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Counteracting structural errors in ensemble
forecast of influenza outbreaks

Sen Pei® ! & Jeffrey Shaman'

For influenza forecasts generated using dynamical models, forecast inaccuracy is
partly attributable to the nonlinear growth of error. As a consequence, quantification of the
nonlinear error structure in current forecast models is needed so that this growth can be
corrected and forecast skill improved. Here, we inspect the error growth of a compartmental
influenza model and find that a robust error structure arises naturally from the nonlinear
model dynamics. By counteracting these structural errors, diagnosed using error breeding, we
develop a new forecast approach that combines dynamical error correction and statistical
filtering techniques. In retrospective forecasts of historical influenza outbreaks for 95 US
cities from 2003 to 2014, overall forecast accuracy for outbreak peak timing, peak intensity
and attack rate, are substantially improved for predicted lead times up to 10 weeks. This error
growth correction method can be generalized to improve the forecast accuracy of other
infectious disease dynamical models.
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nfluenza remains a serious threat to the global public health.

Each year, outbreaks of circulating influenza strains cause

millions of cases of severe illness and hundreds of thousands
of deaths worldwide'. Although it is well known that influenza
incidence typically increases in wintertime in temperate regions,
more detailed epidemiological characteristics, such as the exact
week when influenza will peak, the amplitude of the outbreak,
and the total attack rate, are highly variable and harder to predict.
If accurate forecasts of these local outbreak characteristics were
available sufficiently far in advance, public health agencies would
be afforded more time to coordinate mitigation and response
activities.

Recent efforts have produced a number of forecasting systems
for a range of infectious diseases® 3, including influenza®=?,
dengue fever'®, Ebola!!~13, respiratory syncytial virus'4, and
West Nile virus'®. Validated through retrospective forecasts of
historical outbreaks, these techniques have demonstrated the
feasibility of epidemiological forecast in real-time. Generally,
current forecast methods fall into two categories: statistical
approaches (e.g., time series analysis, Bayesian modeling
averaging) and state space estimation methods (e.g., model-
inference systems). In contrast to more standard fitting exercises,
forecast with either a statistical or dynamical model requires
optimization of that model using a very limited number of recent
observations, and then projection of that optimized model into
the future to generate probabilistic predictions.

In practice, we have generated operational real-time influenza
forecasts for 5 years'®, using a model-inference system combining
a humidity-modulated susceptible-infected-recovered-susceptible
(SIRS) model and statistical filtering techniques4’ 5 17, 18 " Thjs

system has produced reliable forecasts of influenza peak timing
with leads of up to 9 weeks’. In the community of influenza
forecast, the US Centers for Disease Control and Prevention
(CDC) has sponsored 4 years of prediction competitions'?, run in
a Common Task Framework?’. In this competition, multiple
participating groups generate weekly forecasts in real-time during
the US flu season. Forecast accuracy is then evaluated by a set of
common standards post-season. This event has greatly stimulated
the development of new influenza forecasting techniques in
recent years.

Within this burgeoning field, the focus heretofore for model-
inference approaches has been on state space estimation and
model development. While these approaches have produced
significant advances in infectious disease prediction, forecast
accuracy remains less than optimal due to a number of factors
that introduce error into the prediction system. These factors
include: (1) errors in model initial conditions; (2) stochastic
observation error; and (3) model misspecification, possibly caused
by errors in representing the structure of the underlying trans-
mission network or stochastic processes. In particular, the first
and the third factors can lead to error growth. For example, for
prediction of the El Niflo-Southern Oscillation with a dynamical
model of intermediate complexity, it has been found that the
initial error in the system state is the dominant source of forecast
inaccuracy, due to its exponential growth upon model integra-
tion?!. Fast-growing errors can sabotage forecast reliability
rapidly and shorten the time horizon beyond which predictions
become unreliable. In the long-term evolution of dynamical
systems in which extremely complex behaviors (e.g., chaos) may
occur, it has been found that both the error growth caused by the
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Fig. 1 Error structure in SIRS model. a Error structure between the unobserved variable S and observed variable | following perturbations imposed 3 weeks
prior to peak in a synthetic outbreak (N =10 S(0)=0.5N, I(0) =1, L =3.86 years, D=2.27 days, Romax = 3.79, Romin = 0.97). The nonlinear error
structure is estimated using a third-order polynomial, from which the error in S (AS) can be inferred from the discrepancy of the observed variable with the
synthetic observation (Al). b Application of the breeding method to diagnose structural errors during the EAKF update. The initial random errors imposed
at time t—1 evolve per model nonlinear dynamics until time t. ¢ An example of EAKF and EAKFC prediction at 4 weeks prior to the peak for a simulated
influenza outbreak. The dash lines depict the 300 ensemble predictions, while the solid lines are ensemble average trajectories. d Comparison of the
fraction of EAKF and EAKFC peak timing predictions accurate within +1 week of the synthetic peak. The results are averaged over 103 SIRS-generated
synthetic truths, each made with different parameters and initial conditions. For each synthetic outbreak, 100 independent predictions, each using a
300-member ensemble, are performed at each weekly observation time. e An example of an NW small-world network. f Error structure between the
variable S and observation (weekly incidence) 3 weeks prior to peak in the small-world network model, fitted by a third-order polynomial. Inset is a
schematic illustration of the NW small-world network. System state is the same as in a
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sensitivity to initial conditions and random effects in the
dynamical model can be crucial for defining the predictability of
the system??. However, in this work, the forecast scope is con-
strained to a relatively short time scale of several months, before
chaos can emerge. At these shorter time scales, diagnosis of initial
error growth patterns in the dynamical system is critical?®. In
numerical weather prediction (NWP), such diagnosis of error
growth patterns has facilitated more accurate forecast, as the
information on the fastest-growing patterns can be used to
generate better initial ensemble members®4~23, However, error
growth has not been assessed in infectious disease forecast.

In this work, we first analyze the error growth structure in a
humidity-driven SIRS model that simulates influenza outbreaks.
It is found that a robust nonlinear error structure between
sensitive state variables and observations emerges naturally from
the nonlinear model dynamics. Counteracting these structural
errors, diagnosed using the breeding method, is shown to effec-
tively correct the perturbed trajectories of SIRS simulations for a
range of parameter combinations and initial conditions. Fur-
thermore, in actual ensemble influenza forecast, the structural
error correction is implemented in conjunction with a statistical
filtering method, the Ensemble Adjustment Kalman Filter
(EAKF)®. The new hybrid method calibrates sensitive state
variables at the time of prediction using dynamically diagnosed
structural error growth. The mutual reinforcement of error cor-
rection and the EAKF enables more accurate predictions of
influenza outbreaks. Among retrospective forecasts of historical
influenza outbreaks for 95 cities in the United States for the
2003-2004 to 2013-2014 seasons, the proposed method produces
more accurate predictions of outbreak peak timing, peak intensity
and attack rate at most predicted lead times. Moreover, we find
that iterative application of the error correction during model
optimization can further improve forecast accuracy. The error
correction procedure is appealing because its implementation is
independent of the specific form of the dynamical model, which
allows straightforward generalization to the real-time ensemble
forecast of other infectious diseases.

Results

Error structure in SIRS model. To inspect error growth structure
in the humidity-driven SIRS model (Methods section), we used
the breeding method to diagnose the evolution of small pertur-
bations imposed on the model state. In NWP, the breeding
method has been used similarly to estimate error growth
structure’® 27, Here we first imposed small random perturbations
on a given state variable or parameter to generate perturbed
states. Both the unperturbed state and the perturbed states were
then integrated forward, per the nonlinear model equations, for a
period of time. The bred errors were then calculated as the dif-
ference between the perturbed and unperturbed trajectories.

In the SIRS model, we observe that a clear nonlinear error
structure between sensitive state variables (S, Roma.) and the
observed variable (I) emerges naturally from the nonlinear
dynamics of the model (Supplementary Note 1 and Supplemen-
tary Figs. 1, 2). For instance, in Fig. 1a, we show the relationship
between the 1-week bred error of S and I, following perturbations
imposed 3 weeks prior to peak in a synthetic outbreak,
normalized by the largest absolute bred error in S and I. The
bred nonlinear error growth structure can be well represented by
a 3rd-order polynomial fitting. Moreover, such error structure
persists in the presence of perturbations to other state variables
(Supplementary Note 2 and Supplementary Fig. 3). Using this
polynomial fitting, the structural error of the unobserved state
variable S can be diagnosed from the discrepancy of the observed
variable I with observation.
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In above analyses, the observed variable is assumed to be the
prevalence I. In operational forecasts, such error structure also
holds for the observation of weekly incidence obtained from the
surveillance system, as the prevalence and incidence are highly
correlated. In our remaining work, we use weekly incidence as
observation rather than the total infected population I. To handle
this additional observation, we simply extend the state space to
include an additional variable for incidence; other procedures of
error breeding remain the same. Weekly incidence can be
calculated during the model integration using the contact
transmission term.

To evaluate the accuracy and robustness of the error structure
diagnosed for S, we performed an error correction procedure on a
series of model-simulated, or synthetic, outbreaks in which the
variable S was perturbed and other state variables were perfectly
known. At each weekly observation time point, the structural
error for S, inferred from the fitted error structure, was subtracted
from the current S value to adjust the perturbed trajectory
(Supplementary Note 3 and Supplementary Fig. 4). For a range
of SIRS model parameter combinations and initial conditions,
this counteraction of the structural errors effectively corrected the
perturbed trajectories of synthetic outbreaks, even in the presence
of observational noise and state variable uncertainty. Important
quantities for influenza forecast, such as outbreak peak timing
and peak intensity, were also restored with high probability
(Supplementary Figs. 5, 6).

Implementation of error correction with the EAKF. The
successful implementation of structural error correction in syn-
thetic SIRS simulations motivates its application to actual
ensemble influenza forecasts; however, the application in a
realistic setting is complicated by several issues: (1) effective error
correction is only possible when the system state is not far
from the truth; and (2) structural errors can only be clearly
diagnosed for sensitive state variables. As a consequence, the
error correction process should be implemented in conjunction
with statistical optimization methods that provide an accurate
initial estimate of the system state?~34,

One such statistical filtering method, the EAKF, provides a
practical algorithm for inferring the true system state of the SIRS
model (Methods section). Unlike other filtering techniques based
on random resampling, the EAKF sequentially uses observations
to adjust an ensemble of model trajectories in a deterministic
fashion. This trajectory-perturbing operation makes the EAKF
compatible with the structural error correction procedure, which
also can be viewed as a perturbation process.

In implementing the error correction procedure with the
EAKF, we intend to counteract the residual structural errors
present in the SIRS-EAKF system at time t, prior to generating a
prediction. For each observation of weekly incidence, the EAKF
calculates an adjustment of the observed state variable using
Bayes’ Rule. The unobserved state variables and parameters are
then adjusted based on their prior covariance with the observed
state variable (Methods section). After the update, the trajectory is
constrained closer to the truth and can be integrated forward to
the next observation or further into the future to make a forecast,
as shown in Fig. 1b, c. In fact, the update, i.e., the adjustment of
the prior state, can be interpreted as the EAKF estimate of the
error of the state variables and parameters.

In order to diagnose the structural errors of the sensitive state
variable S and parameter Ryn.x, we performed the breeding
method for each ensemble member starting from the last
observation at time t—1. In a realistic setting, the discrepancy
between the model prediction and observation is collectively
caused by the errors in all state variables. These additional errors
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should be considered when diagnosing the structural errors in S
and Roma. We therefore conducted an adjoint diagnosis by
subtracting EAKF-estimated errors prior to application of the
breeding method. For instance, when diagnosing the structural
error in S, we first removed the EAKF-estimated errors in Rgmax
Romin» D and L from the posterior trajectory at -1, and then
imposed random errors on S that were subsequently evolved
using the nonlinear SIRS model equations to generate the error
structure at time #, as in Fig. la. With this implementation,
the discrepancy of the observed state variable due to unobserved
variable and parameter errors other than S was partially reduced
through the prior removal of these errors.

Once the error structure is obtained, it is crucial to determine
the discrepancy of the observed variable from observation, Aobs,
at time f. For each ensemble member, instead of using the
observation directly as the truth, it is more favorable to use the
EAKEF posterior, obs,os, Which is a weighted average of the prior
and observation and reduces any abrupt change that might be
caused by observational error. Suppose the incidence of the
unperturbed trajectory at time t is obsp.eq, the discrepancy in
observation is simply Aobs = 0bsp,eq—0bs,os. The structural error
AS can then be estimated from the fitted error structure.
Note that the obsp, target differs for each ensemble member
and forms the posterior distribution of incidence combining
both information from the prior and observation. The same
procedure also applies to the diagnosis of ARgmax. In this new
hybrid method of EAKF with error correction (referred to as
EAKFC hereafter), we substitute the EAKF adjustment of S and
Romax With —AS and —ARgp.x to form the EAKFC adjustment.
Note that, in the EAKFC, the unobserved variable S and
parameter Ry, are calibrated with the dynamically diagnosed
nonlinear error structure, rather than their linear covariant
relationship with the observed variable per the EAKF algorithm.
That is, the EAKF is a linear correction procedure, whereas the
structural error correction described here, corrects nonlinear
error growth. Further implementation details are provided in
Supplementary Note 4 and Supplementary Figs. 7, 8.

In Fig. 1¢c, we compare the prediction of the EAKF and EAKFC
for a synthetic outbreak generated by the SIRS model. At 4 weeks
prior to the peak, a 300-member ensemble forecast is performed
using each method (dash lines). The average forecast infected
population (solid lines) generated by the EAKFC prediction is
much closer to the true trajectory. We further applied the EAKF
and EAKFC to 10° synthetic outbreaks initiated with different
randomly chosen combinations of parameters and initial state
variables. For each synthetic truth, 100 independent predictions
using a 300-member ensemble were performed at each weekly
observation time for 32 weeks beginning from 1 October. We
examined the overall accuracy of peak timing forecast. The
predicted peak week is defined by the peak of the ensemble mean
trajectory, and peak timing accuracy is measured as the fraction
of ensemble mean predictions accurate within +1 week for a
given predicted lead time. As Fig. 1d shows, on average, peak
timing accuracy for predicted leads of 6 weeks to 1 week is
improved substantially by the EAKFC.

Error structure in agent-based models. While we use a
parsimonious ordinary differential equation model to simulate
influenza transmission in this work, agent-based models are often
used to account for the spatio-temporal complexity of the
underlying contact patterns affecting infectious disease
transmission®>. In these studies, it has been shown that the
contact network influences spreading dynamics®*—38, and that
certain individuals exhibit disproportionate spreading potential
due to their locations in the network®*~*2, In particular, agent-
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based models have been used to simulate epidemic dynamics in
recent studies using an Equation-Free approach?®. In these
models, the contact network is represented by a graph G(N, E)
consisting of N nodes (individuals) and E edges (contacts).
Epidemic processes evolve following the microscopic update rules
defined at the individual-level, and macroscopic conditions are
aggregated from the total simulated population.

Within this framework, the error structure manifold can still be
constructed through a lifting-restricting scheme translating from
distributions of states to coarse-grained variables and back?*. The
Equation-Free approach consists of three basic elements: lift,
which transforms macroscopic observations through lifting to
one or more consistent microscopic realizations; evolve, which
uses the microscopic simulator to evolve these realizations for a
given time; and finally, restrict, which aggregates microscopic
realizations to obtain the macroscopic observation.

To apply the Equation-Free approach to influenza spread, we
first construct an agent-based transmission model. Despite
the high complexity of real-world contact networks, here we
use the Newman-Watts (NW) small-world network model to
represent the underlying social network!> #4, Starting with a
one-dimensional ring network with N nodes and k local nearest
neighbors per node, p.kN links are added between two randomly
chosen nodes. Self-links and multiple-links are excluded.
A schematic illustration of the network construction is shown
in the inset of Fig. 1f. In Fig. le, we display a larger NW network
(N=103, k=20, pr=0.2). Microscopic influenza transmission
dynamics evolve per the humidity-driven SIRS model, that is, a
susceptible individual gets infected upon contact with his/her
infected neighbors with a probability f(f), modulated by AH
conditions; infected people recover with a probability 1/D and
become immune to influenza; a recovered person loses immunity
with a probability 1/L. We omit the external introduction rate a
here.

We assume the macroscopic system state, including S, I,
and model and network parameters, can be inferred from
weekly incidence observations using Equation-Free optimization
techniques'?. The coarse-grained system state is then lifted to
consistent microscopic configurations of individuals’ state, which
can be effected by simply assigning S and I to randomly chosen
individuals and leaving the rest of the population as recovered.
These microscopic realizations are then evolved for 1 week,
and newly infected individuals are aggregated to form the
macroscopic observation—weekly incidence. Using this scheme,
we performed error breeding on the coarse-grained variable S,
using an NW network with parameters N=10° k=20 and
pr=0.4. In Fig. 1f, we present the normalized error structure and
the fitting with a 3rd-order polynomial. The error growth
structure is similar to that found for the simple SIRS model
(Fig. 1a). Error breeding of other state variables and parameters
can be implemented similarly. We note that, in this simple
homogeneous network structure, the lifting procedure can be
performed by random sampling. However, for heterogeneous
networks, caution is needed as extreme behaviors may appear if
superspreaders are involved in transmission. In this case, a better
lifting algorithm or a larger number of microscopic realizations
becomes necessary. We leave such analyses for a future study.

Retrospective forecast of historical influenza outbreaks. The
dynamics of real-world influenza outbreaks are much more
complicated than model-generated synthetic incidence. We
therefore tested the performance of the EAKFC using
retrospective predictions of historical influenza outbreaks. To this
end, we employed weekly estimates of influenza-like illness (ILI)
per 100,000 people seeking medical treatment as produced by
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Fig. 2 Comparison of peak timing forecast accuracy for historical influenza outbreaks. a Peak timing forecast accuracy for New York City during the

2013-2014 season. For each weekly observation, 100 independent 300-member ensemble predictions were generated. b The distribution of peak timing
predictions of EAKF (upper panel) and EAKFC (lower panel) for the 2013-2014 season in New York City at 10 weeks after 1 October 2013. The vertical
black solid lines indicate the real peak time (week 15). ¢, d Characteristics of ensemble predictions of peak timing for 95 cities in the United States for the
2003-2004 through 2013-2014 seasons, excluding the 2008-2009 and 2009-2010 pandemic seasons: the fraction of ensemble mean predictions

accurate within +£1 week (¢), within ensemble variance for those predictions (d), predictive probability of real peak time (1 week) (inset of €), and MAE of
ensemble mean predictions (inset of d). For each city and week, 100 predictions using the EAKF, EAKFC, and EAKFIC were independently generated. In ¢,
d, a positive value of predicted lead means the peak is predicted to occur in the future, while a negative value implies the peak is predicted to have already

passed

Google Flu Trends (GFT) for 95 cities in the United States from
2003 through 2014 (Methods section)*>. To remove the ILI signal
due to other respiratory viruses, e.g., rhinovirus or respiratory
syncytial virus, the original ILI records were scaled by concurrent
weekly laboratory-confirmed influenza infection rates; this scaling
produces a more influenza-specific signal, termed ILI+*® 47, In
the following analysis, we exclude the data from the 2008-2009
and 2009-2010 pandemic seasons and focus on seasonal
influenza outbreaks.

To avoid inappropriate error corrections that might undermine
accurate EAKF estimation, we apply the correction procedure
selectively rather than indiscriminately to all ensemble members.
Here, we present development of a selective rule based on the
adjustment magnitude of the observed variable, and optimize
this implementation using simulated annealing®®. In designing
the selective rule for the adaptive application of error correction,
we use a natural heuristic approach based on the EAKF
adjustment of the observed state variable for each ensemble
member. In practice, it is difficult to evaluate the EAKF
estimation of the system state directly because the true state is
unknown. In spite of that, the observed variable adjustment can
serve as a crude indicator of the quality of ensemble trajectories: a
smaller adjustment usually implies a trajectory closer to the truth.
Furthermore, the system state will gradually converge closer to
the truth as the prediction time approaches the peak.

NATURE COMMUNICATIONS | 8:925
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Consequently, we can adaptively apply the error correction
under different constraints for different lead times predicted by
the model-inference system. Implementation details can be found
in the Methods section.

Figure 2a shows retrospective forecast accuracy of peak timing
for New York City during the 2013-2014 season. Beginning 1
October, 100 independent 300-member ensemble forecasts were
generated for 40 consecutive weeks. EAKF forecasts were already
quite accurate for predicted lead times up to 4 weeks. However,
peak timing accuracy is further enhanced by the EAKFC for
all lead times. A detailed inspection of the distribution of
ensemble peak timing for the forecast initiated 10 weeks after
October 1, 2013 (5 weeks before the true outbreak peak at week
15) is displayed in Fig. 2b. Compared with the EAKF ensemble
distribution (upper panel), the EAKFC distribution is more
tightly concentrated around the observed peak (lower panel),
illustrating the benefit of the additional error growth correction.

In Fig. 2¢, the performance of peak timing forecast averaged
over all 95 cities and 9 seasons is compared. The EAKFC
outperforms the EAKF for predicted lead times longer than
1 week by a substantial margin, especially for lead times from
6 weeks to 2 weeks. The statistical significance of this
improvement is reported in Supplementary Tables 1, 2, using
both a bootstrap analysis and a two-sided Wilcoxon signed rank
test. In addition, the spread of the ensemble, indicated by the
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within ensemble variance of peak timing, is narrowed by the error
correction, as shown in Fig. 2d. Although the ensemble
distribution becomes more concentrated, it is not clear whether
the distribution is shifted towards the true peak. Therefore, we
examined the predictive probability of the real peak (+1 week),
that is, the fraction of ensemble members whose peaks are within
the +1 week interval around the real peak, or equivalently, the
probability of the occurrence of real peak time (+1 week)
according to the predicted ensemble distribution. In the inset of
Fig. 2¢, the predictive probability is improved by the EAKFC for
lead times of 6 weeks to 1 week. This implies that the observed
peak has a larger chance of falling within the EAKFC distribution.
In Supplementary Fig. 9, we find that peak timing forecast
accuracy is much higher for the predictions with smaller
ensemble variance. Finally, we compare the mean absolute error
(MAE) of peak timing forecast for both methods in the inset of
Fig. 2d. For predicted lead times longer than 1 week, the error
correction effectively reduces forecast peak timing MAE, which
coincides with the improvement of the other measures of forecast
accuracy. Further comparisons can be found in Supplementary
Figs. 10-12.

For the EAKFC, the error correction is only applied once at the
prediction time. It is natural to wonder whether iterative
application of error correction during the data assimilation
would further enhance forecast accuracy. For this iterative error
correction, the sensitive state variables S and Ry, are updated by
counteracting diagnosed structural errors, while other state
variables remain to be updated by EAKF adjustment. The
trajectories updated by error correction form the prior states in
the next step of assimilation. However, we adopt a conservative
approach when applying the error correction recursively, as the

6
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errors introduced by improper correction might propagate and
amplify during repeated model training. To avoid such over-
compensation, we chose to update the prior trajectories with error
correction only if the EAKF predicted lead time was smaller than
a specified threshold. Various choices of lead time threshold were
tested (see Supplementary Note 6 and Supplementary Fig. 13); we
selected 8 weeks for this iterative version of the EAKFC, named
EAKFIC (EAKF with iterative error correction) hereafter. In
Fig. 2c-f, peak timing forecast accuracy for the EAKFIC is
compared with the EAKF and EAKFC. Consistently, the iterative
error correction further improves the forecast accuracy of the
EAKFC.

For influenza, a more challenging prediction metric is peak
intensity, as small initial errors can strongly affect the forecast
amplitude of an outbreak. We generated weekly EAKF, EAKFC
and EAKFIC predictions for all cities and seasons and compared
peak intensity forecast accuracy (Fig. 3a). As indicated by Fig. 3a,
the EAKFC improves forecast peak intensity accuracy over the
EAKEF for lead times of 6 weeks to 1 week, and the EAKFIC
provides further improvement over the EAKFC for long lead
times. In Fig. 3b, we also examine forecast accuracy for the attack
rate, which is defined as total incidence during an outbreak. As
for peak intensity, error correction improves attack rate forecast
accuracy for lead times of 6 weeks to 1 week, and the EAKFIC
provides further improvement for lead times larger than 6 weeks.
The effect of error correction is also captured by the MAE of
forecast peak intensity and attack rate, shown in Fig. 3¢, d. In
Supplementary Note 5, statistical significance and the MAE
reduction achieved by error correction for peak timing, peak
intensity and attack rate in individual seasons are also reported
(Supplementary Tables 1-3). In the above implementation of
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error correction, we used a deterministic SIRS model to simulate
influenza dynamics. We also found that error growth correction
could similarly improve forecast accuracy for a stochastic model
(Supplementary Note 7 and Supplementary Fig. 14).

In previous studies, it was shown that peak timing accuracy
could be evaluated as a function of ensemble spread, i.e. a smaller
ensemble variance usually corresponds to a more accurate
prediction of peak timing?. In our analysis, we find this
relationship between forecast accuracy and ensemble spread also
holds for peak intensity and attack rate after error correction (see
Fig. 4). Interestingly, although the within ensemble variance of
peak timing measures the spread of the ensemble peak, we find
that it is also valid for calibrating peak intensity and attack rate
accuracy. That is, forecast accuracy for peak timing, peak
intensity and attack rate tends to increase as the within ensemble
spread of peak timing decreases. This correlation is more
pronounced at shorter lead times. This result indicates within
ensemble variance of peak timing serves as a measure of forecast
reliability.

Discussion

Our findings demonstrate that diagnosis of the error growth
structure in a nonlinear epidemiological model provides valuable
information, which can be used to reduce the inaccuracy of
forecasts generated with that model. Here, using the observed
error structure of a humidity-forced SIRS model, we develop an
error correction procedure for use with an SIRS- EAKF forecast
system. Rather than solely relying on state space estimation, the
sensitive state variable S and parameter Ry, are instead updated
by counteracting the structural errors dynamically diagnosed
through the breeding method. In retrospective forecasts of
historical influenza outbreaks, the prediction accuracy for peak
timing, peak intensity and attack rate is substantially improved
by this error correction procedure. Moreover, the iterative
application of error correction further enhances forecast quality
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for long lead times. We find that forecast accuracy for all three
epidemiological metrics can be evaluated by a single universal
indicator: within ensemble variance of peak timing. Our work
provides a generic error correction framework that can be applied
to the ensemble forecast of other infectious diseases, such as
dengue fever, respiratory syncytial virus and West Nile virus.

Methods

The humidity-driven SIRS model and synthetic outbreaks. In our study, a
simple SIRS model modulated by local absolute humidity (AH) conditions is
employed to simulate influenza outbreak dynamics. While simple, the SIRS model
with environmental forcing offers a concise mathematical description of the
transmission process for influenza, which has been validated against historical
outbreak records in the United States'®. Assuming a perfectly mixed population,
the model equations describing a local outbreak are:

ds N-S-I p(nIs

o _N=s—1 _
dt L N (1)
ar _pnis 1
d¢™ N D

Here model variables are the susceptible population S and infected population I,
and model parameters include total population N, contact rate at time ¢, f(t),
average duration of immunity L, mean infectious period D, and the rate of infection
introduction from external sources a. The contact rate, f(t), is forced by local AH
conditions through

Ro(f) =p(t)D = e alth + Romin, (2)

where g(f) is observed specific humidity (a measure of AH), and Ry(¢) is the
basic reproductive number defined as the average number of secondary
infections produced by a single infectious individual in a fully susceptible
population. Laboratory experiments of AH impact on influenza virus survival
reveal that the coefficients in the exponential term of Eq. (2) are a =-180 and

b =10g(Romax — Romin)» in which Romax and Ry, are the maximum and minimum
daily basic reproductive number, respectively'®.

In our analysis, the SIRS model is integrated forward in time continuously and
deterministically, following Eqs. (1, 2). The AH conditions for each city are local
daily climatological humidity data averaged from a 24-year record (1979-2002)
derived from North American Land Data Assimilation System data*. Throughout
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the study, we set the total population at N=5 x 10° and travel-induced infection
rate to a=0.1 (one infection per 10 days). To generate synthetic outbreaks, the
parameters (Romax» Romin» D> L) and initial conditions (S, I) are randomly drawn
from a broad distribution of possible variable and parameter combinations.

The distribution was produced by 10° SIRS simulations forced with New York
State AH from 1972 to 2002. Each model integration was performed using a
unique set of parameter combinations, randomly selected by a Latin hypercube
sampling strategy in the following parameter ranges: 2 years < L < 10 years,

2 days < D <7 days, 1.3 < Rymax < 4, and 0.8 < Romin < 1.3% 18, The initial
conditions and parameters of synthetic outbreaks were drawn from the collection
of 1 October combinations. The humidity-forced SIRS model was then integrated
from 1 October for 40 weeks to create synthetic outbreaks. To eliminate unrealistic
simulations, we discarded outbreaks that infected <10% of the total population.
Weekly synthetic observations were generated by adding random Gaussian noise
with mean 0 and observation error variance OEV, = 1x 10° + (Z]ZL3 I/ 3)*/5 at
week ¢ to the infected population I, where I; was the infected population at week j.

State-space estimation and forecasting are usually performed in conjunction
with a simple, low-dimension model form, in part due to the limited abundance
and availability of observations. These surveillance data are often coarsely resolved
and lack the detailed information needed to train models with more complex
forms. Due to this limitation, parsimonious models are preferred unless improved
forecast accuracy can be achieved through use of more computationally demanding
complex models. In our work, we often use a simple ordinary differential equation
(ODE) model to depict the underlying dynamics governing the disease
transmission process>’. Similar ODE models have produced satisfactory forecasts
for a number of infectious diseases® > 10> 14 15,

We note that all mathematical models of infectious diseases are in fact
misspecified, in the sense that realistic transmission dynamics cannot be fully
captured by simplified model constructs. The continued gaps between our
understanding and observation of transmission dynamics reflect the need for
parsimony in forecast systems. Even though parsimonious mathematical models
may not perfectly explain the epidemic processes, this has not prevented their
successful application in forecasting. Indeed, state-space estimation approaches are
often used in conjunction with these models to compensate partially for model
misspecification®’.

The SIRS-EAKF framework. As a member of a more general class of Mathematical
Model-Data Assimilation frame works, the SIRS-EAKF system iteratively optimizes
the distribution of state variables and parameters of the SIRS model using a
sequential ensemble filtering technique called the Ensemble Adjustment Kalman
Filter (EAKF)%? whenever new observations are available. In the SIRS model, the
state vector at time ¢ is X, = (Sp, I;, Romaxs Romins L» D). Once the observation O, at
time t is observed, the posterior distribution of the system state is obtained by
incorporating the information from the new observation through Bayes’ rule:

P(xt|O1:4) o< p(x¢|Or:4-1)p(Ot[x:), (3)

where p(x;|O;.¢—1) is the prior distribution of the system state, p(O;|x;) is the
likelihood of observing O; given the prior state x,, and O, are the observations
taken up to time t.

The only computationally feasible way to update the distribution of the system
state is to use ensembles, whose members are treated as samples from the prior or
posterior distribution. Different methods for computing the filtering product on
the right-hand side of Eq. (3) lead to distinct ensemble filtering techniques, e.g.,
Kalman filter’!, particle filter®, etc. In particular, Kalman filters assume that both
the prior distribution and likelihood are Gaussian, thus the distributions can be
fully parameterized by the first two moments (mean and covariance). Instead of
using random perturbations with stochasticity, as in other forms of the Kalman
filter, the EAKF adjusts the ensemble members deterministically, so that the
covariance of the prior distribution is preserved in posterior. Moreover, higher
moment structure is also retained during the update.

In the EAKF, unobserved variables, such as the susceptible population S, and
model parameters, are adjusted depending on covariant relationships with the
observed variables, which arise naturally from the system dynamics. In Kalman
filtering the intervariable relationships are assumed to be linear. As a consequence,
the adjustments of unobserved variables and parameters are linearly related to the
adjustment of the observed variable through their covariance, which is computed
directly from the ensemble. In implementation, the adjustments of observations
were first computed using the Bayes’ Rule. Then the covariance between each
unobserved variable/parameter and observations was calculated from the ensemble.
The adjustments of unobserved variables/parameters were finally determined by
multiplying the covariance with the observation adjustments. Such ensemble
filtering is strictly optimal for linear models, and exhibits satisfactory performance
for systems with nearly linear intervariable relationships.

To initialize the SIRS-EAKF system, an ensemble of state vectors was randomly
selected from a collection of possible variable and parameter combinations,
generated by long-time integrations of the SIRS model with random initial
conditions and parameters as described above. This same initialization was used
both when assimilating synthetic observations and actual observations. When
observations were assimilated into SIRS model, an inflation process was applied to
counter the EAKF tendency toward “filter divergence™® > 2°. Filter divergence can
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occur if the ensemble spread is so reduced by repeated filter adjustment that too
little weight is given to observations, causing the system to diverge from the true
trajectory. To avoid this, the prior ensemble was inflated by a multiplicative factor
A =1.02, before each weekly assimilation and calculation of the posterior. It was

found 2% inflation was sufficient to eliminate filter divergence*.

Observational estimation of influenza incidence. Prior to its discontinuation in
July 2015, Google Flu Trends (GFT) data provided real-time estimates of weekly
influenza-like illness (ILI) per 100,000 people seeking medical treatment in the
United States*. Using Internet search query activity in a simple statistical model,
GFT ILI estimates US Center for Disease Control and Prevention (CDC) ILI, a
symptomatic diagnosis defined as a fever above 37.8 °C plus cough and/or sore
throat. Unfortunately, ILI does not exclusively describe influenza, as patients
infected with other respiratory viruses, e.g., rhinovirus or respiratory syncytial
virus, may share the same symptoms. We therefore adopt another metric, termed
ILI+, to obtain a more specific signal of influenza infection incidence™ 4°. ILI+ is
generated by multiplying weekly GFT ILI with the percentage of confirmed
influenza infections among people presenting with ILL. These latter data are
complied regionally from National Respiratory and Enteric Virus Surveillance
System (NREVSS) and US-based World Health Organization (WHO) collaborating
laboratories*® 47, The more influenza-specific ILI+ curves better track the outbreak
dynamics generated by mathematical models, and thus provide a better target for
influenza forecast. For this study, we excluded cities without AH data, seasons with
incomplete observations, and the pandemic outbreaks of 2008-2009 and
2009-2010, and used 790 ILI+ time series from 95 cities in the United States during
the 2003-2004 through 2013-2014 seasons for retrospective forecast.

The ILI+ observations must be transformed to influenza incidence when
training the SIRS model using the EAKF. Recall that ILI+ measures the probability
that a person seeking medical attention (event m) is infected with an influenza
virus (event 7) in a given week—P(ilm). We denote P(i) as the probability of
infection with influenza in a given week (influenza incidence), P (m) as the
probability of seeking medical treatment for any reason, and P(mli) as the
probability of seeking medical treatment among persons with influenza. By Bayes’
rule, we have P(i) = P(m)P(ilm)/P(mli) ~ yILI+, where y = P(m)/P(mli) is
interpreted as the ratio between the probability of seeking medical attention for any
reason and to that for persons with influenza®. In reality, P(mli) should vary with
influenza virulence. So the scaling parameter y is also time-varying. In our study,
we treated y as a constant for simplicity. A number of different scaling parameters
were tested in the retrospective forecasts. When set too high, the scaling parameter
7 would exhaust the susceptible population in the SIRS model, deteriorating
prediction accuracy. We therefore adopted a small scaling value y =1 for these
forecasts. Results for y=0.5 and y = 1.5 were found to be qualitatively similar. In
Supplementary Note 8 and Supplementary Table 4, we report the improvement of
EAKFC with different scaling parameters, ranging from 0.5 to 1.5. Peak week, peak
intensity and attack rate forecast accuracy is enhanced through use of the error
correction in most cases.

In using the EAKF, an observation error variance (OEV) is required. Consistent
with previous works® °, we here use a heuristic OEV that consists of a baseline
uncertainty and a proportional part determined by ILI+ levels during the preceding
3 weeks. Specifically, the OEV for week t is OEV, = 1x 10° + (ZJ.;L3 5,/3)*/5,
with unit of (infected people per 100,000 people)?.

Optimization of adaptive error correction. For an ensemble prediction with a
predicted lead time tie,q, We apply the structural error correction to the ensemble
member only if its absolute observed variable adjustment lies within a given
percentile interval (Giower(fiead)Oupper(ficad)) among all ensemble members. For each
predicted lead time fie,q from 10 weeks to —6 weeks, assume the lower and upper
bounds of the selective rule 6 can be chosen from the percentiles 0%, 10%,..., 100%.
The percentiles 0 and 100% correspond to the minimal and maximal absolute
observational adjustment of the ensemble members, respectively. Note that if #c,q is
greater than 10 weeks (or smaller than —6 weeks), we classify it in the category of
10 weeks (or —6 weeks). Our aim is to find the optimal configuration of @ that
maximizes the total improvement of peak timing accuracy for predicted lead time
flead from 10 weeks to —6 weeks. Because there exist an enormous number of
possible configurations of 0, it is difficult to locate the exact global optimum in such
a large search space. A simple hill-climbing greedy search was tested, but the
algorithm became stuck at various local optima depending on initial values. We
therefore used Simulated Annealing (SA), an adaptation of the Metropolis-
Hastings algorithm, to find the global maxima in this landscape with many local
optima®3. SA allows acceptance of worse solutions with a slowly decreasing
probability that is controlled by a time-varying parameter T called the temperature.
Accepting worse configurations allows for a more extensive probing of space and
avoids entrapment in local optima.

There are many different ways to implement the details of SA, including choice
of the form of temperature and the acceptance probability function. Here we
adopted a linearly cooling temperature and an exponentially decaying acceptance
probability. Precisely, assuming a maximum iteration time, k., the temperature
has the form Ty = (kpax—k)/kmax Where k is the current iteration time. Given a
configuration 0, the total improvement E(8) of peak timing accuracy (within
+1 week) from lead time 10 weeks to —6 weeks can be directly computed from the
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Fig. 5 Optimization of the selective rule for the EAKFC. a We used the simulated annealing algorithm to find the best selective rule that maximizes the
improvement of peak timing accuracy using the EAKFC. The optimization is performed on the predictions for 95 cities in the United States from
2003-2004 through 2013-2014 seasons, excluding the 2008-2009 and 2009-2010 pandemic seasons. The plot shows the prediction accuracy of peak
timing for the EAKF, the original EAKFC in which the correction procedure is applied indiscriminately, and the optimized EAKFC that adaptively adopts
error correction according to the selective rule. b-d Forecast accuracy of peak timing (b), peak intensity (¢), and attack rate (d) of the EAKFC for the 2-fold
cross validation. We randomly chose half the historical outbreaks and used these to optimize the selective rule, and then performed retrospective forecasts
for the remaining records. Curves are averaged over 100 independent realizations of this cross validation

retrospective forecasts of EAKF and adaptive EAKFC constrained by 0. At each
iteration, a new configuration @’ is generated by imposing a +10 or —~10%
perturbation on a randomly selected element Ojgyer(ticad) OF Gupper(ticad) Of the
original configuration 8. Whether the new configuration 0’ is accepted depends on
the acceptance probability function:

peos)n) -1 0 SO0

e Tk

, E(®) <E@®)

where T} is the temperature at iteration time k. That is, we always accept new
configurations when there is improvement; however, worse configurations also
have a chance to be accepted, depending on the temperature and the gap of E(0).
Notice that, as k approaches k.« (i.e., temperature T approaches 0), the probability
of accepting worse configurations gradually decreases to 0. The iteration repeats
and is terminated if the configuration remains unchanged for a given period of
time.

For SA optimization with selective threshold 0, we set the maximal iteration
time as 1 x 10° and terminated the algorithm if ® was stable for 500 iterations. We
performed 100 independent optimizations starting from different initial values, and
selected the best 0 as the final choice. In Fig. 5a, we present the comparison of
retrospective forecast accuracy for 95 cities in the United States. Results are
displayed for the EAKF, original EAKFC in which error correction is applied
indiscriminately, and optimized EAKFC that adaptively applies error correction
according to the selective threshold. As shown in Fig. 5a, the optimization
improves the peak timing accuracy during the predicted lead time of 3 weeks to
1 week, which is a critical time window for timely prediction. Peak timing accuracy
between 0 week to —4 week is improved as well. The selective rule optimized over
all influenza seasons in 95 cities is displayed in the inset of Fig. 5a. For predictions
with a longer lead time, only a small fraction of ensemble members are updated
with error correction. As the predicted outbreak peak lead time approaches 0, error
correction is applied to more ensemble members. If the predicted peak lead time is
beyond —4 weeks, no error correction is needed because the EAKF makes accurate
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forecasts at such prediction lags. In our analysis, we use this selective rule to
generate adaptive EAKFC predictions.

To verify whether the SA optimization causes an overfitting issue, we performed
a 2-fold cross validation. Specifically, we randomly selected half of the historical
outbreaks and used these to optimize the selective rule. We then used that rule to
forecast the remaining outbreaks. We repeated this process for 100 independent
realizations, and report the average forecast accuracy of peak timing, peak intensity
and attack rate in Fig. 5b-d. Results from this cross validation show a similar
improvement of the EAKFC over the EAKF, indicating that SA optimization
overfitting is not an issue.

Code availability. The code used in this study is available in figshare (https://
figshare.com/s/f21b557f5263efee0b28) with the identifier doi:10.6084/m9.
figshare.5264119°2,

Data availability. The GFT ILI+ data and absolute humidity data that support the
findings of this study are available in figshare (https://figshare.com/s/
f21b557f5263efee0b28) with the identifier doi:10.6084/m9.figshare.5264119%2.
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