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INTRODUCTION

In December 2019, a new RNA corona-
virus emerged, named Severe acute respiratory 
syndrome coronavirus 2 (SARS-CoV-2), and al-
leged proliferated from the Huanan Seafood 
Wholesale Market city of Wuhan, in China, to 
unleash a brutal spreading pandemic with con-
sequences not fully yet understood (1-4). After 
eleven months, the ensuing coronavirus disease 
2019 (COVID-19) stroke 191 countries, infected 
100 million-plus, and claimed close to 1 million 
lives, with an exponential daily increase by tens 
of thousands worldwide (5). Many health syste-
ms from different countries race against time to 
adjust their care strategies for SARS-CoV-2 in-
fected patients and still maintain non-deferrable 
procedures in other medical specialties (6-10).

 SARS-CoV-2 belongs to the genus Beta-
coronavirus, which also involves two other zo-
onotic coronaviruses that provoked epidemics 
of Severe Acute Respiratory Syndrome (SARS) 
in 2003 and Middle East Respiratory Syndrome 
(MERS) in 2012 (11). The Coronavirus family in-
fects humans and other vertebrates and causes 
deleterious effects on the respiratory, cardiovas-
cular, gastrointestinal, central nervous system, 
and genitourinary tract (12-14). Studies sug-
gest that severity and mortality of COVID-19 are 
substantially higher in men than women, dra-
wing fully attention to all Men Health’s care pro-
fessionals (15).

 Our proposal is to update Men’s heal-
thcare professionals, with the most recent and 
fast-changing findings on COVID-19 pathophy-
siology, highlighting some specific multi-organ 
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effects of SARS-CoV-2 infection, primarily in the 
male genitourinary tract.

Pathophysiology - General Aspects
 Understanding COVID-19 pathophysiology 

is crucial to comprehend why SARS-CoV-2 is biolo-
gically different from SARS-CoV, despite their 80%-
plus genome similarities (16). A recent study propo-
sed two plausible scenarios of natural selection for 
triggering the current pandemic, (i) one beginning in 
an animal host before zoonotic transfer to humans, 
and (ii) other starting in humans following zoonotic 
transfer (17).

 For survive and propagate, RNA viruses 
must balance the capacities for adaptation to new 
environmental conditions or host cells, whereas 
maintaining an intact and replication-competent ge-
nome. Coronaviruses can make a cross-species jump, 
with the development of multiple animal coronavi-
rus pathogens (18). Probably, SARS-CoV-2 has de-
rived from bat coronavirus species collected from 
southwestern China (19).

 Since its emergence, SARS-CoV-2 presents 
higher contagiousness with unprecedented pande-
mic potential than its predecessors (20). This new 
disease is clinically asymptomatic for up to five days 
and remains so for another ten days in 80% of those 
infected, spreading aggressively but with an elusi-
ve and unnoticed behavior (21). Table-1 resumes the 
COVID-19 clinical manifestations per organ system, 
categorizing them by disease severity.

Mechanism of host invasion
 SARS-CoV-2 is an enveloped, positive-sen-

se, single-stranded RNA virus (11), whose life cycle 
within the host consists of five acts: attachment, pe-
netration, biosynthesis, maturation, and release (22). 
During the attachment phase, SARS-CoV-2 interface 
with the angiotensin-converting enzyme 2 (ACE2), 
a membrane receptor expressed on the surface of 
not exclusively airway epithelial cells, but also in 
the testis, kidneys, and in the heart (23, 24). Notably, 
the ACE2 receptor plays a critical role in the patho-
genesis of COVID-19 as it determines viral entry in 
human cells (25).

 ACE2 is an enzyme that physiologically acts 
as a receptor for cell entry of both the SARS virus, 
also activating the Renin-Angiotensin-Aldosterone 

System (RAAS), a complex network of critical inter-
connecting cascades of vasoactive peptides common 
to a multitude of biological systems and ultimately 
responsible for the tonus of the vascular system and 
essential for adequate endothelial functions (26).

 The high SARS-CoV-2 infectiousness in the 
context of ACE2 receptors relies on understanding 
the virus’s structure and ligand properties. In the 
case of SARS-CoV, the spike glycoprotein (S protein) 
on the virion surface mediates receptor recognition 
and membrane fusion (27). During viral infection, 
the subunit S1 of the S protein, which contains the 
receptor-binding domain (RBD), directly binds to the 
peptidase (PD) domain of ACE2, whereas the S2 su-
bunit is responsible for membrane fusion. Therefore, 
the primary physiological purpose of ACE2 in the 
maturation of angiotensin is replaced in full obe-
dience to the virus program (16).

 A notable feature of the SARS-CoV-2 geno-
me is that it appears to be engineered for optimiza-
tion of binding to the human receptor ACE2, and its 
S protein has a functional polybasic (furin) cleavage 
site at the S1-S2 boundary through the insertion of 
12 nucleotides. Additionally, the acquisition of three 
O-linked glycans around the site, inexistent in pre-
vious SARS-CoV, confers high bounding capacity 
to this new version (17). After ACE2 engagement, 
SARS-CoV-2 employs the transmembrane protease 
serine 2 (TMPRSS2) for S protein priming, contribu-
ting to virus binding and indispensable for cell in-
vasion (25). SARS-CoV-2 mechanism of human cell 
invasion is unique and has not been described in any 
other known coronaviruses (1).

Cytokine Release Syndrome and SARS-CoV-2 
immunopathology

 Cytokine-release syndrome (CRS), also kno-
wn as a cytokine storm, represents an excessive pro-
liferation of immune cells resulting in an enhanced 
inflammatory cytokine release, tissue damage, and 
ultimately multi-organ and system failure (28). In 
SARS-CoV-2 infected patients, cytokines such as 
interleukin (IL)-1, IL-6, IL-10, tumor necrosis factor-
-alpha (TNF- α), and interferon-gamma (IFN- γ), are 
elevated (29, 30). Notably, higher IL-6 and IL-10 le-
vels have prognostic value for the disease, since they 
disclose a positive association with worse severity of 
the infection (29). Also, some cytokines, as IL-1β, IL-
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6, and TNF, may contribute to the augmented risk 
of coagulopathy during the infection, since they 
inhibit the protein-C-system, the tissue factor, and 
the antithrombin-mediated inhibition of thrombin 
(31).

 Besides CRS, two other mechanisms seem 
to contribute to the multi-organ dysfunction 
found in COVID-19, the T-cell dysregulation, and 
the hemophagocytic lympho-histiocytosis (sHLH) 
(29, 32). Despite the hyperactivated state of CD4+ 
and CD8+ T cells, decreased levels of these same 
cells in peripheral blood have been reported (33, 
34). The virus infects and destroys T cells, eliciting 
a deep lymphopenia, further aggravated by the in-
flammatory viral response that damages lympho-
poiesis and increases lymphocyte apoptosis (35). 

On the other hand, the sHLH consists of a misre-
gulated positive feedback loop between immune 
cells and cytokines, provoking tissue damage, and 
multi-organ failure (32).

 In the end, the proposed mechanisms of 
CRS, sHLH, and T-cell dysregulation morbidity eli-
cit organ-system failure syndromes, such as acu-
te respiratory distress syndrome (ARDS) or acute 
kidney injury (AKI), which by themselves increase 
the mortality rates in severe cases.

SARS-CoV-2 and multi-organ damage
SARS-CoV-2 pathogenesis has several deter-

minants to severe damage, firstly in the lungs and 
then with systemic dissemination. Table-2 summari-
zes the current pathological findings in COVID-19.

Table 1 - COVID-19 Clinical Manifestations.

Organ systems Mild disease Moderate disease Severe disease

Respiratory

Dry cough
Sore throat
Rhinorrhea
Sneezing

Pneumonia
Dyspnea

Hypoxemia

Hypoxemia
*ARDS

Neurological

Hyposmia-anosmia
Hypogeusia-ageusia
Visual disturbance

Fatigue, somnolence

Headaches
Nausea
Emesis

Dizziness
Myalgia
Ataxia

Encephalopathy

Large-vessel strokes
Seizures

Meningoencephalitis
Neuropathy

Guillain-Barré Syndrome
Neurogenic *ARDS

Coma

Gastrointestinal
Nausea, Emesis

Diarrhea
Heartburn

Loss of appetite
Abdominal pain

Distension

Hematemesis
Melena

Cardiovascular

Chest pain
Arrhythmia

Sinus tachycardia
Blood coagulation

Myocarditis
Arterial or venous 
thromboembolism

§CRS

Cardiomyopathy
Acute heart failure

Pulmonary embolism
+DIC

Urinary
Proteinuria
Hematuria

#AKI #AKI

Testis

Seminal abnormalities Scrotal discomfort
Epididymitis

Orchitis
Seminal abnormalities

Orchitis
Subfertility
Infertility?

Transient /Prolonged? 
Hypogonadism

Legends: *ARDS = Acute respiratory distress syndrome; §CRS = Cytokine release syndrome; +DIC: Disseminated intravascular coagulation; #AKI = Acute kidney injury 
References: (1, 2, 12-15, 20, 21, 33, 34, 36, 66)
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Table 2 - COVID-19 Pathological Features.

Organ systems Microscopic findings

Respiratory

*DAD
Lymphocytic infiltration in interstitial regions
Lung epithelial cell death by #NETs
Intra-alveolar fibrin deposition
Exudate formation
Viral particles within pneumocytes
Hyaline membrane formation
Cytoplasmic vacuolization in pulmonary arteries
Megakaryocyte with multinuclear appearance within the branching small vessels
Pulmonary microangiopathy
Small vessel thrombosis with alveolar hemorrhage
Thickening of alveolar capillaries
Bronchial epithelial denudation
Loss of cilia
Squamous metaplasia

Neurological 

Edema
Hyperemia
Reactive gliosis
Detectable viral particles
Hemorrhagic white matter
Axonal injuries
Leukocytic infiltration
§ADEM-like appearance
Neocortical microscopic infarcts
No infiltration of inflammatory cells or neural cell degeneration

Gastrointestinal

Lymphocytes infiltration in the esophageal squamous epithelium and lamina propria of the stomach, duodenum and 
rectum
Interstitial edema
Viral nucleocapsid protein in glandular epithelial cell of stomach, duodenum and rectum
Viral particles in infected patients’ stools

Cardiovascular

Myositis
Mild lymphomononuclear myocarditis
Fibrin microthrombi
Cardiomyocyte hypertrophy
Myocardial fibrosis
Myocyte necrosis near to lymphocytes
Infiltration of mononuclear leukocytes in interstitial areas
Endotheliitis

Urinary

Proximal +ATI
Luminal brush border sloughing
Vacuole degeneration
Tubular necrosis
Infiltration of lymphocytes and macrophages
Interstitial fibrosis in cortical parenchyma
∞MAC deposition in tubules
Mild focal tubular atrophy
Hypertrophy and hyperplasia of glomerular epithelial cells
Hemosiderin pigment granules in tubular epithelium
Podocyte vacuolation
Cellular swelling in infected renal tissues
&SER and &RER dilation
Infiltration of inflammatory cells in the arcuate artery
Dilated and swollen capillary vessels in glomeruli
Segmental fibrin thrombus in glomerular capillary loops
Endothelial hyperplasia
Foamy-like appearance of endothelial cells 

Testis

Orchitis with fibrin microthrombi
Mild lymphocytic inflammation
Reduced Leydig cell population
Substantial seminiferous tubular damage

Legends: *DAD = Diffuse alveolar damage; #NETs = neutrophil extracellular traps; §ADEM = Perivascular acute disseminated encephalomyelitis; +ATI: Proximal acute 
tubule injury; ∞MAC: Membrane attack complex; &SER: Smooth endoplasmic reticulum; &RER = Rough endoplasmic reticulum
References: (14, 15, 23, 35, 38-42, 47, 48, 67).
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Lungs
 In humans, SARS-CoV-2 usually accesses 

the airways and invades the alveolar space tissue, 
whose alveolar epithelial type II cells positively ex-
press ACE2 and TMPRSS2 (36). Later in the in-
fection, the virus infects pulmonary capillary 
endothelial cells, stimulating neutrophils and 
monocyte’s migration. Interstitial mononucle-
ar inflammatory cells infiltrate, causing alveolar 
space’s edema with early-onset intense hyaline 
membrane formation (35).

 Autopsies confirmed the scenario of pro-
liferative and exudative diffuse alveolar damage 
(DAD). Diffuse alveolar exudates express exuda-
tive DAD with septal edema, hyaline membranes, 
and mild to moderate lymphocytic infiltration. 
Simultaneously, proliferative DAD is described by 
a scarce, organized fibrous tissue within alveolar 
lumen and septa and is more prevalent in patients 
with a prolonged hospitalization period (37).

 Neutrophil extracellular traps (NETs) are es-
sential mediators of tissue damage in immune-me-
diated events such as COVID-19. NET’s release by 
viral-activated neutrophils promotes lung epithelial 
cell death in severe SARS-CoV-2 infection (38).

 Coagulation cascade activation and clotting 
factors consumption occur in severe cases, with the 
consequent microthrombi formation in pulmonary 
and systemic arteries, resulting in a pulmonary ven-
tilation-perfusion mismatch and peripheral ischemic 
events in critically ill patients (37, 39).

Heart
 As ACE2 is highly expressed in the car-

diovascular system, the probability of develo-
ping heart injury during SARS-CoV-2 infection 
is proportionally high. The virus interaction 
with ACE2 triggers a signal that unleashes a 
disrupted immunologic response, the Cytokine 
storm mentioned above, which probably be res-
ponsible for the cardiac damage (40).

 Some cardiovascular findings in autopsy 
studies remain with undetermined etiology, such 
as myositis, mild lymphomononuclear myocardi-
tis, and fibrin microthrombi. These lesions can be 
caused by the direct action of the virus, systemic 
inflammation, or shock. Other findings, such as 

cardiomyocyte hypertrophy and myocardial fibro-
sis, are related to patient’s comorbidities, like dia-
betes and hypertension (37).
Intestines

 Absorptive enterocytes from the ileum and 
colon positively express ACE2 receptors, specifically 
at the villous brush border, in smooth muscle cells of 
the intestinal muscular layers and vascular smooth 
muscle cells and endothelium (41). Besides proteo-
mic research shows that ACE2 was enhanced in in-
flammatory bowel diseases, there is no evidence for 
increased susceptibility for SARS-CoV-2 infection in 
patients with these comorbidities (42).

 A systematic review and meta-analysis of 
10.890 patients reported a prevalence of up 10% of 
gastrointestinal symptoms, such as nausea, vomi-
ting, abdominal pain and diarrhea, and up to 20% of 
abnormal liver enzymes in COVID-19 patients (43). 
SARS-CoV-2 particles are found in infected patient’s 
stools, and further research is mandatory to elucida-
te the usefulness of this finding in clinical manage-
ment and disease transmission chain (44).

Brain
 In the animal model, SARS-CoV invades 

the brain primarily via the olfactory bulb, and con-
sequently, transneural viral spread, and probably 
SARS-CoV-2 follows this neuroinvasion pathway 
(45). Additionally, ACE2 expression in cerebral vas-
cular endothelium and subsequent endothelial da-
mage could drive the virus another alternative brain 
pathway (46).

 Olfactory bulb invasion is responsible for 
anosmia and dysgeusia, while injured neurons wi-
thin the respiratory center in the brainstem may be 
partially responsible for respiratory symptoms in 
some patients (47). Autopsy specimens from diffe-
rent studies demonstrated that brain tissue of CO-
VID-19 patients presents with intense edema, hype-
remia, cerebral small-vessel disease, reactive gliosis, 
and detectable viral particles (32, 37, 48).

Kidneys
 In the urinary system, the kidneys repre-

sent the primary target organ for COVID-19 be-
cause of the up-regulated ACE2 and TMPRSS2 ex-
pression, chiefly in the proximal tubular cells and, 
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on a smaller scale, in podocytes (36, 49, 50). The 
prevalence of acute kidney injury (AKI) among 
infected patients is low and varies according to 
the severity of the disease, ranging in different 
studies from 0.5% to 7.0% in the overall analy-
sis and from 6.0% to 25% in patients who nee-
ded intensive care support or died (32, 51-53).

 The pathophysiologic mechanisms un-
derlying AKI in COVID-19 patients remain un-
clear, but three possibly interconnected pro-
cesses seem to be implicated, expressly the 
mentioned CRS, some systemic deleterious me-
tabolic alterations, and a multi-organ cross-talk 
damage (54). CRS can induce a cardio-renal 
syndrome type 1, marked by intra-renal inflam-
mation, cardiomyopathy, increased vascular 
permeability, and volume depletion, mediated 
predominantly by the pro-inflammatory IL-6 
(28). Factors that probably intensify cytoki-
ne generation in CRS are invasive mechanical 
ventilation, continuous kidney replacement 
therapy (CKRT), and extracorporeal membrane 
oxygenation (ECMO) (54).

 Critically ill patients frequently develop 
systemic complications, such as secondary in-
fections, hyperkalemia, metabolic acidosis, and 
rhabdomyolysis, contributing to hemodynamic 
instability and, consequently, to AKI genesis (54). 
During the SARS-CoV-2 infection, two organ 
cross-talk axes possibly involved in AKI patho-
physiology are the Lung-kidney and the Heart-
-kidney loops. In the Lung-kidney cross talk, in-
fected patients with the severe acute respiratory 
syndrome (SARS) produce higher levels of IL-6, 
which are associated with pulmonary hemorrha-
ge, medullary hypoxia, and tubular cell injury 
(55). During the CRS cardiomyopathy, characte-
ristic of the Heart-kidney cross-talk, renal vein 
congestion, hypotension, and, consequent, decre-
ase in glomerular filtration rate are also contribu-
ting factors to AKI development (54).

 In a systematic review with 11 studies 
(n=195 patients), just 5.74% (95% confident 
interval 2.88-9.44%) tested positive for SARS-
-CoV-2 RT-PCR in urine (56). Direct invasion of 
the urinary system and CRS-induced renal dys-
functions could be responsible for SARS-CoV-2 
shedding in urine (57).

Testis and Semen
 In the male reproductive tract, the tes-

tis had the highest ACE2 density (58, 59), and 
the receptor is widely expressed in Leydig, Ser-
toli-cells and spermatogonia (60). In humans, 
ACE2 acts as a physiological modulator for ste-
roidogenesis and a regulator of reactive oxygen 
species (ROS) formation, probably affecting the 
germ cell lineage (61, 62). ACE2 receptors have 
a strong influence on male reproductive func-
tion since fertile men have higher ACE2 levels 
than infertile subjects with severe spermatoge-
nesis impairment (63).

 Few reports demonstrated the testicu-
lar involvement during SARS-CoV-2 infection. 
In a case series of infected men with mild-to-
-moderate symptoms, almost 18% denounced a 
scrotal discomfort around the time of diagno-
sis (64). Simultaneously, a report described a 
case of orchiepididymitis in the setting of con-
firmed SARS-CoV-2 infection in a 14-year-old 
boy, whose clinical evolution happened without 
classical respiratory symptoms (65).

 Autopsy studies displayed testicular fin-
dings such as orchitis with fibrin microthrom-
bi, mild lymphocytic inflammation, reduced 
Leydig cell population, and a substantial semi-
niferous tubular damage (37, 66). In situ hy-
bridization has failed, at the moment, to find 
both SARS-CoV and SARS-CoV-2 in the testi-
cular tissue (50, 66-68), while there is a report 
of SARS-CoV-2 particle detection in one testis 
specimen by real-time polymerase chain reac-
tion (RT-PCR), possibly associated with high vi-
ral load (66). A testicular specimen analyzed by 
transmission electron microscopy (TEM) recen-
tly demonstrated the presence of SARS-CoV-2 
in a single autopsy of an infected COVID-19 
patient (69).

 Regarding the impact of COVID-19 on 
endocrine intratesticular function, an enhance-
ment in luteinizing hormone (LH) and conse-
quent decrease in total testosterone/luteinizing 
hormone (T/LH) ratio in infected men was re-
ported (69). This decreased T/LH ratio described 
was correlated to higher levels of C-reactive 
protein and higher values of white blood cell 
count, possibly meaning a transient stage of 
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hypogonadism, to be further confirmed by fu-
ture research (70).

 There is no current evidence of SARS-
-CoV-2 sexual transmission, and just in one 
study, the virus was detected by RT-PCR in six 
of 38 semen samples, two of which collected 
during the convalescent period (71). However, 
most studies fail to demonstrate the virus in 
the semen in acute and convalescent stages of 
COVID-19 (64, 69, 70, 72). Due to difficulties 
in collecting semen samples in the acute phase 
of the disease and due to the short expression 
of the virus in the body, the presence or absen-
ce of the SARS-CoV-2 in the ejaculate must be 
considered still an open question.

CONCLUSIONS

 The huge coronavirus family has been 
around for millennia and probably has infected 
Humanity many times in the past. XXI century 
facilities in transportation and increased popu-
lation densities in the urban environment worl-
dwide have given viruses comfortable easy-ride 
and increased chances for survival and repro-
duction, the ultimate desire of any living orga-
nisms. The downside of this evolutionary step 
forward in infectiousness capability is that Hu-
mans have not adapted to increased awareness 
for this new battlefield. We were caught by sur-
prise as in the first SARS-CoV infection in 2003, 
scientists were not given the right opportunity 
and incentives for research, and now Humanity 
is paying a high price. The pathophysiological 
consequences are largely still unknown. Men 
are more susceptible to developing more severe 
outcomes, including death, than women, which 
drives the attention to our field of Men’s Heal-
th specialists. Our goal is to alert and increase 
scientific knowledge, awareness, and prepared-
ness for future outbreaks.
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