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A deep-learning framework for multi-level
peptide–protein interaction prediction
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Peptide-protein interactions are involved in various fundamental cellular functions and their

identification is crucial for designing efficacious peptide therapeutics. Recently, a number

of computational methods have been developed to predict peptide-protein interactions.

However, most of the existing prediction approaches heavily depend on high-resolution

structure data. Here, we present a deep learning framework for multi-level peptide-protein

interaction prediction, called CAMP, including binary peptide-protein interaction prediction

and corresponding peptide binding residue identification. Comprehensive evaluation

demonstrated that CAMP can successfully capture the binary interactions between peptides

and proteins and identify the binding residues along the peptides involved in the interactions.

In addition, CAMP outperformed other state-of-the-art methods on binary peptide-protein

interaction prediction. CAMP can serve as a useful tool in peptide-protein interaction pre-

diction and identification of important binding residues in the peptides, which can thus

facilitate the peptide drug discovery process.
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Peptides play crucial roles in human physiology by inter-
acting with a variety of proteins and participating in many
cellular processes, such as programmed cell death, gene

expression regulation, and signal transduction1,2. Owing to their
safety, favorable tolerability profiles in human bodies, and good
balance between flexibility and conformational rigidity, peptides
have become good starting points for the design of novel ther-
apeutics, and identifying accurate peptide–protein interactions
(PepPIs) is crucial for the invention of such therapeutics. Despite
this fact, it is generally time-consuming and costly to determine
pepPIs experimentally1,3. To mitigate this issue, a number of
computational methods have been developed to facilitate peptide
drug discovery.

Sequence-based methods and structure-based methods are two
mainstream approaches for protein–ligand interaction prediction.
Sequence-based methods mainly exploit primary sequence infor-
mation to model the interactions. For example, CGKronRLS4 and
NRLMF5 calculate sequence similarities and then use machine-
learning models to predict interactions between proteins and their
ligands. These methods often require known protein–ligand
interactions as supervised labels and pairwise similarity scores of
proteins (or ligands) as input features, which is often impractical
for large-scale data owing to the huge computational complexity
of similarity calculation. In addition, these approaches are not able
to identify crucial binding residues, which hits a roadblock in
deciphering the underlying mechanisms of PepPIs. Structure-
based methods such as molecular docking inherently tackle the
problem by modeling structural poses at atom level and predicting
binding affinities. There are many well-established docking stra-
tegies for determining PepPIs, which can be roughly divided into
local (e.g., DynaRock6 and Rosseta FlexPepDock7) and global
docking methods (e.g., PIPER-FlexPepDock8 and HPEPDOCK9)
according to the extent of input structural information. Most of
these docking approaches require three-dimensional (3D) struc-
ture information to calculate binding free energies. Unfortunately,
solving such 3D structures is generally time-consuming and
expensive1, letting alone consuming a large number of computa-
tional resources due to the high computational complexity of the
energy functions.

More recently, the booming deep-learning technologies have
provided feasible solutions to model protein–ligand or
protein–protein interactions (PPI) with better accuracy while
requiring less computational resources. For instance, Cunning-
ham et al.10 developed a hierarchical statistical mechanical
modeling (HSM) approach to predict the interactions between
peptides and protein binding domains (PBDs). Wan et al.11

developed DeepCPI, a powerful computational framework that
combines representation learning with a multimodal neural
network to predict compound–protein interactions (CPIs), and
Chen et al.12 presented a siamese residual recurrent convolu-
tional neural network to predict PPIs.

Although the peptide drugs have increasingly attracted
immense attention and the number of approved peptide ther-
apeutics has been on the incline over the recent decades, only a
few works have been proposed to exploit machine-learning or
deep-learning methods to model pepPIs. Furthermore, for deci-
phering the underlying mechanisms of pepPIs, the existing
approaches mainly focus on identifying peptide-binding residues
on the protein surface, such as the sequence-based method
PepBind13 and the structure-based method InterPep14. PepBind13

is a sequence-based method for peptide-binding residue predic-
tion, which assumes that a protein would have fixed binding
residues even interacting with different peptides. However, in
many cellular processes, different peptides with diverse biological
functions may present distinct binding poses to a single protein,
which thus may involve different protein residues in the

interaction. Therefore, PepBind intrinsically fails to model the
situations that multiple peptides interacted with different regions
of a protein surface13. InterPep combines a random forest model
with hierarchical clustering to predict the regions of a protein
structure where the input peptide is most likely to bind14, which
requires a target protein structure and a peptide sequence, and
thus its application may be limited to only those proteins with
available 3D structural data.

Moreover, most of the existing computational methods in
modeling pepPIs fail to answer an important question, which is
frequently raised by pharmacologists–how to determine the
contribution of each individual peptide residue to the binding
activity? Therefore, there is a manifest need for addressing the
following challenges: (1) identifying the pepPIs accurately and
efficiently, taking account of information from both peptides and
proteins; (2) possessing the great generalization ability to large
datasets; and (3) detecting crucial binding residues of peptides
that can provide useful hints for a downstream amino-acid sub-
stitution or backbone modification.

Inspired by the above observations, we propose CAMP, a
deep-learning framework for simultaneously predicting pepPIs
and identifying the binding residues along with the peptide
sequences. We first construct comprehensive feature profiles of
peptides and proteins based on their primary sequences,
including secondary structures, hydrophobic, hydrophilic, and
polar properties, intrinsic disorder tendencies, and the evolu-
tionary information derived by sequence alignment15–20. Next,
we design a multi-channel feature extractor to learn the latent
information from these physicochemical and biochemical pro-
files. CAMP further exploits convolution neural networks
(CNNs) and self-attention mechanisms to fully extract both
local and global information to predict the binary interactions of
the input peptide–protein pair and identify the binding residues
along the input peptide sequence. The rich and multi-level
supervision information enables CAMP to accurately predict
pepPIs only based on sequence-based input information.
Through comprehensive evaluation on several benchmark
datasets and an independent test data set from the RCSB Protein
Data Bank (PDB)21,22 and DrugBank23–27, we demonstrated
that CAMP significantly outperformed other state-of-the-art
methods on pepPI prediction and was able to accurately identify
peptide-binding residues. We also examined the capability of
CAMP in addressing three related tasks–peptide–PBD (protein
binding domain) interaction prediction, peptide–protein affinity
assessment, and peptide virtual screening, and further showed
that CAMP achieved better performance than baseline methods
in addressing these tasks. Overall, CAMP can provide a useful
tool for predicting and deciphering pepPIs using only sequence-
based information as input.

Results
Overview of CAMP. CAMP first applied the following five steps
of multi-source data curation and multi-level label construction
(Fig. 1a, more details can be found in Methods and Supple-
mentary Note 10): (1) extracting peptide–protein complex
structures from the RCSB PDB21,22 and the known drug-target
pairs from DrugBank23–27; (2) using the protein–ligand interac-
tion predictor (PLIP)28 to recognize non-covalent interactions
between the peptide and the protein in each PDB complex, and
only keeping the peptide–protein pairs with non-covalent inter-
actions as positive samples; (3) deriving binding residue labels of
the peptide from PepBDB29, a structure database of
peptide–protein complexes derived from the RCSB PDB21,22; (4)
generating residue-level structural and physicochemical proper-
ties, intrinsic disorder tendencies of peptides and proteins and
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protein evolutionary information based on the primary sequences
of peptides and proteins; and (5) integrating multi-level labels,
i.e., the binary interaction labels and peptide-binding residue
labels of peptide–protein pairs, for the training process.

Figure 1b shows the overall network architecture of CAMP.
Given the feature profiles of the input peptide–protein pair,
CAMP exploits two multi-channel feature extractors to process
them separately. Each extractor contains a numerical channel and
three categorical channels. The numerical channel is used to
extract the pre-defined dense features (i.e., the protein Position-
specific scoring matrice (PSSM) and the intrinsic disorder
tendency of each residue in both protein and peptide sequences).
Each categorical channel contains a self-learning word embed-
ding layer30, which takes one of the categorical features of the
input peptide or protein (i.e., the raw amino acids, secondary
structures, polarity, and hydropathy properties). Here, we design
such a multi-channel architecture because the input profiles
contain multifaceted features of different scales, which may bring
inconsistency if we only use a simple encoder. Next, CAMP
exploits two convolutions neural network (CNN) modules that
extract the hidden contextual features of peptides and proteins,
respectively. In addition, CAMP adopts self-attention mechan-
isms to learn the long-dependencies between residues and the
contributions of individual residues of proteins and peptides to
the final interaction prediction. After that, CAMP combines all
the extracted features and uses three fully connected layers to
predict whether there exists an interaction between a given

peptide–protein pair. Furthermore, CAMP takes the output of the
peptide CNN module with a sigmoid activation function for each
position to predict whether each peptide residue binds to the
partner protein. In our problem, the binary interaction prediction
is our fundamental task and we aim to solve this problem by
providing multi-level supervised information. Here, the extra
binding residue labels can not only provide additional informa-
tion to boost the performance of our main task, but also bring
new insights about the pepPI by identifying the critical residues
along with the peptide.

CAMP outperforms baseline methods in binary interaction
prediction. The binary classification of pepPIs is the primary
goal of CAMP. Here, we compared the classification perfor-
mance of CAMP with that of other state-of-the-art baseline
methods, including a similarity-based matrix factorization
method called NRLMF5, a deep-learning-based model for PPI
prediction called PIPR12, and a deep-learning-based model
for CPI prediction called DeepDTA31. All the prediction
methods were evaluated on a benchmark data set through cross-
validation. The area under the receiver operating characteristics
curve (AUC) and the area under the precision-recall curve
(AUPR) were used to evaluate the performance of all models. In
general, AUPR can provide a better metric to evaluate the
prediction models on skewed data in a more informative way
than AUC32. To help readers estimate the difficulty of our task,

Fig. 1 The workflow and architecture of CAMP. a Workflow of data curation and label extraction. We first extracted all PDB complexes containing
peptides as ligands from the RCSB PDB21,22 and all peptide drugs with corresponding targets from DrugBank23–26. Then for the peptide–protein pairs from
the PDB, we used PLIP28 to identify the interacting pairs by detecting whether there existed non-covalent interactions between them. Next, we generated
sequence-based feature profiles for peptides and proteins, including residue-level structural and physicochemical properties, intrinsic disorder tendencies
of peptides and proteins, and protein evolutionary information. We also downloaded the corresponding labels of peptide-binding residues from PepBDB29.
Such residue-level labels and pairwise binary interactions were regarded as the multi-level supervised information for CAMP. b Network architecture of
CAMP. Given the peptide feature profiles and the protein profiles of an input pair, the numerical features, i.e., the evolutionary protein PSSM and the
intrinsic disorder tendency of each residue in the peptide or protein sequence are processed by the numerical channels of the feature extractors. The
categorical features, i.e., the raw amino acids, secondary structures, polarity, and hydropathy properties of the peptide or protein are processed by three
categorical channels. Next, the outputs of these channels are concatenated together and then fed into CNN modules, and the outputs of the amino-acid
representations of the peptide and the protein are also fed into self-attention modules to learn the importance of individual residues (i.e., the contributions
of individual residues to the final prediction). After that, the outputs of self-attention modules and CNN modules are concatenated together to predict a
binding score for each peptide–protein pair through three fully connected layers and a binding score for each residue from the peptide sequence using the
output of the CNN module of the peptide.
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we also reported the performance of several machine-learning
baseline methods in Supplementary Note 1.

Since the human-curated data may contain “redundant”
interaction pairs (e.g., one protein interacting with more than
one similar peptide or vice versa), which could be easily predicted
by the models. To avoid the trivial predictions caused by such
cases, we followed the same strategy as in MONN33, and mainly
used the cluster-based cross-validation settings for performance
evaluation. In particular, based on similarity scores derived
from Smith-Waterman alignment (https://github.com/mengyao/
Complete-Striped-Smith-Waterman-Library), we divided pro-
teins and peptides into different clusters such that the entities
from the same cluster did not appear in the training and
testing sets at the same time (more details can be found in
Supplementary Note 8). We evaluated the performance of CAMP
and the baseline methods under three cluster-based cross-
validation settings. More specifically, in the “novel protein
setting”, no proteins from the same cluster appeared in both
training and testing sets; in the “novel peptide setting”, no
peptides from the same cluster appeared in both training and
testing sets; and in the “novel pair setting”, neither proteins nor
peptides from the same cluster appeared in training and testing
sets at the same time. Figure 2 shows that CAMP consistently
outperformed the state-of-the-art baseline methods, with an
increase by up to 10% and 15% in terms of AUC and AUPR,
respectively. In addition, we observed a slight decreasing trend of
prediction performance for all methods with larger clustering
thresholds, which generally corresponded to more difficult tasks.
We also noticed that the model performance under the “novel
peptide setting” seemed to be better than that in the other
settings. This can be explained by the fact that the peptides in our
benchmark set shared less similarity with each other than
proteins, and thus the distributions of peptides in the training and
testing sets did not change much after clustering based on
similarities. Such test results suggested that CAMP can achieve
better and more robust performance than the baseline methods
under all cross-validation settings.

Figure 2 also shows that CAMP generated relatively variant
prediction results under certain cluster settings. To further
investigate the potential factors that cause this phenomenon, we

conducted additional analyses using a fivefold cross-validation
procedure on the binary prediction task (in Supplementary Note 1).
Our analysis result (Supplementary Fig. 1) indicated that the
relatively large prediction errors under two clustering settings may
result from certain protein families, domains, and organisms (e.g.,
histone and GPCR for the protein families, trypsin and kringle for
the domains, and bovine for the protein organisms).

Furthermore, we conducted comprehensive ablation studies to
demonstrate the importance of individual components of CAMP,
including different groups of features and the self-attention
modules in the network architecture (Supplementary Note 2).
Our ablation studies (Supplementary Table 2 and Supplementary
Fig. 2) demonstrated that the current model architecture and
feature selection scheme were optimal for our prediction task.

New insights by characterizing binding residues on peptides.
So far, a number of computational methods have been devel-
oped for predicting the interacting sites on the protein surface in
PepPI predictions14,34,35. These methods learn from 3D struc-
ture information of peptide–protein complexes and can pin-
point interacting sites on protein surfaces with relatively good
accuracy. However, few models are specifically designed to
characterize interacting sites on the peptides in PepPIs, which
are also crucial for understanding the biological roles of peptides
and designing efficacious peptide drugs. For pharmacologists,
the choice of chemical modification heavily relies on the iden-
tification of essential peptide residues involved in binding
activities1. Conventionally, pharmacologists would iteratively
replace possible residues and conducted wet experiments for
verification. Although these attempts could provide useful
information for further drug design, e.g., changing particular
non-binding residues or modifying groups on their side chains
to improve stability and reduce toxicity1,2, these experimental
approaches are generally expensive and time-consuming.

In CAMP, we designed a supervised prediction module to
identify binding residues from a peptide sequence. We first
constructed a set of qualified labels for peptide-binding residues
using the interacting information derived from PepBDB29, which
is a comprehensive structure database containing the known
interacting peptide–protein complexes from the RCSB PDB21,22

Fig. 2 AUC and AUPR of CAMP and baseline models through cross-validation under three settings. a, b show the AUC and AUPR of CAMP and other
baseline methods under the “novel protein setting”, respectively. c, d show the AUC and AUPR of CAMP and other baseline methods under the “novel
peptide setting”, respectively. e, f show the AUC and AUPR of CAMP and other baseline methods under the “novel pair setting”, respectively. The error
bars under “novel protein setting” and “novel peptide setting” represent the mean ± standard deviation over five folds (n= 5). The error bars under “novel
pair setting” represent the mean ± standard deviation over nine folds (n= 9). “NA” stands for random cross-validation, i.e., randomly splitting the data set
and used 80% of the data set to train the model and the remaining 20% to evaluate the performance.
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and information about binding residues in peptides involved in
hydrogen bonds and hydrophobic contacts. With the support
from such supervised information, CAMP achieved an average
AUC of 0.806 and Matthews Correlation Coefficient (MCC)
(definitions can be found in Supplementary Note 9) of 0.514 on
peptide-binding residue identification using a fivefold cross-
validation procedure under the “random-split setting” (Fig. 3a, b).
The cross-validation results under other settings can be found in
Supplementary Note 3.

To further demonstrate the performance of CAMP in binding
residue prediction, we also selected four representative cases
(ranked ~1%, 35%, 50%, and 85% in terms of the average AUC
scores of predicted peptide-binding residues, respectively) and
compared the predicted residues with the true interacting ones.
Figure 3c shows the first example, a complex of an HIV-1-specific
cell entry inhibitor and HIV-1 GP41 trimeric core (PDB ID:
1FAV [https://doi.org/10.2210/pdb1FAV/pdb]). The peptide
inhibitor has 33 amino acids and 12 of them are binding
residues. CAMP identified all these binding residues without any
false positives. Such a prediction was the most ideal case in our
prediction task and we found that 30.2% of the binding residue
identification was completely accurate like this case. Figure 3d
shows the second example, a complex of HIV-1 gp120 envelope
glycoprotein and the CD4 receptor (PDB ID: 4JZW [https://
doi.org/10.2210/pdb4JZW/pdb]), which ranked around the top
35% in terms of the average AUC. The peptide has 28 amino
acids and 13 of them are binding residues. Our predicted binding
residues covered 11 true binding residues along the peptide
sequence and missed two true binding residues. Figure 3e shows
the third example, a complex of a peptide from histone
deacetylase and the ankyrin repeat family A protein (PDB ID:
3V31 [https://doi.org/10.2210/pdb3V31/pdb]). This pair ranked
around the median among our predictions in terms of AUC and
11/13 of the true binding residues were successfully identified by
CAMP with one false positive. Figure 3f shows the last example, a
complex of the T-lymphoma invasion and metastasis inducing
protein and an eight-residue phosphorylated syndecan-1 peptide
(PDB ID: 4GVC [https://doi.org/10.2210/pdb4GVC/pdb]), which
ranked ~85% among our predictions with an average AUC of
0.571. All eight residues including one false positive were

predicted as binding residues by CAMP. Overall, our test results
demonstrated that CAMP yields accurate binding residue
predictions and thus can provide reliable evidence for further
understanding the interacting mechanisms of peptides with their
partner proteins.

Identifying GLP-1 receptor as a target of Semaglutide and its
analogs. Glucagon-like peptide receptor (GLP-1R) agonists play
an important role in the treatment of type 2 diabetes mellitus36,37.
We next investigated whether CAMP was able to correctly
identify the interactions of Semaglutide, a known GLP-1R agonist
(GLP-1RA), and its analogs with GLP-1R. In our benchmark data
set, there are seven Semaglutide-analogous peptides that bind to
GLP-1R. To avoid “easy prediction”, we removed those GLP-1RA
peptide drugs from the training set that shared similar sequences
(defined as peptide sequence similarities >40%) with Semaglutide
(e.g., Liraglutide and Taspoglutide), and had interacting proteins
similar to GLP-1R (i.e., with protein sequence similarities >40%).
After removing these records as well as seven pairs of
Semaglutide-analogous peptides and GLP-1R, we re-trained the
CAMP model and combined the seven Semaglutide-analogous
peptides with the remaining 3400 proteins to construct an
independent test set which contained 23,800 candidate pairs.
The test showed that CAMP was able to identify six of seven
interacting pairs of Semaglutide-analogs peptides and GLP-1R
with an AUC score of 0.831. For all the Semaglutide-analogs
peptides, GLP-1R was ranked to the top 10% almost among all
the candidate proteins (more details can also be found in Sup-
plementary Table 3 and Supplementary Fig. 7). Such results
further demonstrated the strong predictive power of CAMP.

We also examined the predicted binding residues of Semaglu-
tide with its receptor (detailed results can be found in
Supplementary Fig. 8 and Supplementary Note 4). CAMP
correctly identified 11/12 of the true binding residues of
Semaglutide with an average AUC of 0.917. Such a prediction
result can provide useful insights for pharmacologists if they aim
to improve the stability of the peptide drugs by replacing the non-
binding residues with synthetic amino acids without changing the
interacting interface of the binding complexes.

Fig. 3 Performance evaluation of CAMP on peptide-binding residue identification on the benchmark data set through fivefold cross-validation. a, b
show the distributions of AUC and MCC for peptide-binding residue prediction, respectively. The mean values of average AUC and MCC are plotted in
dotted lines. c–f show four examples of peptide-binding residue identifications by CAMP that ranked ~1%, 35%, 50%, and 85% in terms of average AUC,
respectively. The PDB complexes were retrieved from the RCSB PDB21,22,59 and the images were generated by PyMOL60. The protein chains in the
complexes are colored in light blue while the peptide chains are colored in light purple and pink. For each peptide, the true binding residues are colored in
pink while the predicted binding residues generated by CAMP are colored in wheat.
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Generalizability of CAMP on additional benchmark datasets.
We conducted additional tests to further illustrate the general-
izability of CAMP on binary interaction prediction and peptide-
binding residue identification. In particular, we first evaluated
CAMP on an additional independent data set derived from the
PDB22,38 following the same strategy as in constructing our
previous benchmark data set. This additional test set contained
379 PepPIs from 262 peptides and 246 proteins from the PDB
complexes released from 1 October 2019 to 10 March 2020. The
corresponding PDB IDs and UniProt IDs can be found in Sup-
plementary Tables 13 and 16 in Supplementary data. We also
randomly paired these peptides and proteins without known
evidence of interactions in the test set to obtain negative samples.

To demonstrate the robust performance of CAMP on binary
interaction prediction, we evaluated the performances of CAMP
and the baseline models on several variations of the above test
data set with different positive-negative ratios. Each model was
first trained on the complete benchmark data set and then an
ensemble version (i.e., average predictions from five models) was
used to make predictions on the additional test datasets. Figure 4a
and b show that CAMP achieved the best results under all
scenarios, demonstrating that CAMP outperformed the baseline
methods with a relatively robust performance. We also observed
that the AUC of all methods increased slightly as the positive-
negative ratio decreased from 1:1 to 1:10. This was probably
because the increased sample size brought more information for
models to learn. Also, the AUPR of all methods decreased more
dramatically than AUC as the positive vs. negative ratio
increased. This was mainly because AUPR is generally more
affected by the ratio of positive vs negative samples32.

We also evaluated the prediction results of CAMP on the
identification of peptide-binding residues. We obtained the
annotated binding residues of peptide sequences from PepBDB29.
In total, 208 PepPIs have such peptide-binding residue labels

from the test data set. Figure 4c and d show that CAMP was able
to maintain its prediction power on the above additional data set.

We additionally compared CAMP with other methods on
several representative benchmark data sets (Supplementary
Table 4) that were originally used to evaluate the performance
of peptide docking and detecting “hotspots” at protein
interface34,39–42. As shown in Supplementary Fig. 9, CAMP still
outperformed the baseline methods on all these additional
datasets in terms of both AUC and AUPR scores. These
additional evaluation results further demonstrated the superior
predictive power and generalizing ability of CAMP.

Extended applications of CAMP in three related tasks. We
further investigated the application potential of CAMP in three
related tasks, i.e., predicting peptide–PBD (protein binding
domain) interaction prediction, binding affinity assessment, and
virtual screening of peptides. For predicting peptide–PBD inter-
actions, although we rarely found deep-learning-based methods
for predicting PepPIs, there was a machine-learning approach,
called HSM10, focusing on a quite related problem, i.e., predicting
the interactions between peptides and globular PBDs. The PBD-
containing proteins play essential roles in a variety of cell activ-
ities, e.g., multiprotein scaffold formation and enzyme activity
regulation38,43,44. By incorporating biophysical knowledge as
prior information into a machine-learning framework, HSM was
reported to yield superior prediction performance on eight
common PBD families with AUC scores ranging from 0.88 to
0.92. We compared CAMP with two reported models of HSM,
i.e., HSM-ID (in which eight separate models were trained for
each PBD/enzyme family) and HSM-D (in which a single unified
model was trained for all families), on predicting peptide–PBD
interactions. Here, we compared the performance of CAMP with
that of HSM models on predicting peptide–PBD interactions. In
particular, we evaluated the performance of CAMP with the same
data set and eightfold cross-validation setting as used in the HSM
paper (see Supplementary Note 6 for more details).

Figure 5 shows that CAMP significantly outperformed both
HSM-ID and HSM-D across all domain families except the PDZ
family. We also noticed that HSM-ID and HSM-D had large
prediction variations across different families. As explained in the
HSM paper, this may be due to the skewed distribution of the data
(i.e., the numbers of pairs from different families were imbalanced).
For families of large data amounts like PDZ, the HSM models could
learn quite well but for those families of relatively small data
sizes like domains from the phosphotyrosine binding family,
HSM models had an obvious drop in performance. In contrast, the

Fig. 4 CAMP yielded robust performance and outperformed the baseline
models on an independent test set. a, b show the evaluation results with
different positive-negative ratios of the test data set in terms of AUC and
AUPR, respectively. c, d show the distributions of AUC and MCC for
peptide-binding residue prediction, respectively. The mean values of
average AUC and MCC are plotted with dotted lines.
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Fig. 5 Model performance of CAMP, HSM-ID, and HSM-D across eight
families. CAMP achieved a relatively stable performance overall families,
whereas the performances of HSM models were easily influenced by the
sample size (marked in gray number) of the training set. CAMP
outperformed the HSM models, with an increase of AUC by 3–7%. All the
evaluation metrics of the HSM models were obtained from the origin
paper10.
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performance of CAMP was more robust and less influenced by the
fluctuant data sizes. Such results indicated that CAMP is also
suitable for tackling the related peptide–PBD interaction prediction
problem.

Next, we investigated whether CAMP can also be applied to
assess the binding affinity of peptide–protein pairs. Here, we made a
comparison between CAMP and several baseline methods, including
random forest (a conventional machine-learning based framework),
DeepDTA (a deep-learning-based framework)31, and AutoDock
CrankPep (a structure-based docking method)45, on an affinity data
set derived from PDBbind v201946 (more details about data
processing can be found in Supplementary Note 6). As shown in
Supplementary Table 5, CAMP achieved higher performance than
all the baseline methods with higher Pearson correlation coefficients
and smaller prediction errors in terms of RMSE. Considering that
CAMP was not particular designed for affinity prediction and the
limited size of training data, such a comparison result was
satisfactory and further illustrated the great potential of CAMP in
predicting binding affinities between peptides and proteins. We also
investigated whether CAMP can be applied for virtual “alanine
scanning”, as the experimental “alanine scanning” strategy is
considered as a “standard” in affinity assessment. Since there was
no public data that can comprehensively cover the experimental
“alanine scanning” affinities for all protein–peptide complex
structures available from the RCSB PDB21,22, here we only chose
two peptide–protein complexes (PDB IDs: 4TMP [https://doi.org/
10.2210/pdb4TMP/pdb], 4N4H [https://doi.org/10.2210/pdb4N4H/
pdb]) as case studies instead of performing a systematic evaluation
(more details can be found in Supplementary Note 6). As shown in
Supplementary Fig. 10, the Pearson correlation coefficients between
the logarithms of experimental affinities and the prediction scores
were 0.6284 and 0.5646, for the PDB complexes 4TMP and 4N4H,
respectively, which indicated that CAMP can capture the variation
tendency of binding affinities in the “alanine scanning” experiments
to a certain degree. In a real application scenario, CAMP can be used
to rank the virtual “alanine scanning” results to determine which
residues are more important for the binding activities.

Furthermore, we evaluated the capability of CAMP and various
docking methods, including CABS-Dock47, MDockPeP48, Auto-
Dock CrankPep v1.045, and GalaxyPepDock49, for virtual
screening of peptides (Supplementary Note 6). We observed that
CAMP achieved better performance than those structure-based
docking methods (Supplementary Table 6). It was not surprising
to observe such comparison results because these structure-based
docking methods were originally designed for binding pose
prediction rather than virtual screening. Considering the above
fact, we believe that CAMP can provide a more suitable and
powerful tool than those structure-based docking methods on the
virtual screening of peptides.

Discussion
In this work, we proposed CAMP, a deep-learning framework for
multi-level peptide–protein interaction prediction, including
binary interaction prediction and peptide-binding residue pre-
diction. We first generated a series of sequence-based features to
construct feature profiles for peptides and proteins. Compared
with traditional peptide or protein feature representations such as
k-mer, our comprehensive feature profiles combined informative
structurally annotated features, evolutionary information, and
intrinsic disorder tendency scores to enhance the peptide–protein
interaction prediction. We then used multi-channel feature
extractors to separately process numerical and categorical features
to avoid the inconsistency of multi-source features. Compre-
hensive cross-validation evaluation demonstrated the superior
performance of CAMP over the state-of-the-art baseline methods

on binary interaction prediction. Furthermore, we sought to
decipher the underlying mechanisms of peptide–protein inter-
actions by identifying the peptide-binding residues. We showed
that CAMP can accurately detect the binding residues from the
peptide sequence. We also presented four representative cases to
visualize the results of the peptide-binding residue identification
task and examined the predicted targets for Semaglutide and its
analogs. We also verified the application potential of CAMP in
peptide–PBD interaction prediction, binding affinity assessment
of peptide–protein pairs, and virtual screening of peptides. All
these results indicated that CAMP can provide accurate
peptide–protein interaction predictions as well as useful insights
into understanding the peptide-binding mechanisms.

Comparing with structure-based docking methods, CAMP
offers various advantages. For example, CAMP can simulta-
neously fulfill the tasks of predicting binary interactions and
identifying the peptide-binding residues involved in the interac-
tions, whereas previous structure-based methods only focus on
predicting the binding poses or identifying the binding regions at
the protein surface. In addition, for a single peptide–protein pair,
CAMP makes the prediction in seconds while the structure-based
docking methods usually take hours. Furthermore, CAMP only
requires sequence information as input, and thus does not rely on
the limited structure data. More specifically, there are 564,638
proteins with manually annotated sequence information in the
Swiss-Prot database50, but only 8.49% of them have the solved
structures. Under such a circumstance, CAMP is able to make
predictions for much more target proteins than the current
structure-based methods and thus will have a much wider range
of applications.

Nevertheless, there still exist certain limitations in the current
version of CAMP. For example, it cannot directly predict the
binding residues from the protein sequence in a given
peptide–protein pair. In fact, we had explored whether CAMP
can predict the binding residues of proteins. Under the “random-
split setting” of fivefold cross-validation, when adding a module
of predicting protein-binding residues, CAMP identified fewer
than 20% of real binding residues and the average AUC of the
binary interaction prediction task slightly decreased to 0.843. The
relatively unsatisfied result on the protein-binding residue pre-
diction in our framework was probably due to the following
challenges. First, the protein sequences are generally much longer
than the peptides, ranging from 52 to 4911 residues, posing dif-
ficulty in pinning down the exact interacting residues. Second,
certain uncertainty may arise when extracting the positive labels
of protein-binding residues from co-crystal complex structures
using PLIP. In the future, we are planning to incorporate more
data such as binding domain information to further improve the
results on predicting binding residues in the proteins.

Methods
Data sets. We constructed a benchmark data set from two sources, i.e.,
protein–peptide complex structures from the RCSB PDB21,22 and the known drug-
target pairs from DrugBank23–27 (more details of data curation can be found in
Supplementary Note 10 and the corresponding PDB IDs that we used for training
and testing can be found in Supplementary Tables 12 and 13 in Supplementary
Data, respectively. The DrugBank IDs that we used can be found in Supplementary
Table 14 in Supplementary Data). In total, we obtained 7417 positive interacting
pairs covering 3412 protein sequences and 5399 peptide sequences. Among them,
6581 pairs from the RCSB PDB have residue-level binding labels in peptide
sequences. We then constructed a negative data set by randomly shuffling those
non-interacting pairs of proteins and peptides. More specifically, for each positive
interaction, five negatives were generated by randomly sampling from all the
shuffled pairs of non-interacting proteins and peptides. Overall, we obtained 44,502
peptide–protein pairs as our benchmark data set.

Problem formulation. In our problem setting, we mainly considered the lengths of
peptide sequences ≤50, and the lengths of protein sequences longer than 50.
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Peptides with fewer than 50 residues were zero-padded to have the same input
feature length (more details can be found in Supplementary Note 10). We use A to
denote a vocabulary of 21 types of amino acids (i.e., 20 canonical amino acids and a
letter “X” for any unknown or non-standard amino acid). Then, a given
peptide–protein pair (Spep, Spro) can be defined as two sequences of amino acids
Spep= (p1, p2, ..., pm), Spro= (q1, q2, ..., qn), in which each pi; qj 2 A stand for the
residue at position i of the peptide and position j of the protein, respectively, and m,
n represent the lengths of the peptide and protein sequences, respectively.

Our sequence-based neural network model, CAMP, addresses two prediction
tasks: (1) a binary classification task to predict PepPIs; (2) a binding residue
classification task to identify interacting sites from the input peptide sequence.
More specifically, the first prediction task can be described as a binary classification
problem, in which label yi= 1 indicates the existence of an interaction between the
ith peptide–protein pair and yi= 0 otherwise. The output probability of CAMP for
this task can be denoted by a real value between 0 and 1. The second prediction
task aims to pinpoint the binding residues from the peptide sequence in a given
peptide–protein pair. Here, for a peptide with m residues, we define its binding
vector as bpep= (b1, b2, ..., bm), in which each binary element bi denotes whether
the ith residue binds to the partner protein (1 for the existence of binding and 0
otherwise).

Construction of sequence-based feature profiles. CAMP only requires raw
sequences to construct the feature profiles of peptides and proteins, therefore
alleviating the problem of limited structure data. In particular, CAMP incorporates
multifaceted features, including the structure-based and physicochemical proper-
ties of individual residues in peptide and protein sequences, protein evolutionary
information, and the disorder tendencies of peptide and protein sequences.

Residue-level structural and physicochemical properties. We first define an alphabet
of 21 elements to describe different types of amino acids (i.e., 20 canonical amino
acids and a letter “X” for unknown or non-standard ones). Each type of amino acid
is encoded with an integer between 1 and 21. For each amino-acid sequence
S= (a1, a2, ..., an), we generate an n × 1 array, in which in the corresponding
residue position, each element is an integer representing the amino-acid type.

In addition, although our problem setting assumes that 3D structure data are
unavailable, previous studies have suggested that the predicted structures of the
amino-acid sequences could still provide useful information16,51,52. Here, for each
amino-acid sequence S= (a1, a2, ...., an), we use SSPro16 to generate an n × 1 array,
in which each element is an integer representing the combination of secondary
structure class and amino-acid type at the corresponding position (see
Supplementary Note 7).

Furthermore, the hydrophobicity, hydrophilicity, and polarity of the R groups
of individual amino acids can affect the tendency of the interactions between
residues53. For each amino-acid sequence S= (a1, a2, ..., an), we generate an n × 1
array, in which each element is an integer representing the combination of the
polarity and hydropathy properties of the residue at the corresponding position
(see Supplementary Note 7).

Protein evolutionary information. PSSMs are popular representations of protein
sequences, which can detect remote homology of the protein sequences20,54. For
each protein sequence S= (a1, a2, ..., an) of length n, we use PSI-BLAST19 to
generate a normalized position-specific scoring matrix, an n × 20 array S, in which
each element Si,j stands for the probability of the jth amino-acid type at position i
in the protein sequence (see Supplementary Note 7).

Intrinsic disorder tendencies to form contacts. It has been reported that the intrinsic
disorder-based features in peptide and protein sequences play a crucial role in
protein–peptide interactions15. Here, for individual residues in the peptide and
protein sequences, we first employ IUpred2A17,18 to predict its intrinsic disorder
properties. For an amino-acid sequence S of length m, we construct an m × 3 arrays
representing three types of disorder scores for individual residues (see Supple-
mentary Note 7).

Multi-channel feature extractors. To avoid the inconsistent scales of different
features within the profiles (i.e., the disorder and PSSM features are dense vectors
while residue-level properties are categorical vectors), CAMP exploits two multi-
channel feature extractors to derive the encoded features, which process the
protein and peptide profiles separately. Each extractor has three categorical
channels and one numerical channel (Fig. 1b). Each categorical channel consists
of three self-learning word embedding layers30, taking amino acids, secondary
structures, and physiochemical representations as input, respectively. Each
numerical channel consists of a fully connected layer to take dense features as
input, i.e., the intrinsic disorder tendencies features (ranging between 0 and 1) of
peptides and proteins as well as the normalized evolutionary matrices (PSSM) of
proteins. These numerical features are pre-defined and calculated based on pri-
mary sequences.

Capturing the dependency relations between residues. Learning the local
relations between neighboring residues and capturing long-range dependencies

between residues from the whole sequences are key points in our task. CAMP
exploits CNN modules and self-attention mechanisms to extract such latent
information.

The CNN. We deploy a popular deep-learning architecture, CNN, to extract the
informative knowledge from the input sequence-based features. The CNN
architecture is able to integrate local dependencies to capture latent information
of sequential features and has been successfully used to predict both PPIs and
compound–protein interactions31,33,55. Here, we use two CNN modules to
extract the hidden features of peptides and proteins separately. Each CNN
module consists of three convolution layers with a rectified linear unit (ReLU)
function followed by a max-pooling layer. The max-pooling layer down-samples
the output of previous filters from convolution layers to learn the features for
better generalization and also reduces the output of the ReLU layer to a one-
dimensional array to achieve higher learning efficiency (see Supplementary
Note 11 for more details).

Self-attention. We adopt a single-head self-attention mechanism in the CAMP
framework, which has been widely used to capture long-range dependencies

between tokens in sequential data56. More specifically, let U ¼ ui
� �N

i¼1 denote
the output vector of the embedding layer with basic amino-acid feature repre-
sentation of an input sequence consisting of N residues, where ui represents the
d-dimensional embedded feature vector of the ith residue. Then, the output of a
single-head self-attention module is a weighted sum of the feature vectors over all
residues, that is,

gi ¼ ∑
N

j¼1
softmaxðqikj

T

ffiffiffiffiffi
dk

p Þvj; ð1Þ

where softmax( ⋅ ) stands for the softmax operation, gi 2 Rdk stands for the output
of the self-attention layer for ui that implicitly indicates the response of features at
the ith position,

ffiffiffiffiffi
dk

p
stands for the scaling factor to control the magnitude of the

dot product, and qi, ki and vi represent the query, key and value vectors of the ith
residue, respectively, which are calculated by

qi ¼ Wqui; ð2Þ

ki ¼ Wkui; ð3Þ

vi ¼ Wvui; ð4Þ
where Wq 2 Rdk ´ d , Wk 2 Rdk ´ d , and Wv 2 Rdk ´ d stand for the learnt weight
matrices of the query, key, and value vectors, respectively. This attention
mechanism allows the model to focus on the crucial residues from the sequences
dynamically and capture the contributions of features at individual residues to
facilitate the final prediction.

The multi-objective learning strategy. Here, we employ an idea of multi-
objective training to simultaneously learn two tasks, i.e., the binary interaction
prediction task and the peptide-binding residue identification task. The previously
encoded features are fed into the two prediction modules separately and the losses
of two tasks are optimized simultaneously during the training process.

The binary interaction prediction. CAMP aggregates the features from the CNN
modules and the attention modules of peptides and proteins and fed them into the
binary interaction prediction module, which consists of three fully connected
layers. Each of the first two fully connected layers is followed by a dropout
operation to alleviate the overfitting problem. We apply a sigmoid function σðxÞ ¼

1
1þe�x on the last layer to produce a final prediction, in which the prediction score
≥0.5 indicates that there is an interaction between the given peptide–protein pair,
and <0.5 otherwise.

The peptide-binding residue prediction. Given a peptide–protein pair, we also
design a prediction module to identify which residues from the peptide sequence
bind to the protein partner. The output features H of the CNN module of the

peptide can be denoted by its row vectors hj
n oNk

j¼1
, where each hj stands for the

feature vector of the residue at position j in the peptide. We apply a single-layer
neural network on hj and then normalized the output values using a sigmoid
function to obtain a one-dimension value for each residue. Thus, the predicted
score residue at position j in the peptide is

bj ¼ σðWpephj þ cjÞ; ð5Þ
where j= 1, 2, ..., Nk, Nk represents the number of residues in the peptide sequence
and σ(x) denotes the sigmoid function. Here, bj ≥ 0.5 indicates that position j in the
peptide is a binding residue, and bj < 0.5 otherwise.

Dual-objective optimization. CAMP has two separate binary cross-entropy loss
functions for the corresponding two classification tasks, i.e., the binary interaction

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-021-25772-4

8 NATURE COMMUNICATIONS |         (2021) 12:5465 | https://doi.org/10.1038/s41467-021-25772-4 | www.nature.com/naturecommunications

www.nature.com/naturecommunications


prediction and the peptide-binding residue prediction. For the binary interaction
prediction task, in a training set with N peptide–protein pairs, the binary cross-
entropy loss is defined as

losspair ¼ � 1
N

∑
N

i¼1
yi � log ðy0iÞ þ ð1� yiÞ � log ð1� y0iÞ

�
; ð6Þ

where yi and y0i stand for the true binary label and the predicted interaction
probability of a given peptide–protein pair, respectively.

For the peptide-binding residue prediction task, we also use a binary cross-
entropy loss to measure the difference between predicted and real binding labels for
individual residues in the peptide sequence. To ignore the padded zeros in our
fixed-length input, we apply masks on those padded positions. More specifically,
for the training set with N peptide–protein pairs, the masked cross-entropy loss for
peptide-binding residue prediction is defined as

losspep ¼ � 1
N

1
M

∑
N

i¼1
∑
M

k¼1
ðbik � logðb0ikÞ þ ð1� bikÞ � logð1� b0ikÞÞ �mik; ð7Þ

where mik stands for the mask value at position k in the peptide sequence of sample
i andMi=∑mik represents the number of residues in the padded peptide sequence
of sample i (mik is 0 if position k is padded with zero and 1 otherwise), and bik, b

0
ik

represent the true label and the predicted probability of position k in the ith
sample, respectively.

The above two losses are combined together and optimized simultaneously in a
multi-objective training process, that is,

losstotal ¼ losspair þ λlosspep; ð8Þ
where λ stands for a weight parameter that balances the two losses. All parameters
of CAMP are updated using the RMSProp optimizer57. The details about
hyperparameter tuning and selection can be found in Supplementary Note 12. A
single CAMP model can be trained within two hours on a linux server with 48
logical CPU cores and one Nvidia Geforce GTX 1080Ti GPU.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The peptide–protein complex structure data used in this study can be downloaded from
the RCSB PDB database [https://www.rcsb.org/downloads/] and the structural
peptide–protein interaction data with annotated binding residue information are
available from PepBDB [http://huanglab.phys.hust.edu.cn/pepbdb/db/download/]. The
corresponding PDB IDs that we used for training and testing the model can be found in
Supplementary Tables 12 and 13 in Supplementary Data, respectively. The peptide drug-
target interaction data are available from DrugBank [https://go.drugbank.com/releases/
latest]. The sequence data of the peptide drugs on DrugBank are available from
PubChem [https://pubchem.ncbi.nlm.nih.gov/]. The corresponding DrugBank IDs that
we used can be found in Supplementary Table 14. The protein sequence data used in this
study are available from UniProt [https://www.uniprot.org/downloads] and the
corresponding UniProt IDs that we used for training and testing can be found in
Supplementary Tables 15 and 16 in Supplementary Data, respectively. The peptide–PBD
interaction data are available from [https://github.com/aqlaboratory/hsm]. The affinity
data of peptide–protein interactions are available from PDBbind v2019 [http://
www.pdbbind.org.cn/] and the corresponding PDB IDs that we used for affinity
assessment can be found in Supplementary Table 17 in Supplementary Data. The
supplementary test sets are available from LEADS-PEP [https://doi.org/10.1021/
acs.jcim.9b00905/suppl_file/ci9b00905_si_001.pdf], PPDbench [https://webs.iiitd.edu.in/
raghava/ppdbench/dataset.php], PepSet [http://cadd.zju.edu.cn/pepset/], TS251 [https://
bitbucket.org/isaakh94/interpep_pipeline/src/master/databases/] and TS125 [https://
academic.oup.com/bioinformatics/article/34/3/477/4237510#supplementary-data],
respectively. Source data are provided with this paper.

Code availability
The source codes of CAMP are available on the GitHub repository at https://github.com/
twopin/CAMP and Zenodo58.
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