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Abstract: This review provides an overview of the synthesis of layer-by-layer (LbL) assemblies
containing calix[n]arene (CA[n]) and cucurbit[n]uril (CB[n]) and their applications. LbL assemblies,
such as thin films and microcapsules, containing selective binding sites have attracted considerable
attention because of their potential use in separation and purification, sensors for ions and molecules,
and controlled release. CA[n]-containing LbL films have been prepared using sulfonated CA[n] and
cationic polymers to construct chemical sensors and molecular containers. CA[n]-containing LbL
films deposited on the surface of a porous support are useful as ion-selective membranes that exhibit
selective permeability to monovalent ions over multivalent ions. CB[n]s have been used as molecular
glues for the construction of LbL films and microcapsules by taking advantage of the strong affinity
of CB[n]s to aromatic compounds. CB[n]s form a stable 1:1:1 ternary complex with electron-rich
and electron-deficient molecules in LbL films to stabilize the assemblies. CB[n]-containing LbL films
can also be deposited on the surfaces of micro templates and nanopore membranes to construct
microcapsules for controlled release and nanochannels for selective ion transport, respectively.

Keywords: layer-by-layer assemblies; host-guest complexation; calix[n]arene; cucurbit[n]uril

1. Introduction

Layer-by-layer (LbL) thin films are widely used for the development of film devices because they
are simple to prepare and offer a wide choice of materials. LbL thin films were first prepared using
synthetic polymers by alternate and repeated depositions on the surface of solid substrates through
electrostatic interactions [1,2]. LbL deposition affords stratified multilayer architectures on the surface.
A variety of interactions, such as hydrogen bonds [3,4], host-guest complexations [5], charge-transfer
(CT) interactions [6], DNA hybridization [7], covalent bonds [8], and protein-ligand affinity [9] are
available as the driving forces for the construction of films. Consequently, both synthetic polymers
and biomaterials, which include proteins [10,11], polysaccharides [12,13], and DNA [14,15], are often
used as components of LbL films. An advantage of LbL films is that the thickness of the film depends
on the number of layers; thus, the thickness can be controlled at the nanometer level.

LbL films can be endowed with optical, electrical, chemical, and biological functions. For instance,
LbL films containing fluorescent groups exhibit environment-dependent fluorescence [16]. On the
other hand, LbL films modified with redox-active groups are used for the fabrication of electrochemical
sensors [17]. Electrochemical enzyme sensors have been constructed by combining redox-active
LbL films and enzymes, in which the LbL film serves as an electron transfer mediator between the
enzyme and electrode [18]. Functional LbL films that decompose or deform in response to changes in
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external stimuli, such as pH [19], ionic strength [20], temperature [21], light irradiation [22], electric
potential [23], and the concentrations of small molecules [24], have been also reported.

Recently, LbL films with selective binding sites have been developed using proteins and host-guest
compounds. In this context, we have recently reviewed the synthesis and applications of LbL
assemblies containing lectin proteins [25] and cyclodextrins [26]. LbL films containing selective
binding sites are useful for biomedical applications, such as biosensors and controlled release.

This review provides an overview of LbL films containing calix[n]arenes (CA[n]s) and
cucurbit[n]urils (CB[n]s) as selective binding sites. CA[n] is a class of organic macrocycles comprising
phenolic moieties bridged by methylene units to form a hydrophobic cavity with a polar lower rim
and a nonpolar upper rim (Figure 1). The letter [n] represents the number of phenolic moieties in the
CA[n]s, among which CA[4], CA[6], and CA[8] have widely been studied because they are easy to
prepare. CA[n] derivatives can form host-guest complexes with ions and molecules depending on the
type of substituents on the lower and upper rims. Therefore, CA[n]s are utilized as components for the
construction of molecular receptors and containers, ion transporters, catalysts, the stationary phase
of chromatography, and so forth [27–29]. On the other hand, CB[n]s are products of a condensation
reaction of glycoluril with formaldehyde [30–32]. CB[n]s are characterized by a hydrophobic cavity
with two portals containing electron-rich carbonyl groups (Figure 1). Consequently, CB[n]s strongly
bind to electron-deficient hydrophobic guests such as methyl viologen (MV) and cationic derivatives
of adamantane and ferrocene [33,34]. Furthermore, CB[8] forms highly-stable ternary complexes
with MV and electron-donating compounds such as naphthalene (the binding constant of the ternary
complex, 1 × 1012 M−2) [35]. Thus, CA[n]s and CB[n]s form host-guest inclusion complexes with ions
and molecules depending on the sizes and shapes. Therefore, CA[n]s and CB[n]s are useful for the
construction of thin film devices with selective binding sites.
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sensors exhibit responses to the vapor of halogenated hydrocarbons, such as carbon tetrachloride, 
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2. CA[n]-Containing LbL Films

Sulfonated CA[n]s (s-CA[n]s) were first employed by Swanson and coworkers for the fabrication
of chemical sensors [36]. The group successfully prepared LbL films by the alternate deposition
of sulfonated calix[6]arene (s-CA[6]) and poly(diallyldimethylammonium chloride) (PDDA) and
characterized the films by means of surface acoustic wave (SAW) sensors and a scanning electron
microscope. The thickness of a five-bilayer (PDDA/s-CA[6])5 film was estimated to be approximately
17 nm based on the SAW data. The s-CA[6]-containing LbL film-coated SAW sensors exhibit
responses to the vapor of halogenated hydrocarbons, such as carbon tetrachloride, 1,1,1-trichloroethane,
and chloroform at the ppm level. The results were rationalized based on the host-guest complexation
of the volatile organic compounds (VOCs) and s-CA[6] in the film. Recently, VOCs sensors have been
fabricated using optical fiber long-period gratings (LPGs) with s-CA[n]-containing LbL films [37].
Fiber optic sensors with LPGs have been widely used to measure VOCs as well as humidity and
biomolecules [38–40]. LPG sensors coated with s-CA[n] films show a response to vapors of various
VOCs, including chloroform, benzene, toluene, and acetone. Sensors coated with s-CA[4] film
exhibit greater responses than those coated with s-CA[8] film, probably due to the complementary
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sizes of the VOCs and s-CA[4]’s cavities. The sensors showed different responses to two different
commercial paint products, although they were unable to discriminate between the individual VOCs.
Thus, CA[n]-containing LbL films are useful for the construction of VOC sensors.

CA[n]-containing LbL films can be prepared through hydrogen and covalent bonds.
Covalently-linked LbL films containing CA[n] have been prepared by using cationic diazoresin
(DR) and CA[n]s [41]. DR is known to react with substituents such as carboxylate and sulfonate
groups to form covalent bonds under UV light irradiation [42]. The stability of LbL films composed
of DR and CA[n]s is greatly enhanced by the formation of covalent bonds under irradiation. On the
other hand, Cao and coworkers prepared single-component LbL films using CA[4] substituted with
NH3

+ and OH groups [43]. The LbL films were stabilized through hydrogen bonds between NH3
+

and OH groups. The authors suggested that single-component LbL films have potential use for the
construction of electrochemical sensors for Cu2+ ion. The same group used amphiphilic s-CA[n]s as
molecular containers for immobilizing small molecules in LbL films [44]. To achieve this goal, s-CA[8]
bearing C12 alkyl chains were alternately deposited with PDDA in the presence of organic dyes such as
p-hydroxyazobenzene, methyl yellow, and Sudan III. The LbL films thus-prepared showed absorption
bands associated with the dyes, suggesting that the dyes were incorporated into the cavity of s-CA[8]
in the films. The results suggest the usefulness of s-CA[n]s as carriers for the immobilization of small
molecules in LbL films.

Tieke and coworkers have systematically studied the permeability of CA[n]-containing LbL films
deposited on the surfaces of porous polymer supports made of poly(acrylonitrile) and poly(ethylene
terephthalate) [44–49]. s-CA[4], s-CA[6], and s-CA[8] were successfully built into LbL films by combining
polycations, such as poly(vinyl amine) (PVA) and poly(allylamine hydrochloride). The deposition behavior
of s-CA[n]s depends on the ring size of s-CA[n]s; a higher amount of s-CA[8] than s-CA[4] and s-CA[6]
is deposited in the LbL film, depending on the number of the binding sites, that is, the sulfonate residues,
in the s-CA[n]s.

Ion permeation across 60-bilayered (s-CA[n]/PVA)60 films has been studied using a U-shaped
two-compartment cell. The rate of ion permeation was measured by recording the conductivity of
the solution in the receiving phase. All (s-CA[n]/PVA)60 films (n = 4, 6, and 8) exhibited higher
permeability to monovalent alkali metal ions than to other ions. In addition, the permeation rates
of divalent ions were higher than those of trivalent ions. It is plausible that multivalent ions are
electrostatically rejected (i.e., Donnan rejection) by the positively-charged sites in films more strongly
than monovalent ions. The permeation rates of the alkali metal ions tested increased as the ion sizes
increased, showing that the effects of Donnan rejection are decreased by increasing the sizes of the ions
or decreasing the charge density. In addition to size effects, the authors suggested that the complexation
between CA[n]s and alkali metal ions, especially Li+ ion, is based on a significant dependence of the
Li+ ion permeation rates on the sizes of the CA[n]s. The permeation rates of alkali metal ions across the
LbL films were in the order of s-CA[8] > s-CA[6] > s-CA[4] (Figure 2), whereas divalent ions showed
the highest permeation rates for s-CA[4]-containing films. These results also suggest the formation of
complexes of divalent ions and s-CA[n]s in the films. The authors suggested that s-CA[n]-containing
LbL films could potentially be used for the selective enrichment of rare earth metal ions because the
permeation rates of Ln3+, La3+, Ce3+, Pr3+, and Sm3+ ions are extremely low.

It is anticipated that CA[n]-containing LbL films could be used as nano-reactors by taking
advantage of the ability of CA[n]s to form inclusion complexes with ions and small molecules. In fact,
Cao and coworkers have used LbL films consisting of tetraamino-CA[n]s as nano-reactors to synthesize
silver (Ag) nanoparticles (Figure 3) [50]. Ag+ ions were selectively bound into the cavity of CA[n]s in
the LbL film from the solution through π-cation interactions [51,52], followed by in situ reduction of
Ag+ ions to Ag nanoparticles. Using this procedure, well-dispersed Ag nanoparticles with average
diameters of 5–6 nm were prepared. The authors postulated that the p-aminophenol moieties in the
CA[n]s were oxidized into p-iminobenzoquinone when reducing the Ag+ ions into metal nanoparticles.
Monomolecular films of CA[n]s have likewise been used for in situ formation of Ag nanoparticles [53].
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Pillar-shaped macrocyclic compounds, pillar[n]arenes (PAs), have also been built into LbL films as
components for the construction of molecular containers. PAs were first synthesized in 2008 by Ogoshi
and coworkers as a novel class of host compounds [54,55]. Diamino-pillar[5]arene (diamino-PA[5])
and dicarboxyl-pillar[5]arene (dicarboxyl-PA[5]) (Figure 4) were alternately deposited on the surface
of quartz plates to form LbL films through electrostatic affinity [56]. UV-VIS absorption spectroscopy
revealed the successful preparation of PA[5] multilayer films. Interestingly, the PA[5] films showed
selective binding to p-dinitrobenzene (p-DNB) over m- (m-DNB) and o-isomers (o-DNB). The results
were rationalized based on the fact that the cavity size of PA[5] is approximately 5 Å, which is
larger than the size of p-DNB (4.3 Å), whereas it is smaller than the cavities of m-DNB (5.9 Å) and
o-DNB (5.9 Å). The loading of p-DNB onto the film increased as the number of PA5 layers increased.
In addition, p-DNB did not bind to the films with a dicarboxyl-PA[5] outermost surface, although
p-DNB was bound to LbL films terminated with positively-charged diamino-PA[5]. This is probably
due to the negatively-polarized nature of p-DNB, which originates from an electron-withdrawing
effect of the nitro groups. Recently, the same group has reported that the binding and release of p-DNB
can be photochemically controlled by using azobenzene-capped PA[5] (azo-PA[5]) [57]. LbL films
of azo-PA[5] bind p-DNB when azobenzene residues are in the trans form, whereas, upon UV light
irradiation, the binding and/or release of p-DNB is blocked as a result of trans-to-cis isomerization of
azobenzene group. Thus, the azobenzene group serves as photo-sensitive gate of the LbL films.
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The loading and release of guest molecules into LbL films containing PA[6] has been studied
using MV as the guest [58]. Covalently-linked LbL films were prepared by the alternate deposition of
dicarboxyl-PA[6] complexed with MV and photosensitive polymer DR followed by UV light irradiation.
The LbL film showed selective binding and release of MV several times repeatedly without significant
deterioration. LbL films consisting of ammonium PA[5] and Au nanoparticles can be sued as plasmonic
thin films for label-free detection of low molecular weight polyaromatic hydrocarbons (PAHs) in liquid
and gas phases [59]. It is a merit of this film to bind PAHs without affinity to Au through host-guest
complexation with PA[5].

3. CB[n]-Containing LbL Films

3.1. LbL Films on Flat Substrates

It may be possible to use CB[n]s as molecular linkers for the construction of LbL films composed
of polymeric materials based on the fact that CB[n]s have been utilized as binders to prepare
supramolecular assemblies such as hydrogels, micelles, and vesicles [60–62]. LbL films composed of
CB[n]-coated Au nanoparticles (AuNPs) have been used to amplify the output signal of biosensors
based on surface plasmon resonance (SPR) spectroscopy. SPR-based biosensors are useful tools for
detecting biomolecules because the sensors can be operated without labeling the signaling molecules,
such as fluorescence probes and enzymes. However, the intensity of the output signal is often too
weak to detect low levels of substrates, such as antibodies and biomarkers. Consequently, a signal
amplification protocol for SPR sensors is important for practical applications. Chen and coworkers
deposited CB[7]-coated AuNPs/peptide-modified AuNPs multilayer films on the surface of an Au
chip of an aSPR sensor [63]. For this purpose, a heptamer peptide consisting of a glycine pentamer with
phenylalanine and cysteine end groups (NH2-Phe-Gly-Gly-Gly-Gly-Gly-Cys) was used. The AuNPs
multilayer films were constructed through host-guest binding of the Phe moiety of the peptide into
the CB[7] cavity. The SPR sensor was used to determine caspase-3 enzyme. The output signal of the
sensor without LbL film was 0.03 degrees for 105 pg·mL−1 caspase-3, which was not sensitive enough
to detect the substrate. On the other hand, the intensity of the signal was enhanced 20-fold through the



Polymers 2018, 10, 130 6 of 15

deposition of four-layered AuNPs on the Au chip. The amplified SPR sensor exhibits a linear detection
range of 10–103 fg·mL−1 with a lower detection limit of 2.2 fg·mL−1. Thus, CB[n]-based LbL films
have been successfully used to amplify the output signals of SPR biosensors.

It is known that CB[8] forms a stable 1:1:1 ternary complex with electron-rich and electron-deficient
molecules, in which the ternary complex is stabilized through host-guest complexation, as well
as charge transfer interactions [64]. In fact, LbL films comprising PEIs covalently modified with
electron-rich indole (PEI-ID) and electron-deficient methyl viologen moieties (PEI-MV) have been
prepared using CB[8] as the binder [65]. A solid substrate was immersed in a solution of PEI-MV
and CB[8] to deposit the first layer of PEI-MV complexed with CB[8] (PEI-MV@CB[8]), followed by
the deposition of PEI-ID through the formation of ternary complexes of In and MV moieties in the
cavity of CB[8]. Figure 5 shows the effect of pH on the formation of the LbL films. The LbL film can be
prepared at pH 8 and 9, but does not form successfully when the pH is less than 7. This is probably
due to the lower stability of the ternary complex as well as an electrostatic repulsion between the
positive charges of the PEI polymers at lower pH values. The surface of the LbL film is rather smooth,
as shown by the AFM image in Figure 6. Interestingly, the six-bilayar LbL film prepared at pH 9.0 was
stable in solutions of pH 4, 7.4, and 9 at 37 ◦C, despite unsuccessful deposition of the film at pH 4 and
7.4. On the other hand, the LbL film decomposed instantly upon adding 1 mg·mL−1 adamantane (Ad)
as a result of the competitive binding of Ad to the cavity of the CB[8]. CB[8]-based LbL films are more
stable than similar LbL films linked with cyclodextrin [66,67] due to the ternary complexes possessing
a higher binding constant (approximately 1 × 1012 M−2) [64].
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LbL film). Reprinted with permission from [65]. Copyright 2013 American Chemical Society.

A supramolecular pseudo-polycation composed of naphthalene-bearing dextran (NpD), MV,
and CB[8] has been utilized as a cationic component for the construction of LbL films with poly(acrylic
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acid) (PAA) through electrostatic affinity [68]. The (PAA/NpD + MV + CB[8])n LbL films decomposed
in the presence of Ad or Na2S2O4 as a result of the competitive binding of Ad to CB[8] or a reduction
of MV by Na2S2O4. It was also possible to use (PAA/NpD + MV + CB[8])n LbL films as sacrificial
layers for preparing free-standing LbL films. The (PAA/NpD + MV + CB[8])n films were further
coated with another LbL film consisting of PSS and PDDA, and the composite LbL film was exposed
to Ad or Na2S2O4 solution to release the PSS/PDDA film from the substrate. The critical thickness of
the (PAA/NpD + MV + CB[8])n film to enable the release of free-standing PSS/PDDA film is n = 5
(or approximately 160 nm).

In other examples, CB[8] has been used to link small molecules to each other in LbL films.
Zhang and coworkers have prepared LbL films by the alternate deposition of CB[8] and multi-armed
compounds such as naphthalene-substituted tetrapyridyl(porphyrin) (TPOR) [69] (Figure 7) or
naphthalene-substituted tris(imidazole) (BNTI) [70]. TPOR and BNTI are linked by CB[8] in the films
by forming dimers of the naphthalene units in the cavity of CB[8]. The TPOR/CB[8] LbL films catalyze
a photochemical oxidation reaction of 1,5-dihydroxynaphthalene into 5-hydroxy-1,4-naphthoquinone
under UV light irradiation. The TPOR/CB[8] film can also be used for the photo-catalytic oxidation
of hydroquinone, 1-naphthole, and 1,3,5-trihydroxybenzene. CB[8] can also be used as a linker for
the construction of protein-based LbL films [71]. The alternate deposition of CB[8] and proteins
such as hemoglobin (Hb) and catalase (CAT) afforded multilayered protein films. A quartz crystal
microbalance study revealed that the thickness of the Hb/CB[8] bilayer is approximately 9.1 nm,
in accord with the sum of the dimensions of Hb (6.5 × 7.8 × 10.9 nm3) and CB[8] (0.9 × 1.6 × 1.6 nm3)
molecules, suggesting that Hb and CB[8] form monomolecular layers in the LbL film. The presence of
surface-exposed aromatic amino acids in the proteins may be responsible for the successful deposition
of CB[8]/protein LbL films. Thus, CB[8] is a promising synthetic glue, similar to binding proteins,
such as avidin and lectin [72,73], for the construction of protein nano-assemblies.
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It is anticipated that CB[n]-containing LbL films will be suitable for use as scaffolds for the binding
and release of small molecules by taking advantage of the binding ability of CB[n]s. In this context,
LbL films have been prepared by the alternate deposition of PAA and a cationic polymer bearing
viologen side chains complexed with CB[8] [74]. The LbL films thus prepared were able to bind
anthracene-substituted pyridinium bromide (AnPy), which formed charge-transfer complexes with
the viologen moiety in the cavity of CB[8] in the film. On the other hand, AnPy was released from
the film by reducing the viologen moieties into the radicals with NaBH4 because of the loss of affinity
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of AnPy to the reduced viologen moiety (Figure 8). The durability of LbL films via photochemical
cross-linking of the film components can be enhanced using an azide-bearing anionic polymer in place
of PAA [75].
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Photosensitive chemical systems in which the structures and functions can be regulated by light
irradiation have been widely studied [76–79]. In this regard, photo-sensitive LbL films have been
developed using azobenzene-modified polycations and PAA to photochemically control the binding
and release of guest molecules [80]. The LbL films were deposited from the solutions of PAA and
azobenzene-modified polycation in the presence of CB[8] to accommodate the azobenzene residues
into the CB[8] cavity in the film. The azobenzene/CB[8] complexes further accommodated MV from
the solution to form a MV/azobenzene/CB[8] ternary complex in the film. The MV was released from
the film upon UV light irradiation owing to the decomposition of the ternary complexes, which in turn
resulted in trans-to-cis isomerization of the azobenzene residues. MV could be bound into the LbL
film and released 10 times repeatedly without significant degradation of the film.

3.2. LbL Films Coated on the Surface of Colloidal Particles and Nanopores

CB[n]-containing LbL films have been coated on mesoporous silica nanoparticles (MSNs) for the
development of drug delivery systems. MSNs are currently widely used as carriers for controlled
release because of their excellent properties including easy preparation, high stability and rigidity, high
surface area, and biocompatibility [81–83]. Gao and Yang group have synthesized two types of MSNs
(average diameter, 190 nm) with pore sizes of 2.7 and 5.5 nm (MSN-1 and MSN-2, respectively) for
anticancer drug delivery [84]. The MSNs were first loaded with the anticancer drug doxorubicin
(DOX) by immersing the MSNs in DOX solution followed by coating LbL films composed of
a poly(methacrylate) derivative bearing ethylenediamine side chains and CB[7]. The LbL films
were stabilized through a cross-linking of the poly(methacrylate) chains by CB[7] through ion-dipole
interactions. The DOX-loaded MSNs were exposed to aqueous solutions of pH 2.0, 5.0, and 7.4 to
evaluate the release of DOX. The release of DOX was accelerated at pH 2.0 and 5.0, while it was
very slow at pH 7.4. The results were rationalized based on the decomposition of LbL films at acidic
pH levels, which originated from the competitive binding of H+ ions with the ethylenediamine-bearing
poly(methacrylate) to CB[7]. It is known that the pH value of endosomes and lysosomes in tumor cells
is lower (pH 5.0–5.5) than that of normal tissues. Therefore, the anti-cancer activity of DOX-loaded
MSNs was tested in vivo using a mouse model containing HeLa cancer cells, in which the growth
of the tumors was inhibited by 63% in mice administered with DOX-loaded MSNs compared to the
untreated group (Figure 9).
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Figure 9. (Left) Increase in tumor volume in model mice untreated, treated with DOX, or treated
with DOX-loaded MSNs. (Right) A schematic illustration of the release of DOX from DOX-loaded
MSNs triggered by pH changes. Reprinted with permission from [84]. Copyright 2014 American
Chemical Society.

CB[7] LbL film-coated MSNs loaded with tetraphenylethylene carboxylic acid (TPE-COOH) and
antibiotic drug amoxicillin (AMO) have been shown to be effective for the detection and elimination
of bacteria [85]. The fluorescence intensity at 480 nm originating from the TPE-COOH in the MSNs
decreased upon exposure to bacteria such as Escherichia coli and Staphylococcus aureus because of the
loss of aggregation-induced emission of the TPE-COOH. The detection limit was 2.5 × 106 CFU·mL−1

for E. coli and 5 × 106 CFU·mL−1 for S. aureus (CFU, colony forming unit). In addition, AMO was
released from the MSNs in the presence of adamantaneamine owing to the decomposition of LbL films,
thus providing antibacterial activity. Hence, the AMO/TPE-COOH-loaded MSNs are useful both for
both the elimination and detection of bacteria.

Interestingly, a protocol for the one-step preparation of polymer microcapsules has been developed
using CB[8] in microfluidic devices [86–91]. Different techniques and materials can be used for
the preparation of polymer microcapsules, such as polymersomes [92], self-assembled vesicles [93],
and LbL films [94,95]. Among them, LbL film-based microcapsules are currently widely used for the
development of micro-containers for drug delivery because they are simple to prepare under mild
conditions. In fact, LbL microcapsules can be fabricated by placing LbL film coating on template
microparticles that contain cargo molecules such as drugs and proteins, followed by dissolution of
the template to form hollow capsules leaving the cargo molecules in the cavity. A drawback of the
LbL film-based microcapsules comes from the limited efficiency of encapsulation due to leakage of the
cargo molecules during the film-coating process and dissolution of the template particles. In contrast,
Abell and coworkers have developed a novel protocol for the preparation of polymer microcapsules
capable of encapsulating sufficient amounts of cargo molecules [86–91]. The microcapsules are
prepared using MV-modified Au nanoparticles and naphthalene polymers bridged by CB[8]. In this
protocol, aqueous microdroplets containing the Au nanoparticle, naphthalene polymer, and CB[8]
are produced in microfluidic devices using an oil phase. Polymer thin films form at the oil/water
interface and then stable microcapsules are isolated within minutes after evaporation of the oil phase
and dehydration. The diameter of the microcapsules can be tuned from 10 to 24 µm by changing the
flow rates of the aqueous and oil phases in the microfluidic device. The polymer microcapsules thus
prepared may be promising tools in the development of devices for controlled release, similarly to LbL
film-based microcapsules.

Nanomaterials with nanopores and nanochannels have attracted much attention in relation to
the significant roles of ion channels in biological cells [96,97]. To mimic biological ion channels,
a polyethylene terephthalate membrane was etched in NaOH solution to create conical nanochannels
with diameters of 186 ± 28 nm on the larger side and 31 ± 12 nm on the smaller side and the inner
surfaces of the nanopores were coated with LbL films [98]. The surfaces of the nanopores were first
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covalently modified with a naphthalene derivative (NapDA), through which CB[8] was anchored,
followed by binding of BTNI via the formation of NapDA/CB[8]/BTNI ternary complexes. The ternary
complex could be decomposed by adding Ad or K+ ion to restore the NapDA-modified nanopores.
The ion current of the nanopore membrane measured in 0.1 M NaCl solution depended on the type of
surface architecture. The rectification ratio, defined by the ratio of ion current observed at –0.2 V to the
current at +0.2 V, changed reversibly. It was further possible to construct LbL layers composed of CB[8]
and BTNI on the nanopore surface for ion gating (Figure 10). The ion current of the LbL film-coated
nanopore membranes recorded at –0.2 V was 20 nA for the NapDA-modified nanopore and 1 nA for
five-bilayer LbL film-coated nanopore. Thus, CB[8] is useful for the construction of LbL film-modified
nanopore membranes.

Polymers 2018, 10, x FOR PEER REVIEW  10 of 15 

 

nanopores. The ion current of the nanopore membrane measured in 0.1 M NaCl solution depended 
on the type of surface architecture. The rectification ratio, defined by the ratio of ion current 
observed at –0.2 V to the current at +0.2 V, changed reversibly. It was further possible to construct 
LbL layers composed of CB[8] and BTNI on the nanopore surface for ion gating (Figure 10). The ion 
current of the LbL film-coated nanopore membranes recorded at –0.2 V was 20 nA for the 
NapDA-modified nanopore and 1 nA for five-bilayer LbL film-coated nanopore. Thus, CB[8] is 
useful for the construction of LbL film-modified nanopore membranes. 

 
Figure 10. NapDA-coated nanochannel modified with CB[8]/BTNI LbL films. Reprinted with 
permission from [98]. Copyright 2016 American Chemical Society. 

4. Conclusions 
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positively-charged organic guests such as MV. The selective binding properties of CA[n]s and 
CB[n]s can be further enhanced by combining the host molecules with nanomaterials such as MSNs 
and nanopore membranes. Thus, CA[n]s- and CB[n]s-modified LbL assemblies may be promising 
tools for biomedical applications. 
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4. Conclusions
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microcapsules are useful for the construction of molecular containers and controlled release systems
owing to their extremely strong affinity for positively-charged organic guests such as MV. The selective
binding properties of CA[n]s and CB[n]s can be further enhanced by combining the host molecules
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