are associated
with land-cover types in our study areas.

Studying relations between land-cover types and Earth-surface phenology could be more easily
accommodated by employing time-series data from satellite sensors that provide finer spatial resolution
than data from MODIS. Coarse-scaled spatial data from daily satellites, such as MODIS, typically
have been the foundation for time-series analyses of changes in land-cover conditions associated with
climate/weather [145,146]. Sensors having relatively finer resolution, such as Landsat’s 30-m pixels,
have not provided adequate temporal frequency for these analyses. However, recent technological
advances make it feasible to compile dense time series of clear observations with Landsat data at the
pixel level [147]. Such data, although not providing as consistently frequent temporal observations
as daily sensors like MODIS, can be used to assess changes in vegetation conditions that relate to
climate/weather [145]. Investigators also are testing whether enriching Landsat time-series data with
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harmonized Sentinel-2 data can further extend this capacity [148]. Calculating annual phenological
transitions operationally with data from Landsat or other moderate-resolution sensors requires
overcoming computational and data-frequency hurdles, but progress in this area would go far towards
addressing issues related to land-cover heterogeneity for both NDVI and ET.

We evaluated ET activity, vegetation response, and snow presence as proxies for landscape
moisture availability and other growing conditions and analyzed these derived variables with respect
to precipitation and air temperatures within replicate 4 km2 blocks in four study areas. These efforts
were part of an integrated study that also included analyses of relations of precipitation and air
temperature to wetland surface-water availability and amphibian calling activity that we measured via
ground-based sensors at individual wetland study sites [27]. The ET and NDVI data we analyzed, with
the mix of land-cover features they represented, gave us perspective on the conditions of the landscape
at large, which showed a modest range of differences in responses from year to year over the period
of our study. Responses to changing conditions were more dynamic at the scale of the individual
wetlands we studied from the ground (e.g., Figure 8). At that local scale, critical changes in conditions
had potentially dramatic consequences for amphibians when our study wetlands dried (Figure 9).
The concurrent cessation of amphibian calling (as a proxy for breeding activity) could indicate the
likelihood of not having embryos and/or not having sufficient time for embryos to develop fully and
metamorphose in a given year, impacting population recruitment and persistence. Changes in water
availability required more time and had to be more pronounced before they were apparent in the
mix of wetland and vegetation types aggregated at the scale of landscape blocks. This is important
because, although satellite remote sensing can provide global information over a wide range of scales
in a consistent and repeatable manner [22], our findings underscore the importance of integrating
remotely sensed data with data collected on the ground [149] to reduce the risk of missing events or
changes in conditions that could threaten biodiversity.

5. Summary and Conclusions

We retrospectively asked whether decisions and assumptions we made in applying remotely
sensed data for a large, multiscale, integrated study on changing environmental conditions in
wetland-rich landscapes were appropriate for maintaining the strength of relations among variables
and for judging their suitability to track and understand change. Mapping wetlands and water
with remotely sensed data has historically produced inconsistent and unreliable results, especially in
wooded landscapes. Therefore, we evaluated if ET and NDVI were suitable proxies for monitoring
landscape-level moisture. We also tested whether these variables were good indicators for the onset
of growing-season conditions, as indicated by GDU and snow-off, and whether the definitions we
imposed for snow-off and start-of-season were appropriate.

We found that the ET variable exhibited a small range of interannual differences that we could
relate to seasonal patterns of precipitation and air temperatures. However, the ET responses likely
were variously tempered by available shallow groundwater supplies, presence of evergreen vegetation,
and/or high proportion of standing water in the landscape. ET activity clearly increased from early
through late spring, but the ET variable was insensitive to the timing of spring onset of GDU that would
drive evaporation and foliar growth (and respiration). This may suggest that we should adjust the way
in which we define the onset of ET activity. ET, as a variable that integrates multiple environmental
factors, is not straightforward to interpret for an application like ours.

NDVI exhibited a greater range in interannual responses to precipitation and air temperatures,
was fairly simple to interpret, and was sensitive to the timing of the onset of GDU. Yet, we observed
the SOST algorithm that identified the start of vegetation green-up was not robust to false green-up
events caused by winter snowmelt, particularly in settings with evergreen vegetation. We therefore
defined an alternate start-of-season variable (altSOST), calibrated by winter background levels of
NDVI, which resulted in a stronger correlation with the GDU record. From this we concluded that the
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original SOST algorithm needs further refinement to better handle winter maxima/minima cycles in
the NDVI response curves.

We used satellite-derived products that imposed constraints on the temporal domain of our
analysis. These products compiled information over a standard eight-day time step (ET and snow),
a rolling seven-day time step (NDVI), and a daily time step (SOST). The data we acquired from weather
stations were daily records. Selecting a common unit of analysis to overcome these mismatched
temporal resolutions required opting for data reduction to accommodate the coarser time units
(e.g., via summarizing across observations or removing records) or data gaps to accommodate the finer
time units (e.g., Table A4 shows there were no eight-day intervals matched to weeks 5, 13, 21, and 29).
We chose the latter option to preserve the full complement of data for the NDVI response curves.

The satellite-derived products presented a range of native spatial resolutions, including 250 m
(NDVI, SOST, altSOST), 500 m (snow), and 1000 m (ET) raster cells. In considering a common
spatial unit of analysis, we were cognizant that pixels over areas with lots of standing water (e.g., in
wetland-rich landscapes) can reduce the information value of ET and NDVI. We chose a spatial unit
of analysis (2 km × 2 km) that was informed by reported home ranges and movement distances of
amphibian species known to inhabit the areas we studied. This provided an ecologically meaningful
basis for selecting the size of the study blocks, with each block encompassing a combination of wetlands
and uplands that individual amphibians might encounter during a year. ET, NDVI, and snow-off
dates calculated at the block scale were highly correlated with values from the specific, within-block
pixels associated with locations of the wetlands we monitored on the ground. From this we concluded
that landscape blocks preserved the information value of the native raster cells while ensuring that a
mix of wetland and surrounding upland responses was represented and that data gaps were avoided
from perennially inundated pixels that were masked in the original NDVI product. This outcome
suggests we may feasibly reduce data storage and processing demands while providing ecologically
meaningful units that retain the information value of the variously scaled source data.

We developed and tested a definition for seasonal snow-off based on criteria that made
environmental sense for the north-central part of the United States that encompassed our study
areas. We concluded that our definition was appropriate, but it likely has limited portability to other
regions with different climate regimes. Ultimately, we need a more locally or regionally calibrated way
to define snow-off that can be applied across the continent.

Overall, we found that landscape responses determined with data from satellite sensors generally
resembled conditions measured on the ground at wetland sites and nearby weather stations. However,
environmental changes were much more dynamic and dramatic on the ground than what we detected
at the landscape scale. This means that conditions that put animal populations at risk on the ground
may not be detected by satellite sensors or may be detected too late to alert resource managers and
other stakeholders. This is a caution that global remote monitoring of the landscape is not sufficient by
itself for identifying changes in conditions that put ecosystems at risk and underscores the importance
of continued integrated, multiscale, and multiplatform studies.

Supplementary Materials: The following are available online at http://www.mdpi.com/1424-8220/18/3/880/s1,
Figure S1: Interannual differences in early season monthly evapotranspiration (ET), Figure S2: (a) Four-week
total evapotranspiration for blocks in the Tamarac National Wildlife Refuge study area, (b) Four-week total
evapotranspiration for blocks in the North Temperate Lakes Long-term Research Area study area, (c) Four-week
total evapotranspiration for blocks in the Upper Mississippi River floodplain study area, Figure S3: Palmer
Drought Severity Index (PDSI) for the NOAA climate division (WICDO1) representing the St. Croix National
Scenic Riverway study area, Figure S4: (a) Four-week total Normalized Difference Vegetation Index for blocks in
the Tamarac National Wildlife Refuge study area, (b) Four-week total Normalized Difference Vegetation Index
for blocks in the St. Croix National Scenic Riverway study area, (c) Four-week total Normalized Difference
Vegetation Index for blocks in the North Temperate Lakes Long-term Research Area study area, (d) Four-week
total Normalized Difference Vegetation Index for blocks in the Upper Mississippi River floodplain study area,
Figure S5: Location near field site TA1DB1 in the Tamarac National Wildlife Refuge study area showing early and
full stages of leaf-out, Figure S6: (a) Cumulative precipitation and growing degree units from weather stations
we used to represent the Tamarac National Wildlife Refuge study, (b) Cumulative precipitation and growing
degree units from weather stations we used to represent the St. Croix National Scenic Riverway study area,

http://www.mdpi.com/1424-8220/18/3/880/s1


Sensors 2018, 18, 880 28 of 38

(c) Cumulative precipitation and growing degree units from weather stations we used to represent the North
Temperate Lakes Long-term Research Area, (d) Cumulative precipitation and growing degree units from weather
stations we used to represent for the Upper Mississippi River floodplain study area.
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Appendix A

Weather stations we used to determine growing degree units and precipitation input for landscape
blocks in the four study areas.

Table A1. Weather stations we used to represent temperature and precipitation conditions for landscape
blocks in the four study areas. In the first column, “primary” refers to a weather station from which we
obtained the majority of weather data for a given study block and “mitigation” refers to weather stations
we used to replace missing or questionable data from primary station. We did not use a secondary
station when data sets from primary stations were sufficient. Tam = Tamarac National Wildlife Refuge.
NWS = National Weather Service. ID = Identifier. RAWS = Remote automated weather station. MN =
Minnesota. Tmin = Minimum daily temperature. Tmax = Maximum daily temperature P = Precipitation.
KDTL = Detroit Lakes Airport-Wething Field. WS =Weather Underground station. AWOS = Automated
Weather Observing System. SC = St. Croix National Scenic Riverway. NOAA = National Oceanic
and Atmospheric Administration. GHCND = Global Historical Climatology Network Daily. WI =
Wisconsin. KRZN = Burnett County Airport. KHYR = Sawyer County Airport. ASOS = Automated
Surface Observing System. NTL = North Temperate Lakes Long-term Ecological Research site. KARV
= Lakeland Airport/Noble F. Lee Memorial Field. UMR = Upper Mississippi River.

Study Area Study Blocks Weather Station;
Type; Location

Latitude
Longitude 1

Records with Missing/Questionable Data and
the Mitigation Steps Taken

Tam
(primary) All Tam sites NWS 2 ID 212201; RAWS;

Detroit Lakes, MN
46.84889
−95.84639

Tmin, Tmax, and P missing for 8–16 April 2009.
We substituted with data from Detroit Lakes,

MN (station KDTL).

Tam
(mitigation) All Tam sites WS 3 ID KDTL; AWOS;

Detroit Lakes, MN
46.83
−95.89

SC
(primary) SC1DA3

NOAA 4 ID
USC00212881; GHCND;

Forest Lake, MN

45.3397
−92.9125 None.

SC
(primary)

SC4DA3
SC4DAI2
SC4DB9
SC4DBI2

NWS ID 470602; RAWS;
Lind, WI

45.73972
−92.79556

Tmin and Tmax missing for 9 April–3 May 2008.
We did not substitute any data for these missing

temperature records.

SC
(primary) SC8DAI1 NWS ID 470703; RAWS;

Minong, WI
46.13583
−91.98083 None.

SC
(primary)

SC10DB1
SC10DD1

NOAA ID USC00478027;
GHCND; Spooner, WI

45.8236
−91.8761

Tmin missing for 17 March 2009; Tmin and
Tmax missing for all of July 2009; P missing for
23–25 January 2010. We substituted with data

from the nearby station in Siren, WI
(station KRZN), for July 2009. We did not fill the

winter data gap in January 2010.

SC
(mitigation)

SC10DB1
SC10DD1

WS ID KRZN; AWOS;
Siren, WI

45.82346
−92.37369
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Table A1. Cont.

Study Area Study Blocks Weather Station;
Type; Location

Latitude
Longitude 1

Records with Missing/Questionable Data and
the Mitigation Steps Taken

SC
(primary)

SC12DA4
SC12DAI1

NWS ID 470804; RAWS;
Hayward, WI

46.03111
−91.44900

P missing for 20–21 February 2012; Tmin and
Tmax missing for 20 February–4 March 2012

and 30 March–1 April 2012 and 8–9 April 2012
and 11 April 2012 and 15 April 2012; Tmin,
Tmax, and P missing for 1–6 January 2011.
We substituted with data from Hayward,

WI (station KHYR), for all data gaps.

SC
(mitigation)

SC12DA4
SC12DAI1

WS ID KHYR; ASOS;
Hayward, WI

46.0303
−91.4426

NTL
(primary)

TRL1DA1
TRL1DB1
TRL2DA1
TRL2DB1
TRL3DA1
TRL3DB1
TRL3DC1

NWS ID 471002; RAWS;
Woodruff, WI

45.88972
−89.65222

P missing from 12–14 May 2011; Tmin and
Tmax missing from 11–15 May 2011; P, Tmin,
and Tmax missing for 28–29 March 2011. We
substituted with data averaged from Arbor

Vitae, WI (station KARV), and Minocqua, WI
(GHCND:USC00475516), for all data gaps as

Woodruff is midway between these two stations.

NTL
(mitigation)

TRL1DA1
TRL1DB1
TRL2DA1
TRL2DB1
TRL3DA1
TRL3DB1
TRL3DC1

WS ID KARV; AWOS;
Arbor Vitae, WI

45.9264
−89.7307

NTL
(mitigation)

TRL1DA1
TRL1DB1
TRL2DA1
TRL2DB1
TRL3DA1
TRL3DB1
TRL3DC1

NOAA ID USC00475516;
GHCND; Minocqua, WI

45.8863
−89.7322

NTL
(primary)

TRL4DA1
TRL4DB1
TRL4DC1

NWS ID 470302; RAWS;
Glidden, WI

46.14000
−90.00000 None.

UMR
(primary)

PSP1
UMRP7

NOAA ID USC00478589;
GHCND; Trempealeau,

WI

43.9994
−91.4378

UMR
(primary) TrNWRDA1 NOAA ID USC00472165;

GHCND; Dodge, WI
44.1330
−91.5511

P, Tmin, and Tmax missing for 31 May 2011, but
we did not substitute data for this date. Tmin
for 16 January 2009 (−37.8 ◦C) was noticeably

lower than for all other records during
2008–2012; we substituted the Tmin (31.1 ◦C)

recorded at the two nearest stations.

UMR
(primary) UMRP4 NOAA ID USC00470124;

GHCND; Alma, WI
44.32722
−91.91944

Tmin and Tmax missing for 16 March 2012 and
31 May 2012; Tmax missing for19 July 2012. We

did substitute data for missing temperature
records because they were sufficiently isolated

in time to have little effect on our analyses.

UMR
(primary) UMRP10

NOAA ID USC00476827;
GHCND; Prairie du

Chien, WI

43.05150
−91.13490

Tmin missing for 2 January 2010. We did not
substitute data for missing temperature record
because it was sufficiently isolated in time to

have little effect on our analyses
1 North American Datum 1983. 2 Data for these stations were from http://www.raws.dri.edu/index.html. 3 Data
for these stations were from https://www.wunderground.com. 4 Data for these stations were from http://www.
ncdc.noaa.gov/cdo-web/datasets.

Appendix B

(Table A2) Cross reference for day-of-year, week number, and month starting date (the latter is for
non-leap years); (Table A3) Cross reference of rolling seven-day satellite sensor products with weekly
time steps; (Table A4) Cross reference of eight-day satellite sensor products with weekly time steps.

http://www.raws.dri.edu/index.html
https://www.wunderground.com
http://www.ncdc.noaa.gov/cdo-web/datasets
http://www.ncdc.noaa.gov/cdo-web/datasets


Sensors 2018, 18, 880 30 of 38

Table A2. Cross reference for day-of-year, week number, and month starting date (the latter is for
non-leap years, 2009, 2010, and 2011). Starting dates in the column containing “Day-of-Year When
Month Begins” are shifted by 1 following 28 February for leap years (2008 and 2012).

Ending
Day-of-Year

Week
Number

Day-of-Year When
Month Begins

Ending
Day-of-Year

Week
Number

Day-of-Year When
Month Begins

7 1 1 January (day #1) 189 27
14 2 196 28
21 3 203 29
28 4 210 30
35 5 1 February (day #32) 217 31 1 August (day #213)
42 6 224 32
49 7 231 33
56 8 238 34
63 9 1 March (day #60) 245 35 1 September (day #244)
70 10 252 36
77 11 259 37
84 12 266 38
91 13 1 April (day #91) 273 39
98 14 280 40 1 October (day #274)

105 15 287 41
112 16 294 42
119 17 301 43
126 18 1 May (day #121) 308 44 1 November (day #305)
133 19 315 45
140 20 322 46
147 21 329 47
154 22 1 June (day #152) 336 48 1 December (day #335)
161 23 343 49
168 24 350 50
175 25 357 51
182 26 1 July (day #182) 365 52

Table A3. Cross reference of seven-day satellite sensor composite products with weekly time steps.

Day
Number

Week
Assigned

Day
Number

Week
Assigned

Day
Number

Week
Assigned

Day
Number

Week
Assigned

Day
Number

Week
Assigned

Day
Number

Week
Assigned

1–7 1 47–53 8 93–99 14 139–145 21 185–191 27 231–237 34
2–8 1 48–54 8 94–100 14 140–146 21 186–192 27 232–238 34
3–9 1 49–55 8 95–101 14 141–147 21 187–193 28 233–239 34
4–10 1 50–56 8 96–102 15 142–148 21 188–194 28 234–240 34
5–11 2 51–57 8 97–103 15 143–149 21 189–195 28 235–241 34
6–12 2 52–58 8 98–104 15 144–150 21 190–196 28
7–13 2 53–59 8 99–105 15 145–151 22 191–197 28
8–14 2 54–60 9 100–106 15 146–152 22 192–198 28
9–15 2 55–61 9 101–107 15 147–153 22 193–199 28

10–16 2 56–62 9 102–108 15 148–154 22 194–200 29
11–17 2 57–63 9 103–109 16 149–155 22 195–201 29
12–18 3 58–64 9 104–110 16 150–156 22 196–202 29
13–19 3 59–65 9 105–111 16 151–157 22 197–203 29
14–20 3 60–66 9 106–112 16 152–158 23 198–204 29
15–21 3 61–67 10 107–113 16 153–159 23 199–205 29
16–22 3 62–68 10 108–114 16 154–160 23 200–206 29
17–23 3 63–69 10 109–115 16 155–161 23 201–207 30
18–24 3 64–70 10 110–116 17 156–162 23 202–208 30
19–25 4 65–71 10 111–117 17 157–163 23 203–209 30
20–26 4 66–72 10 112–118 17 158–164 23 204–210 30
21–27 4 67–73 10 113–119 17 159–165 24 205–211 30
22–28 4 68–74 11 114–120 17 160–166 24 206–212 30
23–29 4 69–75 11 115–121 17 161–167 24 207–213 30
24–30 4 70–76 11 116–122 17 162–168 24 208–214 31
25–31 4 71–77 11 117–123 18 163–169 24 209–215 31
26–32 5 72–78 11 118–124 18 164–170 24 210–216 31
27–33 5 73–79 11 119–125 18 165–171 24 211–217 31
28–34 5 74–80 11 120–126 18 166–172 25 212–218 31
29–35 5 75–81 12 121–127 18 167–173 25 213–219 31
30–36 5 76–82 12 122–128 18 168–174 25 214–220 31
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Table A3. Cont.

Day
Number

Week
Assigned

Day
Number

Week
Assigned

Day
Number

Week
Assigned

Day
Number

Week
Assigned

Day
Number

Week
Assigned

Day
Number

Week
Assigned

31–37 5 77–83 12 123–129 18 169–175 25 215–221 32
32–38 5 78–84 12 124–130 19 170–176 25 216–222 32
33–39 6 79–85 12 125–131 19 171–177 25 217–223 32
34–40 6 80–86 12 126–132 19 172–178 25 218–224 32
35–41 6 81–87 12 127–133 19 173–179 26 219–225 32
36–42 6 82–88 13 128–134 19 174–180 26 220–226 32
37–43 6 83–89 13 129–135 19 175–181 26 221–227 32
38–44 6 84–90 13 130–136 19 176–182 26 222–228 33
39–45 6 85–91 13 131–137 20 177–183 26 223–229 33
40–46 7 86–92 13 132–138 20 178–184 26 224–230 33
41–47 7 87–93 13 133–139 20 179–185 26 225–231 33
42–48 7 88–94 13 134–140 20 180–186 27 226–232 33
43–49 7 89–95 14 135–141 20 181–187 27 227–233 33
44–50 7 90–96 14 136–142 20 182–188 27 228–234 33
45–51 7 91–97 14 137–143 20 183–189 27 229–235 34
46–52 7 92–98 14 138–144 21 184–190 27 230–236 34

Table A4. Cross reference of eight-day satellite sensor composite products with weekly time steps.

8-Day Interval Days of Year Week Assigned 1

1 1–8 1
2 9–16 2
3 17–24 3
4 25–32 4
5 33–40 6
6 41–48 7
7 49–56 8
8 57–64 9
9 65–72 10

10 73–80 11
11 81–88 12
12 89–96 14
13 97–104 15
14 105–112 16
15 113–120 17
16 121–128 18
17 129–136 19
18 137–144 20
19 145–152 22
20 153–160 23
21 161–168 24
22 169–176 25
23 177–184 26
24 185–192 27
25 193–200 28
26 201–208 30
27 209–216 31
28 217–224 32
29 225–232 33
30 233–240 34

1 There were no eight-day intervals assigned to weeks 5, 13, 21, and 29 because there are four fewer eight-day
intervals than weeks in the January–August time frame.
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