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Abstract: Aspergillus flavus is one of the most important agents of invasive and non-invasive as-
pergillosis, especially in tropical and subtropical regions of the world, including Iran. Aspergillus oryzae
is closely related to A. flavus, and it is known for its economic importance in traditional fermentation
industries. Reports of infection due to A. oryzae are scarce. Several studies reported that differentiat-
ing these two species in clinical laboratories is not possible using MALDI-TOF or by targeting fungal
barcode genes, such as Internal Transcribed Spacer (ITS) and β-tubulin (benA). The species-level
identification of causative agents and the determination of antifungal susceptibility patterns can play
significant roles in the outcome of aspergillosis. Here, we aimed to investigate the discriminatory
potential of cyp51A PCR-sequencing versus that of the ITS, benA and calmodulin (CaM) genes for
the differentiation of A. flavus from A. oryzae. In a prospective study investigating the molecular
epidemiology of A. flavus in Iran between 2008 and 2018, out of 200 clinical isolates of A. flavus,
10 isolates showed >99% similarity to both A. flavus and A. oryzae. Overall, the ITS, β-tubulin and
CaM genes did not fulfil the criteria for differentiating these 10 isolates. However, the cyp51A gene
showed promising results, which warrants further studies using a larger set of isolates from more
diverse epidemiological regions of the world.

Keywords: Aspergillus section Flavi; MALDI-TOF MS; PCR sequencing; genetic marker;
phylogenetic diversity

1. Introduction

Aspergillus section Flavi comprises 33 phylogenetically distinct species, the majority
of which are natural producers of aflatoxins and ochratoxins; among them, A. flavus, As-
pergillus tamarri, Aspergillus sojae, Aspergillus parasiticus and Aspergillus nomius are mainly
isolated from clinical sources [1]. In different sections of Aspergillus, including section Flavi,
there are several cryptic species that, while they may not be distinguishable morphologi-
cally, are quite unique in their pathogenesis profile, as well as their patterns of susceptibility
to currently available systemic antifungals [2,3]. A. flavus is the most well-known species in
section Flavi and a leading cause of severe invasive and non-invasive fungal infections in
the Middle Eastern region [4]. The differentiation of A. flavus from A. oryzae is a significant
challenge in clinical mycology laboratories, which use conventional mycology, focusing
on macroscopic and microscopic characteristics [5], and currently available laboratory-
developed tests and commercial proteomic and molecular assays. We previously showed
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that the Bruker Daltonik matrix-assisted laser desorption/ionization time-of-flight mass
spectrometry (MALDI-TOF MS) database also cannot properly separate A. flavus from
A. oryzae [6]. Recent data from whole-genome sequencing studies, however, shed new light
on the genome sequences of these species, indicating homogeneity in the genome size of
two species (A. flavus: 36.8 Mb, A. oryzae: 36.7 Mb), as well as the presence of the coding
genes of many secondary metabolites, such as polyketide synthases and P450 enzymes,
with nearly equal numbers [7]. In a computerized analysis of different gene loci, including
the Cyp51A sequence, we found nucleotide variations in several locations, which suggested
the potential for differentiation between two closely related species, A. flavus and A. oryzae.
Therefore, in the current study, we aimed to study the utility of cyp51A in the phylogenetic
differentiation of A. flavus from A. oryzae.

2. Material and Methods
2.1. Fungal Isolates

In a prospective countrywide molecular epidemiology study between 2008 and 2018
performed at the Invasive Fungi Research Center, Mazandaran University of Medical
Sciences, Sari, Iran, out of 200 A. flavus, 10 isolates showed >99% similarity to both A. flavus
and A. oryzae after PCR-sequencing of the benA gene. These 10 isolates were taken from
the sputum or bronchoalveolar lavage fluid (BAL) of patients from different regions of
Iran and with different underlying conditions, including hematological malignancies,
organ transplantation, chronic obstructive pulmonary disease, and lung cancer. These
10 isolates were subject to further work to discriminate between the two mentioned strains
based on the PCR sequencing of the benA, ITS, CaM and cyp51A genes using the NCBI
GenBank (http://www.ncbi.nlm.nih.gov/genbank, accessed on 14 January 2021) and the
International Mycological Association-Westerdijk Fungal Biodiversity Institute (http://
www.mycobank.org, accessed on 14 January 2021) databases. The corresponding sequences
were submitted to GenBank. Additionally, two standard species, A. oryzae (RIB40) and
A. flavus (NRRL3357), were also used to characterize the cyp51A gene sequences. All
the isolates were stored at −80 ◦C in glycerol broth and cultured on potato dextrose agar
and/or Sabouraud’s dextrose agar (SDA) supplemented with chloramphenicol for 5–7 days
at 35 ◦C to ensure purity and good sporulation.

2.2. Molecular Identification
2.2.1. DNA Extraction

The total DNA of all the fungal strains was extracted from the surface harvest of
colonies cultured on SDA using the methodology described previously (15). A total of
50 µL of sterile distilled water was added and the samples were preserved at −20 ◦C.

2.2.2. PCR Amplification and Sequences Analysis of the ITS, benA, CaM, and cyp51A Genes

The extracted DNA was used as a template for the amplification of the ITS region of ri-
bosomal DNA using ITS1 primer (5′-CTTGGTCATTTAGAGG AAGTAA-3′) and ITS4 primer
(5′-GGTCCGTGTTTCAAGACGG-3′); the benA genewas amplified using the BT2a
(5′-GGTAACCAAATCGGTGCTGCTTTC-3′) and BT2b (5′-ACCCTCAGTGTAGTGACCCTTGGC-
3′) primers; the CaM genewas amplified using the CF1M primer (5-AGGCCGAYTCTYTGACYGA)
and CF4 primer (5-TTTYTGCATCATRAGYTGGAC); and, finally, the coding sequences of the
cyp51A gene were amplified using forward (5′-CCAGATTAGGCATACACATTG-3′) and reverse
(5′-CGCTAACTATGGTTGACTCTA-3′) (1), respectively. The PCR reactions were carried out in
25 µL containing 1 µL of 25 pmol of each primer, 2.5 U of Taq DNA polymerase, 2.5 mM MgCl2,
400 mM deoxynucleotide triphosphates, 2 µL genomic DNA, and water. Table 1 demonstrates the
PCR cycling steps for the four genes.

http://www.ncbi.nlm.nih.gov/genbank
http://www.mycobank.org
http://www.mycobank.org
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Table 1. Thermocycler program for PCR reaction of ITS, benA, CaM, and cyp51A.

Phase Primer Temperature Time

Initial Denaturation

ITS 94 ◦C 5′

benA 95 ◦C 5′

CaM 94 ◦C 5′

cyp51A 94 ◦C 7′

Denaturation

ITS 95 ◦C 30”
benA 94 ◦C 45”
CaM 95 ◦C 30”

cyp51A 94 ◦C 30”

Annealing

ITS 52 ◦C 60”
benA 60 ◦C 45”
CaM 60 ◦C 60”

cyp51A 52 ◦C 30”

Extension

ITS 72 ◦C 2′

benA 72 ◦C 1′

CaM 72 ◦C 1′

cyp51A 72 ◦C 2′

Final Extension

ITS 72 ◦C 7′

benA 72 ◦C 6′

CaM 72 ◦C 7′

cyp51A 72 ◦C 7′

Cycle (X)
ITS benA CaM cyp51A

28 35 30 35

The benA and CaM PCR products were sequenced using only one primer. The cyp51A
gene and ITS region PCR products were sequenced from both directions using an auto-
mated DNA Sequencer (ABI PRISM_ABI-3730 Genetic Analyzer; PE Applied Biosystem,
Foster City, CA, USA). The sequences of the cyp51A gene were assembled and edited
with a DNA Sequence Assembler (version 5.15) (http://www.dnabaser.com/download/
DNA-Baser-sequenceassembler/how%20to%20download.html, accessed on 14 January
2021) and the CLC Genomics Workbench software package (CLC Bio, Qiagen, Aarhus,
Denmark), aligned with reference strains and compared with each other; finally, a phyloge-
netic tree was constructed with the UPGMA method using MEGA software (version 10.1)
(https://www.megasoftware.net/, accessed on 14 January 2021) and 1000 bootstraps. The
comparative sequence analyses were performed by using the Basic Local Alignment Search
Tool (BLAST) on the National Center for Biotechnology Information (NCBI) website.

3. Results
3.1. Comparison of ITS Region, benA, CaM and cyp51A Genes
3.1.1. ITS Region

The ITS region of total isolates was successfully amplified by universal primer pairs
(ITS1 and ITS4) and generated PCR products with a size of 1200 bp. Bioinformatics analysis,
which was performed by comparing the sequence results of the ITS region with sequence
data registered in the NCBI nucleotide Blast (https://blast.ncbi.nlm.nih.gov/Blast.cgi,
accessed on 14 January 2021), indicated that the ITS identified both species (A. flavus and
A. oryzae) equally (similarity index: 99.55%). As a result, the ITS region could not properly
distinguish these two species. Therefore, all 10 isolates were reported as A. flavus/A. oryzae
(Table 2).

http://www.dnabaser.com/download/DNA-Baser-sequence assembler/how%20to%20 download.html
http://www.dnabaser.com/download/DNA-Baser-sequence assembler/how%20to%20 download.html
https://www.megasoftware.net/
https://blast.ncbi.nlm.nih.gov/Blast.cgi
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Table 2. Identification rate of ITS, BenA, CaM and cyp51A genes. SP: sputum; BAL: Bronchoalveolar lavage.

Sample Code Source BenA Gene
(Accession Number)

ITS
(Accession Number)

CaM Gene
(Accession Number)

cyp51A Gene
(Accession Number)

1 BAL 100% A. flavus
(MZ305275)

99.55% A. flavus,
99.55% A. oryzae

(MZ055458)

99.48% A. flavus,
99.48% A. oryzae

(MZ291495)

100% A. flavus
(MW558954)

2 BAL
100% A. flavus, 100%

A. oryzae
(MZ305264)

99.55% A. flavus,
99.55% A. oryzae

(MZ055461)

100% A. flavus
(MZ291482)

100% A. flavus
(MW558955)

3 SP
100% A. flavus, 100%

A. oryzae
(MZ305267)

99.55% A. flavus,
99.55% A. oryzae

(MZ055465)

99.28% A. flavus
(MZ291484)

100% A. flavus
(MW558956)

4 BAL 100% A. flavus
(MZ305269)

99.55% A. flavus,
99.55% A. oryzae

(MZ055460)

99.61% A. flavus
(MZ291489)

100% A. flavus
(MW558957)

5 BAL
100% A. flavus, 100%

A. oryzae
(MZ305271)

99.55% A. flavus,
99.55% A. oryzae

(MZ055468)

99.65% A. flavus,
99.65% A. oryzae

(MZ291491)

100% A. flavus
(MW558958)

6 SP
100% A. flavus, 100%

A. oryzae
(MZ305262)

99.55% A. flavus,
99.55% A. oryzae

(MZ055459)

98.99% A. flavus
(MZ291480)

100% A. oryzae
(MW558959)

7 BAL
100% A. flavus, 100%

A. oryzae
(MZ305265)

99.55% A. flavus,
99.55% A. oryzae

(MZ055462)

99.65% A. flavus
(MZ291483)

100% A. oryzae
(MW558960)

8 SP
100% A. flavus, 100%

A. oryzae
(MZ305263)

99.55% A. flavus,
99.55% A. oryzae

(MZ055466)

96.93% A. flavus
(MZ291487)

100% A. oryzae
(MW558961)

9 BAL 100% A. flavus
(MZ305273)

99.55% A. flavus,
99.55% A. oryzae

(MZ055467)

100% A. flavus
(MZ291493)

100% A. oryzae
(MW558962)

10 SP 100% A. flavus
(MZ305272)

99.55% A. flavus,
99.55% A. oryzae

(MZ055469)

97.82% A. flavus
(MZ291492)

100% A. oryzae
(MW558963)

3.1.2. β-Tubulin Gene

The β-tubulin genes of all the isolates were partially amplified by universal primer
pairs (Bt2a and Bt2b) and created PCR products with a size of 550 bp. The data obtained
from the sequences provided consistent identification at the species level of only two out
of the ten isolates tested. The two isolates with a 100% similarity rate were identified as
A. flavus and the others were identified as A. flavus/A. oryzae (Table 2).

3.1.3. CaM Gene

The calmodulin genes of the tested isolates were amplified by two primers, CF1M and
CF4, and created products with a size of 560 bp. The CaM gene correctly identified three
isolates as A. flavus, with similarity rates of 100%, 99.28% and 99.61%, respectively. Two iso-
lates were identified as A. flavus/A. oryzae. The remaining A. oryzae isolates (n = 5, accession
Nos. MZ291480, MZ291483, MZ291487, MZ291492, and MZ291493) were misidentified as
A. flavus (Table 2).

3.1.4. cyp51A Gene

The coding sequences of the cyp51A genes of all the strains were amplified by a size of
1542 bp (Figure 1A); the sequences were submitted to the GenBank and registered as acces-
sion numbers (MW558954–MW558963) (Table 2). The comparison of nucleotide sequences
with sequences registered in the GenBank as standard strains of A. flavus (NW_2477238)
and A. oryzae (RIB40), revealed that the cyp51A gene could assist us in separating the
species-level identifications of these 10 isolates. The alignment of the nucleotide sequences
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of the cyp51A gene from the 10 tested isolates with standard strains showed four regions
with nucleotide variations, located in 613, 1083, 1386 and 1389 (Figure 1A). In the cyp51A
gene, the A. flavus isolates (NW_2477238, MW558954, MW558955, MW558956, MW558957,
and MW558958) harbored four single polymorphisms (SNPs) at position 613 (G), 1083 (C)
1386 (C), and 1389 (G), whereas all the strains with SNPs at position 613 (A), 1083 (T), 1386
(T), and 1389 (A) were related to the A. oryzae isolates (RIB40, P2, P5, P8, P11 and p16)
(Figure 1A). Accordingly, five isolates that were not separated with benA, CaM and ITS
markers were classified as A. flavus (accession Nos. MW558954, MW558955, MW558956,
MW558957, and MW558958), resulting in a 100% similarity to the A. flavus standard strain
(NW_2477238), while the remaining isolates showed a 100% similarity to the A. oryzae stan-
dard strain (RIB40) and were categorized as A. oryzae (MW558959, MW558960, MW558961,
MW558962, and MW558963) (Table 2). The predicted cDNA (10542 bp) of the cyp51A gene
encoded a 514-amino acid protein, in which one nonsynonymous mutation at position 205
was detected (Figure 1B). All the A. flavus isolates harbored Alanine (A) in this position,
while Threonine (T) was located in A. oryzae (Figure 1B).
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3.2. Phylogenetic Diversity

The phylogenetic analysis derived from the cyp51A gene sequences constructed using
the UPGMA method revealed two clades. Clade 1 clearly represented all the A. oryzae iso-
lates (MW558959–MW558963) adjacent to the reference strain (RIB40) and clade 2 markedly
consisted of all the A. flavus isolates (MW558954–MW558958) next to the standard strain
(NRRL3357) (Figure 2).
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4. Discussion

Given the worldwide increase in IA cases [8], it is crucial to identify the causative
agent of disease at species level as these species may tend towards a certain geograph-
ical location or climate. Overall, different species of Aspergillus have unique antifungal
susceptibility patterns, which is essential for recommending the appropriate antifungal
treatment. Aspergillus fumigatus is the principal agent of IA in the most parts of the world;
however, it was recently concluded that A. flavus has the potential to become the leading
agent of IA in tropical regions, as it can adapt to climatic conditions in Asia and Africa [9].
According to a recent systematic review and meta-analysis, A. flavus was introduced as
the most common species isolated from IA patients in Iran [10]. A. oryzae, on the other
hand, is widely used in traditional fermentation industries but has significant similarities
to A. flavus, both morphologically and in its ITS and benA gene profiles [5]. The role of
A. oryzae in human infections was reported only as the causative agent of aspergillosis in a
few cases [11,12]. Recent studies showed homogeneity in the whole-genome size of the two
species and also revealed the presence of the coding genes of many secondary metabolites,
such as polyketide synthases and p450 enzymes, with nearly equal numbers [7]. Polyphasic
approaches were recommended as the gold standard for the classification of Aspergillus
species because the reliance on a singular morphology or molecular-based identification
methods has largely failed to identify closely related species [13,14]. Despite significant
efforts and the use of a variety of techniques, including phenotypic characteristics, molecu-
lar approaches and, most recently, MALDI-TOF, the separation of A. flavus and A. oryzae
is yet to be achieved successfully. Multi-locus sequencing was presented as an efficient
tool to properly understand the phylogenetic relations among Aspergillus species [15]. The
evaluation of findings based on ITS regions sequencing, known as the standard barcod-
ing target in filamentous fungi, was the first step in the majority of studies related to
Aspergillus species identification [16,17]. As shown in Table 2, the PCR sequencing of the
ITS region identified A. flavus and A. oryzae with the same coefficient ratio (99/55%) and
failed to discriminate between the two closely related species. The effectiveness of CaM
in discriminating between Aspergillus niger and Aspergillus tubingensis, which belong to
the Aspergillus Section Nigri was reported [18]. CaM has also been reported as an efficient
marker in distinguishing between A. fumigatus and Aspergillus lentulus, two closely related
species [19]. In our study, the partial sequences of the CaM gene showed that, with the
exception of the two isolates (MZ291491 and MZ291495), eight isolates were identified as
A. flavus, with an identification rate lower than 100%. Therefore, an easy-to-use, accurate,
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rapid, and cost-effective approach for differentiating the two species was still needed.
Our results highlight that the cyp51A gene can be considered as a potential discriminative
genetic marker in the differentiation between A. flavus and A. oryzae. The cyp51 gene plays
a proven role in the synthesis of ergosterol and is used as a key element in studies of azole
resistance mechanisms in various fungi [20]. In fungi, mutations in cyp51 cause resistance
to azoles, a class of drugs that are used to treat invasive mycoses in mammals and in
plants. This gene demonstrated highly conserved characteristic motifs, but very low over-
all sequence similarities; thus, it may be a promising target with which to find nucleotide
variations [21–23]. The use of the cyp51 gene in studies focused on fungal diversity is
uncommon; however, our primary evaluation revealed that this gene could be reliable
and helpful in the discrimination between A. flavus and A. oryzae. To assess the cyp51A
gene’s ability in species identification, we first performed a qualitative PCR assay, which
revealed that the cyp51A gene can separate A. flavus and A. oryzae from other aspergilli.
Although A. flavus and A. oryzae produced sharp specific bands on electrophoresis panels,
A. fumigatus and A. niger did not (Figure 3).
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The cyp51A gene’s PCR products were also sequenced for each of the ten isolates. It
demonstrated a novel and valuable performance in the field of evolutionary divergence
under its own name, fully distinguishing between two very similar species, A. flavus and
A. oryzae, with a 100% identification score (Table 2). A closer inspection of a partial cyp51A
gene sequence alignment (1542 ntds) from ten isolates of A. flavus and A. oryzae, along with
two standard isolates of both species, detected SNPs in four positions (Figure 1A). These
findings provide significant value to support the strong genetic homology of A. flavus and
A. oryzae.

5. Conclusions

Based on our findings, we suggest that the cyp51A gene is a promising target for the
differentiation of A. flavus from A. oryzae. One limitation of the current study was that we
only tested a small number of isolates from Iran. To rule out the effects of geographical
variation, a larger set of isolates need to be tested before a solid conclusion can be made.
The examination of a list of clinical and environmental isolates from different regions of
the world mainly tropical and sub-tropical areas could be a useful addition to the publicly
available databases.
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Abbreviations

MALDI-TOF MS matrix-assisted laser desorption/ionization time-of-flight mass spectrometry
benA β-tubulin
ITS Internal Transcribed Spacer
CaM calmodulin
BAL bronchoalveolar lavage fluid
PCR polymerase chain reaction
DW distilled water
BLAST Basic Local Alignment Search Tool
NCBI National Center for Biotechnology Information
SP sputum
IA invasive aspergillosis
SNP single nucleotide polymorphism
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