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Abstract: Fault diagnosis of wind turbines is of great importance to reduce operating and mainte-
nance costs of wind farms. At present, most wind turbine fault diagnosis methods are focused on
single faults, and the methods for combined faults usually depend on inefficient manual analysis.
Filling the gap, this paper proposes a low-pass filtering empirical wavelet transform (LPFEWT)
machine learning based fault diagnosis method for combined fault of wind turbines, which can
identify the fault type of wind turbines simply and efficiently without human experience and with
low computation costs. In this method, low-pass filtering empirical wavelet transform is proposed
to extract fault features from vibration signals, LPFEWT energies are selected to be the inputs of
the fault diagnosis model, a grey wolf optimizer hyperparameter tuned support vector machine
(SVM) is employed for fault diagnosis. The method is verified on a wind turbine test rig that can
simulate shaft misalignment and broken gear tooth faulty conditions. Compared with other models,
the proposed model has superiority for this classification problem.

Keywords: combined fault diagnosis; empirical wavelet transform; grey wolf optimizer; low pass
FIR filter; support vector machine

1. Introduction

With the improvement of people’s environmental awareness, sustainable and carbon-
neutral renewable energy has gradually developed to replace oil, coal and other traditional
fossil fuels [1]. According to a recent report about renewable capacity statistics [2], the
world’s wind energy capacity is 622,704 MW in 2019, accounting for 24.55% of the total
renewable energy capacity, second only to the hydropower which is the oldest renewable
energy source [3]. The annual growth rate of wind energy is 10.44% in 2019, second
only to the rapidly developing solar energy. Improving the efficiency of wind turbines
has always been a hot issue in terms of wind energy utilization. In addition to study
the selection of wind turbine [4–6], it is useful to reasonably design the wind turbines’
structure [7,8]. At the same time, wind turbines are usually exposed to dynamic and harsh
weather conditions, experiencing variable and rough working environments, which makes
them prone to failure than other ordinary machinery. If a component of the wind turbine
is broken without awareness of workers, it may well cause damage to other components,
and even lead to the shutdown of the wind turbine, resulting in huge economic losses [9].
Operating and maintenance costs account for more than 25% of total costs for onshore
wind farms and these costs are even higher for offshore projects [10]. Therefore, it is of
great significance to reduce maintenance costs and improve the efficiency of wind farms by
detecting the fault of wind turbines in time.

Many studies have been carried out on fault diagnosis of wind turbines. Such as
Liu et al. [11] introduced local mean decomposition (LMD) to analyze the wind turbine
gearbox vibration signals for fault diagnosis. Feng et al. [12] proposed a frequency demod-
ulation analysis method based on the ensemble empirical mode decomposition (EEMD)
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and energy separation algorithm to detect and locate the fault of wind turbine planetary
gearbox by analyzing vibration signals. Chen et al. [13] applied empirical wavelet trans-
formation (EWT) to vibration signals to diagnose wind turbine generator bearings faults.
Those methods depend on experienced people to analyze the signal and determine the fault
of drivetrains of wind turbines, although the precision is guaranteed, it is lack of efficiency.
In recent years, with the rise of machine learning (ML), some scholars have tried to use ML
methods to diagnosis the drivetrain of wind turbines. For example, Liu et al. [14] extracted
features from vibration signals by diagonal spectrum and employed clustering binary tree
support vector machines to diagnosis the wind turbines gearbox. Tang et al. [15] proposed
a fault diagnosis method for the drivetrain of wind turbines based on manifold learning
and Shannon wavelet support vector machine. Gao et al. [16] decomposed vibration signals
by integral extension local mean decomposition (IELMD) and calculated multiscale en-
tropy values as features for least squares support vector machines to identify fault type of
rolling bearing in wind turbine gearbox. Lei et al. [17] introduced long-short term memory
(LSTM) networks in wind turbine fault diagnosis. Jiang et al. [18] proposed multiscale
convolutional neural network (MSCNN) to diagnose wind turbine gearbox faults.

Almost two-thirds of ML-based wind turbine fault diagnosis methods use classifi-
cation, whose procedures include preprocess data, equalize classes, feature extraction,
feature selection, hyperparameter tuning, cross-validation and use the best model [19].
This intelligent way allows the diagnosis to be free from expert experience.

However, most of these ML-based wind turbine fault diagnosis methods only studied
on single fault [15–19]. In reality, a wind turbine is a complex system, failures could happen
one after another or simultaneously, therefore, a wind turbine may have more than one fault
at the same time, i.e., combined fault occurs. For example, misalignment may lead to gear or
bearing fails, then multiple faults coexist. Gear faults in different stages is also a common
combined fault [20]. Combined fault (also called compound fault) is more difficult to
diagnose than single fault because typical fault features will become difficult to be extracted.
At present, combined fault diagnosis of wind turbines usually depends on manual analysis
to calculate, extract and show the frequencies of different faults in spectrums [21–27]. Only
a few scholars have studied combined fault diagnosis by ML. For example, Zhong et al. [28]
decomposed the vibration signal into a series of intrinsic mode functions (IMFs) by Hilbert-
Huang transform (HHT) with ensemble empirical mode decomposition (EEMD), then
selected useful IMFs by correlation coefficients, and calculated the energy vector from
the selected IMFs together with maximum amplitude and corresponding frequency and
six time-domain statistical indices as features of pairwise-coupled sparse Bayes extreme
learning machine to detect several common gearbox single-faults and simultaneous-faults.

This paper will focus on a ML-based fault diagnosis method for combined faults and
single faults of wind turbines. In our method, a composite fault is considered as a fault
equivalent to a single fault, which means the output of a combined fault is not multiple
binary tags for each single fault (multilabel classification problem). The reminder of this
paper is structured as follows: Section 2 introduces the proposed method and related
theories. Section 3 presents the test rig, the experiments and the results. Finally, the
conclusion in Section 4.

2. Methods

The fault diagnosis method for combined fault of wind turbines we proposed can be
described as follows. First, extract features from vibration signals by low pass filtering
empirical wavelet transform (LPFEWT). Then, build features datasets in different condi-
tions (normal, single faults and combined fault). Last, train the support vector machine
(SVM) for classification, using grey wolf optimizer (GWO) for hyperparameter tuning.
After training, the obtained SVM model can identify faults of wind turbines by inputting
features of vibration signals. The flow chart of the method is shown in Figure 1.
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Figure 1. The flow chart of the proposed ML-based fault diagnosis method for combined fault of
wind turbines.

2.1. Low Pass Filtering Empirical Wavelet Transform (LPFEWT)

Empirical Wavelet Transform (EWT) is a new adaptive signal processing approach
proposed by Gilles in 2013 [29]. The main idea is to adaptively decompose the modes of a
signal from its Fourier spectrum by an appropriately built wavelet filter bank. The steps of
EWT are summarized as follows:

• Fast Fourier Transform (FFT);

Convert the signal f to the frequency domain by FFT to get its Fourier spectrum
(frequencyω ∈ [0,π]).

• Fourier Spectrum Segmentation;

Divide the Fourier spectrum into N contiguous segments. Let vn denote the limits
between each segment. Each segment is denoted as Λn = [ωn−1, ωn]. With each vn as
center, a transition phase of width 2τn is defined.

• Mode Extraction;

Let
ˆ
f and f̌ denote the Fourier transform and its inverse respectively. Choose τn

proportional to vn: τn = γωn, where 0 < γ < 1. Consequently, ∀n > 0, the empirical

scaling function
ˆ
φn(ω) and the empirical wavelets

ˆ
ψn(ω) are as follows:

ˆ
φn(ω) =


1, |ω| ≤ (1− γ)ωn

cos
[

π
2 β
(

1
2τn

(|ω| − (1− γ)ωn)
)]

,

(1− γ)ωn ≤ |ω| ≤ (1 + γ)ωn
0, otherwise

(1)

and

ˆ
ψn(ω) =



1, ωn + τn ≤ |ω| ≤ (1− γ)ωn+1

cos
[

π
2 β
(

1
2τωn+1

(|ω| − (1− γ)ωn+1)
)]

,

(1− γ)ωn+1 ≤ |ω| ≤ (1 + γ)ωn+1

sin
[

π
2 β
(

1
2γωn

(|ω| − (1− γ)ωn)
)]

,

(1− γ)ωn ≤ |ω| ≤ (1 + γ)ωn
0, otherwise

(2)
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To construct a tight frame set of empirical wavelets, choose

γ < minn

(
ωn+1 −ωn

ωn+1 + ωn

)
(3)

The detail coefficients W ε
f (n, t) are given by the inner products with the empirical

wavelets function
ˆ
ψn(ω), and the approximation coefficients W ε

f (0, t) are given by the

inner product with the scaling function
ˆ
φ1(ω).

W ε
f (n, t) = 〈 f , ψn〉 =

∫
f (τ) ψn(τ − t)dτ

=
(

f̂ (ω)ψn(ω)
) (4)

W ε
f (0, t) = 〈 f , φ1〉 =

∫
f (τ) φ1(τ − t)dτ

=

(
ˆ
f (ω)φ1(ω)

) (5)

The reconstruction is obtained by

f (t) =W ε
f (0, t) ? φ1(t) +

N
∑

n=1
W ε

f (n, t) ? ψn(t)

=

(
Ŵ ε

f (0, ω)φ̂1(ω) +
N
∑

n=1
Ŵ ε

f (n, t)ψ̂n(t)
) (6)

There are multiple algorithms to automatically segment the Fourier spectrum, such
as local-maxima, local-maxima-minima and scale-space (including otsu, half-normal, em-
pirical law, means and k-means) [29,30]. The scale-space algorithms are parameterless,
but it takes long time for the computation when processing a long signal. And different
signals are often decomposed into different amounts of modes, which is inconvenient for
the comparison with each other. Considering these factors, we choose the simplest and
fastest algorithm–local-maxima, which can set the max number of segments.

Based on EWT, LPFEWT is proposed to extract features. First, design a low pass FIR
filter with an appropriate cut-off frequency for the signal. Next, employ EWT on the filtered
signal to decompose the signal into several empirical modes. Then, exclude the empirical
mode of the highest frequencies which is mostly affected by the filter. Last, calculate the
indices of the left modes as features. According to this approach, the feature required for
fault diagnosis can be obtained easily.

Compared to the tradition wavelet transform, LPFEWT is adaptive, which means it
decomposes the signal based on the information contained in the signal itself so that there
is no need to choose or design specific wavelet basis for the signal.

2.2. Support Vector Machine (SVM)

SVM is a very powerful and versatile ML model and particularly well suited for
classification of complex but small- or medium-sized datasets [31].

The simplest linear SVM for binary classification can be described as follows. For all
samples to be classified xi(i = 1, 2, . . . , m), the output is

yi = sign
(

wTxi + b
)

(7)

i.e., yi = −1 if wTxi + b < 0, yi = +1 if wTxi + b > 0. So the hyperplane wTx + b = 0
is decision boundary. To make the decision boundary best for separation, construct two
hyperplanes wTx + b = −1 and wTx + b = 1 which are parallel and at equal distance to
the decision boundary, i.e., yi = −1 if wTxi + b ≤ −1, yi = +1 if wTxi + b ≥ 1. Training
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SVM means finding the value of w and b that make the width of the margin 2/ ‖ w ‖ as
large as possible. That is a constrained optimization problem

max
w,b

2
‖ w ‖ s.t. yi

(
wTxi + b

)
≥ 1, i = 1, 2, . . . , n (8)

which can be converted to an equivalent problem

min
w,b

1
2
‖ w ‖2 s.t. yi

(
wTxi + b

)
≥ 1, i = 1, 2, . . . , n (9)

This is a convex quadratic optimization problem with linear constraints, which is
known as quadratic programming (QP) problems and can be solved by the method of
Lagrange multipliers. Introduce Lagrange multipliers λ = (λ1, λ2, · · · , λm), the objective
function of optimization can be expressed as

L(w, b, λ) = 1
2‖ w ‖2 +

n
∑

i=1
λi
[
1− yi

(
wTxi + b

)]
λi ≥ 0, i = 1, 2, · · · , n

(10)

The problem is to solve
min
w,b

max
λ
L(w, b, λ) (11)

The dual problem is
max

λ
min
w, b
L(w, b, λ) (12)

Calculate the gradients of both w and b, and set them equal to zero.

∇wL(w, b, λ) = w−
n

∑
i=1

λixiyi = 0 (13)

∂

∂b
L(w, b, λ) = −

n

∑
i=1

λiyi = 0 (14)

Substitute (13) and (14) into problem (12), obtain

max
λ

n
∑

i=1
λi − 1

2

n
∑

i=1

n
∑

j=1
λiλjyiyj(xi · xj)

s.t.
n
∑

i=1
λiyi = 0, λi ≥ 0, i = 1, 2, . . . , m

(15)

Consequently, the original minimization problem about w and b is converted to a QP
problem about solving λ.

To make the model more flexible, soft margin classification is proposed which allows
few instances between the margins or even on the wrong side. Soft margin SVM introduces
slack variable ξi(i = 1, 2, · · · , n), so the problem becomes

min
w,b,ξ

1
2‖ w ‖2 + C

n
∑

t=1
ξi

s.t. yi
(
wTxi + b

)
≥ 1− ξi, ξi > 0, i = 1, 2, . . . , m

(16)

where C is penalty term. The bigger the C, the more penalty SVM gets when it makes
misclassification, the less the tolerance, the smaller the margin.
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The QP problem equivalent to soft margin SVM classification is

max
λ

n
∑

i=1
λi − 1

2

n
∑

i=1

n
∑

j=1
λiλjyiyj(xi · xj)

s.t.
n
∑

i=1
λiyi = 0, 0 ≤ λi ≤ C, i = 1, 2, . . . , m

(17)

For problems that are not linearly separable, transformation φ is introduced to
map x from the original space to a higher dimensional space φ(x), which makes it eas-
ier to find a linear decision boundary in the new feature space. The kernel function
K
(
xi, xj

)
= φ(xi) · φ

(
xj
)

is proposed to focus on the results without computing the coordi-
nates of the data in the new space. The kernel trick makes the whole process much more
computationally efficient. Problem (17) can be rewritten as

max
λ

n
∑

i=1
λi − 1

2

n
∑

i=1

n
∑

j=1
λiλjyiyjK

(
xi, xj

)
s.t.

n
∑

i=1
λiyi = 0, 0 ≤ λi ≤ C, i = 1, 2, . . . , m

(18)

In this paper, we use radial basis function (RBF) kernel as below

K
(
xi, xj

)
= e−γ‖xi−xj‖2

, γ > 0 (19)

RBF kernel is one of the most used kernel functions, which can deal with both linear
and nonlinear classification problems. The result of linear classification using RBF kernel is
comparable to using linear kernel [32,33].

2.3. Grey Wolf Optimizer

Grey Wolf Optimizer (GWO) is a swarm intelligence (SI) algorithm proposed by
Mirjalili et al. [34] in 2014 that imitates the leadership hierarchy and hunting mechanism
of grey wolves in nature. In this paper, it is used to optimize the parameters in SVM. The
social hierarchy of gray wolves is shown in Figure 2. Grey wolves are divided into four
levels from α toω. The upper level wolves dominate the lower level ones, and the lower
level wolves follow the upper level ones.

Figure 2. The social hierarchy of grey wolves.

In the GWO algorithm, imitating the social hierarchy of grey wolves, the first best
candidate solution is regarded as α, the second best candidate solution is regarded as β,
the third best candidate solution is regarded as δ, the remaining candidate solutions are
regarded as ω. The hunting (optimization) is guided by α, β and δ, while ω follow them.
The encircling behavior is modeled as follows:

D =
∣∣C ·Xp(t)−X(t)

∣∣ (20)
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X(t + 1) = Xp(t)−A ·D (21)

where t represents the number of iterations, A and C are coefficient vectors, Xp is the
position vector of the prey (optimum), X is the position vector of a grey wolf, and D
represents the distance between the grey wolf and the prey.

The vectors A and C are defined as follows:

A = 2a · r1 − a (22)

C = 2 · r2 (23)

where components of a are linearly dropped from 2 to 0 over the course of iterations,
components of r1 and r2 are random numbers in [0, 1].

The random vectors r1 and r2 allow grey wolves to move any position within a certain
range of the prey. With the vector a decreases, grey wolves encircle and pursue the prey.
The location of the prey is replaced by the decisions of all three grey wolves α, β and δ. The
following equations are used for updating the position of each grey wolf.

Dα = |C1 ·Xα −X(t)|
Dβ =

∣∣C2 ·Xβ −X(t)
∣∣

Dδ = |C3 ·Xδ −X(t)|
(24)


X1 = Xα −A1 ·Dα

X2 = Xβ −A2 ·Dβ

X3 = Xδ −A3 ·Dδ

(25)

X(t + 1) =
X1 + X2 + X3

3
(26)

Since A is a random vector in the interval [−a, a], the next position of wolves will
approach the prey if |A| < 1, and move away from the prey if |A| > 1. This means that
grey wolves not only pursue and attack current prey but also leave to search for other prey.
In other words, the GWO algorithm has exploration feature to help avoid local optima.
The random vector C simulates the obstacles to approaching prey in nature.

GWO can make the process of hyperparameter tuning of SVM more effective than
normal way (grid search or randomized search). Also, GWO hyperparameter tuned
has better classification accuracy than the typical one-versus-one multi-class SVM [35].
Compared with particle swarm optimization (PSO), GWO has fewer parameters to be
determined, only the population and the max number of iterations, because it updates the
positions of search agents by the positions of the three best wolves, while PSO updates the
positions of search agents by the global best position and the personal best position, and
each search agent has velocity besides position.

3. Experimental Results
3.1. Experimental Test Rig and Data Collection

The laboratory’s wind turbine drivetrain fault test rig is shown in Figure 3, which
consists of a control panel cabinet and an experimental test bench to simulate doubly-fed
induction generator (DFIG) wind turbine shaft misalignment (between the gearbox and
the generator) and broken gear tooth faulty conditions. In Figure 3a, the speed of the
motor of the experimental test bench on the right side is decelerated by a planetary gear
reducer to simulate the wind blowing blade speed, then it is accelerated by a planetary gear
accelerator and a gearbox to drive the generator. The maximum speed of the driving motor
is 720 r/min, the speed of the generator is 500 r/min. The left gearbox can be adjusted
by the handle to select a normal gear or a broken gear. The generator can be adjusted by
the support to create offset or angular misalignment. The control panel cabinet shown in
Figure 3b can set and display the motor speed, showing the angle between the generator
and the gearbox and other electrical parameters.
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Figure 3. Wind turbine drivetrain fault experimental test rig: (a) experimental test bench; (b) control
panel cabine.

The vibration signals in normal, misalignment, broken tooth and combined fault
(misalignment and tooth broken) conditions were collected from the test rig. Set two
measuring point, at the vertical and horizontal direction of the gearbox high-speed output
shaft side, with a sampling frequency of 1 kHz and a sample time of 20 s. In the normal and
broken tooth conditions, 18 sets of data were collected at the motor speed from 200 r/min
to 720 r/min respectively. In misalignment condition, 26 sets of data were collected at the
motor speed from 200 r/min to 680 r/min. In combined fault condition, 10 sets of data were
collected at the motor speed from 200 r/min to 520 r/min. After preliminary frequency
domain analysis of the signals, only the vertical direction signal is used for diagnosis in this
paper. With non-overlapping 10,000 points of the signal, the samples in different conditions
are shown in Figure 4, from which it can be seen that the presence of broken tooth is easy
to distinguish, while the presence of misalignment is not.

3.2. LPFEWT and Comparison with Other Approaches

Employ LPFEWT to extract features from the signal. The cut-off frequency of the
low-pass filter is 50 Hz, about 6 times the rated rotating frequency of the generator. The
magnitude and phase responses of the designed 40th-order Hamming Window FIR low-
pass filter are shown in Figure 5. The filtered signal is decomposed by EWT and the
number of EWT Fourier spectrum segments is set to 6. The EWT decomposition results
of a combined fault signal are shown in Figure 6, obtained 6 empirical mode components
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from low frequency to high frequency. Discard the highest frequency component (the 6th
mode) and calculate features of the left 5 empirical modes.

Figure 4. Samples of vibration signals in different conditions: (a) normal; (b) misalignment; (c) broken tooth; (d) com-
bined fault.

Figure 5. The magnitude and phase responses of the designed FIR low-pass filter.
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Figure 6. The EWT decomposition results of a combined fault signal: (a) Fourier spectrum segmenta-
tion; (b) empirical mode components.

We choose energies of the components as features, that is, the sum of the squares of
the amplitude. There are 20 combined fault samples, 27 broken tooth samples, 26 mis-
alignment samples and 27 normal samples, 100 samples in total. Shuffle the dataset and
save. Take 14 combined fault samples, 18 broken tooth samples, 18 misalignment samples
and 18 normal as training set. The remaining 32 samples of the dataset is testing set. We
use LIBSVM Version 3.24 package for SVM classification under MATLAB 2018b. Train the
SVM classification model for fault diagnosis, using GWO algorithm search the optimum
values of penalty term C and RBF kernel parameter γ in the range of [0.01, 100]. The
average accuracy of 3-fold cross-validation of the training set is used as the fitness of the
agents. The grey wolf population is set as 100 and the iteration is set as 50. Empirical
modal decomposition (EMD) which is similar to EWT is chosen for comparison. Energies
of components obtained by different approaches are inputs of the SVM model. Figure 7
shows the confusion matrix obtained by inputting the components energies of different
methods into the SVM model. The horizontal direction represents the predicted class, and
the vertical direction represents the true class. The 4× 4 matrix is the number of samples
of each type, and the percentage includes the prediction accuracy rate, false alarm rate and
missing alarm rate of each type. Comparison of results are shown in Table 1. Different
approaches with ‘LPF’ prefix use the same FIR low-pass. All approaches use same amounts
of components of the signals.
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Figure 7. Confusion matrix charts of fault diagnosis results with features obtained by different approaches: (a) EWT;
(b) LPFEWT; (c) EMD high frequency components; (d) LPFEMD high frequency components; (e) EMD low frequency
components; (f) LPFEMD low frequency components.
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Table 1. Comparison of Fault Diagnosis Results with Different Feature Extraction Approaches.

Approach C γ
Training Set

Accuracy
Testing

Set Accuracy
False Alarm

Rate
Missing Alarm

Rate

EWT 98.135258 4.997962 80.8824% (55/68) 53.125% (17/32) 88.9% (8/9) 4.3% (1/23)
LPFEWT 66.953529 57.624745 94.1176% (64/68) 100% (32/32) 0% (0/9) 0% (0/23)
EMD high
frequency
components

17.297601 39.468164 76.4706% (52/68) 68.75% (22/32) 44.4% (4/9) 21.7% (5/23)

LPFEMD high
frequency
components

45.388002 96.255492 76.4706% (52/68) 62.5% (20/32) 100% (9/9) 0% (0/23)

EMD low
frequency
components

26.988942 37.129502 85.2941% (58/68) 75% (24/32) 11.1% (1/9) 0% (0/23)

LPFEMD low
frequency
components

48.145791 1.052425 69.1176% (47/68) 65.625% (21/32) 22.2% (2/9) 21.7% (5/23)

From Figure 7 and Table 1 we can see, the testing set accuracy of using EWT directly
is low, only 53.125%, and there is a lot of conditions confusions. Using LPFEWT to extract
time-frequency domain features, the testing set accuracy is highly improved, reaching
100%. In addition, using EWT directly has high false alarm rate, while LPFEWT solves
this problem. Among approaches based on EMD, EMD low frequency components has
the highest accuracy and the lowest false alarm rate and missing alarm rate, which is
75%, but there are confusions between combined fault and broken tooth or misalignment
and normal condition. LPFEMD low frequency components can only identify combined
fault and broken tooth correctly. Both with or without the low-pass filter, EMD low
frequency components has lower false alarm rate than the high frequency components.
Both using high and low frequency components, the accuracy of LPFEMD is lower than
that of EMD, and the false alarm rate is higher. The use of low-pass filter in diagnosis with
approaches based on EMD will decrease the accuracy instead of increase that, and increase
the false alarm rate. Among the six approaches of feature extraction, LPFEWT has the
best performance.

We also tried SVM with linear kernel, the accuracy of training set and testing set are
82.4% and 87.5% respectively. So the classification of the dataset is a nonlinear problem,
using RBF kernel is proper.

3.3. LPFEWT with Different Number of Fourier Spectrum Segments

To explore the effect of the number of LPFEWT Fourier spectrum segments on fault
diagnosis results, the diagnosis was carried out with different number of Fourier spectrum
segments, using energies of empirical modes as features, the results are shown in Table 2.

Table 2. Diagnosis Results of Employing LPFEWT with Different Number of Fourier Spectrum Segments.

Number of Segments C γ Training Set Accuracy Testing Set Accuracy

3 54.450584 44.708328 88.2353% (60/68) 100% (32/32)
4 43.410799 96.515668 92.6471% (63/68) 100% (32/32)
5 49.290038 78.087215 94.1176% (64/68) 100% (32/32)
6 66.953529 57.624745 94.1176% (64/68) 100% (32/32)
7 60.868225 95.642439 94.1176% (64/68) 100% (32/32)
8 98.149020 74.985752 94.1176% (64/68) 100% (32/32)
9 80.564115 91.484842 95.5882% (65/68) 96.875% (31/32)

From Table 2, it can be seen that when the number of LPFEWT Fourier spectrum
segments is small, although the testing set has good accuracy, the training set accuracy is
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slightly lower. When the number of LPFEWT Fourier spectrum segments is 5, 6, 7, 8, the
diagnosis performance does not change. When the number of LPFEWT Fourier spectrum
segments is 9, the accuracy of training set is improved a little, but the accuracy of testing
set is reduced. Therefore, the number of LPFEWT Fourier spectrum segments should not
be too small or too large, and there is a range of proper number of segments. It is suggested
that the number of LPFEWT Fourier spectrum segments is set to 6 first, if the diagnosis
results is not good enough, increase the number of segments one by one.

3.4. Effectiveness of the Proposed SVM Based Method

In the proposed method, we choose SVM for classification because it has superiority
when dealing with small datasets. Since the samples of wind turbines in faults are relatively
few. So deep learning which needs a large dataset is not suitable. Considering the speed of
prediction after training, k-nearest neighbors (k-NN) algorithm which computes the dis-
tances between the instance and all the training instances to make decisions is abandoned.
We compared SVM with naive Bayes, decision trees, random forests and artificial neural
networks (ANN), the results are shown in Table 3.

Table 3. Comparison Results of Different ML Classification Models.

Model Training Set Accuracy Testing Set Accuracy False Alarm Rate Missing Alarm Rate

SVM 94.1176% (64/68) 100% (32/32) 0% (0/9) 0% (0/23)
Naive Bayes 95.5882% (65/68) 96.875% (31/32) 0% (0/9) 0% (0/23)
Decision trees 89.7059% (61/68) 100% (32/32) 0% (0/9) 0% (0/23)
Random forests 97.0588% (66/68) 96.875% (31/32) 0% (0/9) 0% (0/23)
ANN 92.6471% (63/68) 96.875% (31/32) 0% (0/9) 0% (0/23)

From Table 3, we can see, for this classification problem, SVM has the best training
performance and the accuracy of the training set is 94.1176%. The decision trees model has
the lowest accuracy on training set with the highest accuracy as SVM model on testing set.
All the models have good generalization ability. This show the feature selected is powerful.
SVM has the best testing set accuracy and medium training set accuracy. Obviously,
SVM is the best choice for this particular wind turbine fault diagnosis problem, which
has good generalization ability even on a small dataset and easy to use (only has two
hyperparameters need to tune).

4. Conclusions

This paper studies a ML-based fault diagnosis method for combined fault of wind
turbines. LPFEWT is proposed to extract time-frequency domain features from vibration
signals. And a GWO hyperparameter tuned SVM is employed for fault diagnosis. The
method is verified on a DFIG wind turbine drivetrain fault test rig in the laboratory.
The experimental results show that LPFEWT can greatly improve the accuracy of fault
diagnosis and it is superior to other feature extraction approaches. The effect of the
number of LPFEWT Fourier spectrum segments on fault diagnosis results is explored and
a reasonable strategy to choose the number of segments is given. SVM is proved to be
superior in this classification problem.

Compared with the existing analysis methods for combined fault, this ML-based
method is efficient. After training the ML model at low computation costs, it can quickly
handle the data of wind turbines working at different speeds and easily identify the faults
without human knowledge. The method can also be applied to fault diagnosis of other
rotating machinery.
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