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Abstract

Triacylglycerol synthesis is catalyzed by acyl CoA:diacylglycerol acyltransferase-2

(DGAT2). DGAT2 is an integral membrane protein that is localized to the endoplasmic retic-

ulum and interacts with lipid droplets. Using BioId, a method to detect proximal and interact-

ing proteins, we identified calnexin as a DGAT2-interacting protein. Co-immunoprecipitation

and proximity ligation assays confirmed this finding. We found that calnexin-deficient mouse

embryonic fibroblasts had reduced intracellular triacylglycerol levels and fewer large lipid

droplets (>1.0 μm2 area). Despite the alterations in triacylglycerol metabolism, in vitro

DGAT2 activity, localization and protein stability were not affected by the absence of

calnexin.

Introduction

Diacylglycerol acyltransferase (DGAT)-2 is an integral membrane protein that resides in the

endoplasmic reticulum (ER) where it catalyzes the final step of triacylglycerol (TG) biosynthe-

sis [1, 2]. DGAT2 has two transmembrane domains separated by a short loop (~5–8 amino

acids) that extends into the ER lumen [3, 4]. The first transmembrane domain contains an ER

targeting signal while the bulk of DGAT2 C-terminal to its second transmembrane is exposed

to the cytosol [4, 5].

DGAT2 catalyzes the formation of TG using fatty acyl coenzyme A (CoA) and 1,2-diacyl-

glycerol (DG) as substrates. TG is the major form of stored metabolic energy in eukaryotic

organisms that is sequestered in the hydrophobic core of cytosolic lipid droplets until it is

needed. Although present in the ER, DGAT2 also co-localizes with lipid droplets where it is

believed to catalyze localized TG synthesis for lipid droplet growth [2].

Chemical cross-linking experiments have demonstrated that DGAT2 is part of a high

molecular weight (~650 kD) complex [6]. In earlier studies, a protein complex was partially

purified from rat intestine that had DGAT, acyl CoA synthetase, acyl CoA hydrolase and

MGAT activities [7]. A similar protein complex was identified in oleaginous yeast [8]. In more

current studies, stearoyl CoA desaturase-1, fatty acid transporter-1 and monoacylglycerol acyl-

transferase-2 have been shown to interact with DGAT2, presumably channeling lipid
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substrates for efficient TG synthesis [6, 9, 10]. The purpose of this study was to identify addi-

tional proteins that interact with DGAT2. Using a biotin ligase/DGAT2 fusion protein, we

found that calnexin, an ER chaperone, interacts with DGAT2.

Methods

Antibodies

Rabbit anti-calnexin (Enzo Life Sciences: ADI-SPA-865), rabbit anti-DGAT2 (polyclonal anti-

body generated against the C-terminus of DGAT2 [4], mouse anti-PDI (Abcam: ab2792),

mouse anti-Myc (clone 9E10), goat anti-mouse IgG conjugated to Alexa Fluor 594 (Thermo

Fisher: A11005), mouse anti-FLAG (Sigma: F3165), goat anti-rabbit IgG conjugated to horse-

radish peroxidase (Bio-Rad Laboratories: 170–6515), goat anti-mouse IgG conjugated to

horseradish peroxidase (Bio-Rad Laboratories: 170–6516), rabbit anti-GAPDH (Stressgen),

streptavidin-Alexa Fluor 488 (Thermo Fisher: S11223), streptavidin-HRP (Thermo Fisher:

N100), mouse anti-HSP70 (heat shock protein 70; Thermo Fisher: MA3-028).

Cell culture

COS-7, HEK-293T and mouse 3T3-L1 pre-adipocytes (American Type Culture Collection)

were maintained in Dulbecco’s modified Eagle’s medium (DMEM) with 10% fetal bovine

serum in a 37 ˚C incubator with 5% CO2. Wild-type (Cnx2+/+) and calnexin-deficient (Cnx2–/
–) mouse embryonic fibroblasts (MEFs), were a gift from Dr. M. Michalak (University of

Alberta), and were maintained as described above [11].

Expression and detection of BioId/DGAT2

Murine DGAT2 was fused, in frame, to the C-terminus of Myc-BirA (BioId) [12], a gift from

Kyle Roux (Addgene plasmid #35700). HEK-293T cells were transfected with BioId/DGAT2,

in pcDNA3.1, using 0.1% polyethylenimine [4]. Biotinylation was stimulated by adding 50 μM

biotin to the cell culture media for 12 h. Cells expressing BioId/DGAT2 were lysed by passing

the cell suspension through a 27-gauge needle 20 times. Cell debris was pelleted by centrifuga-

tion at 1,000 x g and the cell lysate was transferred to a new tube. Equal volumes of cell lysate

and 2X Laemmli buffer with 5% β-mercaptoethanol were mixed and boiled for 5 min. Protein

samples were separated by SDS-PAGE (10%) and then transferred to a PVDF membrane.

BioId/DGAT2 and biotinylated proteins were detected with mouse anti-Myc (1:10 dilution)

and streptavidin-HRP (1:10,000 dilution), respectively.

Fluorescence microscopy

Cells cultured on glass coverslips were fixed with 4% paraformaldehyde in phosphate-buffered

saline (PBS) for 10 min followed by permeabilization of cellular membranes with 0.2% Triton

X-100 in PBS for 5 min at room temperature. Lipid droplets were detected by staining cells

with Bodipy 493/503 (Molecular Probes). Coverslips were mounted on glass slides with

mounting medium containing 4’,6-diamidino-2-phenylindole (DAPI) to visualize nuclei.

Images were obtained using a Zeiss LSM700 laser scanning confocal microscope. Image analy-

ses were done using Fiji [13]. For BioId experiments, cells were incubated with mouse anti-

Myc (1:50 dilution)/goat anti-mouse-594 (1:200 dilution) and streptavidin-488 (1:50 dilution)

to visualize the BioId/DGAT2 fusion protein and biotinylated proteins, respectively.
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Affinity purification of biotinylated proteins

Cells were lysed in 600 μL of 50 mM Tris-Cl (pH 7.4) containing 500 mM NaCl and 0.2% SDS.

Sixty microliters of 20% Triton X-100 was then added followed by probe sonication. Samples

were diluted by the addition of 4.32 mL of 50 mM Tris-Cl (pH 7.4) and re-sonicated. Insoluble

material was removed by centrifugation at 16,500 x g for 10 min and the solubilized material

was transferred to a fresh tube containing 50 μL magnetic streptavidin beads equilibrated in 50

mM Tris-Cl (pH 7.4) containing 250 mM NaCl and 0.1% SDS which was incubated overnight

at 4 ˚C. The magnetic beads were first washed with 1.5 mL 2% SDS, followed by 1% Triton X-

100, 1 mM EDTA, 0.1% deoxycholate, 500 mM NaCl in 50 mM Hepes (pH 7.5), and then with

0.5% deoxycholate, 0.5% Nonidet-P40, 1 mM EDTA 250 mM LiCl in 10 mM Tris-Cl (pH 7.4).

Beads were collected between each wash using a magnetic stand (Thermo Fisher). After wash-

ing, the beads were resuspended in 1.5 mL 50 mM Tris-Cl (pH 7.4).

To elute biotinylated proteins, the beads were pelleted and resuspended in 50 μL of 50 mM

ammonium bicarbonate (NH4HCO3). Beads were isolated using a magnetic stand and the

eluted proteins were transferred to a new tube. This step was repeated with 30 μL of 50 mM

NH4HCO3. An aliquot was analyzed by immunoblotting with streptavidin-HRP. Eluted pro-

teins were separated by SDS-PAGE and stained with Bio-Safe Coomassie Brilliant Blue G-250

stain (Bio-Rad). Protein bands of interest were excised from the gel and proteins were identi-

fied by mass spectrometry.

Protein identification by mass spectrometry

Gel slices were destained twice with 100 μL of 200 mM NH4HCO3 in 50% acetonitrile at 30 ˚C

for 20 min. Gel samples were then treated with acetonitrile for 10 min and dried with a speed-

vac. Proteins were reduced with 100 μL of 10 mM dithiothreitol in 100 mM NH4HCO3 and

incubated at 56 ˚C for 1 hour. Dithiothreitol was removed and replaced with 100 μL 100 mM

iodoacetamide and incubated at room temperature in the dark for 30 min. After washing twice

with 200 mM NH4HCO3, samples were shrunk with acetonitrile, re-swelled with 200 mM

NH4HCO3 and re-shrunk with acetonitrile. Samples were dried with a speed-vac and sequen-

tially re-swelled in 20 μL trypsin buffer (50 ng/μL trypsin in 1 mM hydrochloric acid and 100

mM NH4HCO3) and 30 μL of 200 mM NH4HCO3. Proteins were digested overnight at 30 ˚C

with shaking (300 rpm). Trypsin action was quenched with 1% trifluoroacetic acid and tryptic

peptides were extracted from gel slices in 100 μL of 0.1% trifluoroacetic acid in 60% acetoni-

trile. Extracted tryptic peptides were dried with a speed-vac and stored at -80 ˚C until analyzed

by mass spectrometry.

Mass Spectrometry (MS) Workflow

Tryptic peptide were reconstituted in 12 μL of MS grade water:acetonitrile:formic acid

(97:3:0.1 v/v). Insoluble material was removed by centrifugation at 18,000 x g for 10 min at 4

˚C. A 10 μL aliquot was used for liquid chromatography-tandem mass spectrometry (LC-MS/

MS) analysis. Mass spectral analyses were performed on an Agilent 6550 iFunnel quadrupole

time-of-flight (QTOF) mass spectrometer equipped with an Agilent 1260 series liquid chroma-

tography instrument and an Agilent Chip Cube LC-MS interface (Agilent Technologies Can-

ada). Chromatographic peptide separation was accomplished using a high-capacity Agilent

HPLC-Chip II: G4240-62030 Polaris-HR-Chip-3C18 consisting of a 360 nL enrichment col-

umn and a 75 μm × 150 mm analytical column, both packed with Polaris C18-A, 180Å, 3 μm

stationary phase. Samples were loaded onto the enrichment column with 0.1% formic acid in

water at a flow rate of 2.0 μL min-1. After loading onto the analytical column, peptides were

separated with a linear gradient solvent system consisting of solvent A (0.1% formic acid in
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water) and solvent B (0.1% formic acid in acetonitrile). The linear gradient was 3–25% solvent

B for 50 min and then 25–90% solvent B for 10 min at a flow rate of 0.3 μL min-1. Positive-ion

electrospray mass spectral data were acquired using a capillary voltage set at 1900 V, the ion

fragmentor set at 360 V, and the drying gas (nitrogen) set at 225 ˚C with a flow rate of 12.0 L

min-1. Spectral results were collected over a mass range of 250–1700 (mass/charge; m/z) at a

scan rate of 8 spectra s-1. MS/MS data were collected over a range of 50–1700 m/z and a set iso-

lation width of 1.3 atomic mass units. A maximum of 20 precursor ions were selected for auto

MS/MS at an absolute threshold of 3000 counts and a relative threshold of 0.01% with a 0.25

min active exclusion.

Peptide Identification

MS/MS spectral data were extracted from raw data and processed against the concatenated

SwissProt Human database (UniProt release 2016_06), using Spectrum Mill (Agilent Technol-

ogies Canada Ltd., Mississauga, ON, CA) as the database search engine. Search parameters

included a fragment mass error of 50 ppm, a parent mass error of 20 ppm, trypsin cleavage

specificity (two missed cleavages per peptide), and carbamidomethylation as a fixed modifica-

tion of cysteine. Oxidized methionine, carbamylated lysine, pyroglutamic acid, deamidated

asparagine, phosphorylated serine, threonine, and tyrosine and acetyl lysine were set as vari-

able modifications. Data were also searched using semi-trypsin non-specific C- and N-termi-

nus to increase protein identification. SpectrumMill validation was performed at peptide and

protein levels (1% false discovery rate, FDR). Background proteins that included keratins, his-

tones, and ribosomal proteins were removed and not analyzed further. Proteins identified

from parental HEK-293T cells were used to minimize false positive candidates [12, 14].

Co-immunoprecipitation

HEK-293T cells were transfected with plasmids containing FLAG-DGAT2 (FL-DGAT2) or

Myc-DGAT2. Twenty hours post-transfection, cellular material was solubilized with 0.5%

CHAPS detergent in PBS (detergent:protein ratio of 10:1). Insoluble material was removed by

centrifugation and the solubilized material was transferred to a fresh tube and diluted to 2 mL.

An aliquot (2.5% of the total) was removed to determine protein abundance (input). Anti-

FLAG agarose beads were added to the samples which were rotated for 3 h. Beads were washed

with 0.5% CHAPS in PBS and bound proteins were eluted with 70 μL 0.5% CHAPS in PBS

containing 150 ng/μL FLAG peptide. Thirty microliter aliquots of the immunoprecipitates

were analyzed by immunoblotting with anti-DGAT2, anti-calnexin and anti-PDI antibodies.

All experiments were performed at 4 ˚C.

Proximity ligation assay (PLA)

COS-7 cells expressing either FL-DGAT2 or Myc-DGAT2 were fixed and permeabilized as

described previously. To minimize non-specific binding of antibodies, cells were incubated

with 3% BSA in PBS, followed by rabbit anti-calnexin (1:200 dilution) and mouse anti-FLAG

(1:200 dilution) or anti-Myc antibodies (1:200 dilution) for 30 min. at 37 ˚C. The in situ prox-

imity ligation assay was performed according to manufacturer’s instructions (Olink Biosci-

ence). Cells were mounted on glass slides in mounting medium with DAPI to visualize nuclei.

Images were obtained and analyzed as described for fluorescence microscopy.
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Adipocyte differentiation

3T3-L1 pre-adipocytes were grown to confluence. Cells were then treated with 5 μg/mL insu-

lin, 500 μM 3-Isobutyl-1-methylxanthine, 1 μM dexamethasone and 10 μM troglitazone in

DMEM containing 10% FBS. After 24 h, cells were fed fresh differentiation media. At 96 h,

cells were incubated with 5 μg/mL insulin for 48 h followed by DMEM and 10% FBS with no

supplements.

In vitro DGAT assay

DGAT activity was determined by measuring the formation of N-[(7-nitro-2-1,3-benzoxadia-

zol-4-yl)-methyl]amino (NBD)-TG from NBD-palmitoyl-CoA [15]. The assay reaction mix-

ture consisted of 100 mM Tris-HCl (pH 7.6), 20 mM MgCl2, 0.625 mg/mL of BSA (fatty acid

free), 200 μM 1,2 dioleoyl-sn-glycerol, 25 μM NBD-palmitoyl CoA (Avanti Polar Lipids), 100

mM sucrose and 50 μg of protein sample in a final volume of 200 μL which was incubated at

37 ˚C for 10 min. The reaction was stopped with the addition of 4 mL chloroform/methanol

(2:1, v/v) and 800 μL of water. Reaction products in the organic phase were extracted and sepa-

rated by thin layer chromatography using the solvent system diethyl ether/hexane/methanol/

acetic acid (55:45:5:1, v/v/v/v). NBD-triacylglycerol was detected with a VersaDoc 4000 molec-

ular imaging system (Bio-Rad Laboratories, Inc.) and NBD-triacylglycerol levels were quanti-

fied with Quantity One software (Bio-Rad Laboratories, Inc.). To distinguish between DGAT1

and DGAT2, cell extracts were incubated with a selective DGAT1 inhibitor (PF-04620110,

Sigma) prior to DGAT assays being performed [16]. DGAT2 activity was the activity remain-

ing in the presence of inhibitor. DGAT1 activity = Total DGAT activity − DGAT2 activity.

Lipid analyses

Lipids from cell lysates were extracted from equal amounts of cellular protein (500–1000 μg)

with chloroform/methanol (2:1, v/v). Neutral lipids were then separated by thin-layer chroma-

tography with the solvent system hexane:ethyl ether:acetic acid (80:20:1, v/v/v). Lipids were

visualized by charring with 10% cupric sulfate/8% phosphoric acid and heating to 180 ˚C.

Lipid levels were quantified by densitometry.

Silencing of calnexin in HEK-293T cells

HEK-293T packaging cells were transfected with psPAX2, pMD2.G and pLKO.1 plasmids

containing two different calnexin shRNA sequences and a non-targeting control (NT). Media

containing lentivirus was collected 24 and 48 h post-transfection and was pooled and filtered.

Stable calnexin knockdown and non-targeted control cell lines were generated by transducing

HEK-293T cells with media containing lentivirus and 8 μg/mL polybrene for 24 h. Transduced

cells were selected with puromycin (2 μg/mL) and then used for experiments. The efficiency of

calnexin knockdown was assessed by immunoblotting.

Isolation of crude mitochondrial and microsomal fractions

Cells used for fractionation experiments were washed and resuspended in PBS (pH 7.4). Cells

were disrupted by 20 passages through a 27-gauge needle followed by centrifugation for 2 min

at 1,000 x g to pellet cellular debris and nuclei. The cell lysate was centrifuged for 10 min at

10,000 x g (4 ˚C) to pellet crude mitochondria (mitochondria and mitochondria-associated

membranes (MAM)). Crude mitochondria were resuspended in a solution of 50 mM Tris-

HCl (pH 7.4), 250 mM sucrose. The supernatant was centrifuged at 100,000 ×g for 60 min in a
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Beckman Ti-70.1 rotor at 4 ˚C to pellet microsomes, which were resuspended in 50 mM Tris-

HCl (pH 7.4), 250 mM sucrose.

Statistical analyses

Data are presented as mean ± S.D. unless otherwise indicated. Means were compared by analy-

sis of variance (ANOVA) and Tukey test.

Results

Identification of DGAT2-interacting proteins using BioId

To identify proteins that interact with DGAT2, a BioId fusion protein was constructed where

DGAT2 was fused in-frame to the C-terminus of a promiscuous biotin ligase, BirA� (Fig 1A)

[12]. Expression of the BioId/DGAT2 fusion protein in COS-7 cells confirmed that DGAT2

was still targeted correctly. In the absence of oleate, BioId/DGAT2 was present in the ER

where it co-localized with FL-DGAT2 (Fig 1B). When oleate was added to the culture media,

BioId/DGAT2 was present around lipid droplets (Fig 1C). Furthermore, like DGAT2, BioId/

DGAT2 stimulated the formation of large lipid droplets. Taken together, fusing DGAT2 to the

C-terminus does not appear to change its localization or function in cells. This is consistent

with experiments performed using an mCherry/DGAT2 fusion protein [4].

When biotin was added to the culture medium, with or without oleate, there was a strong

biotinylation signal that co-localized with BioId/DGAT2 both in the ER and around lipid

droplets (Fig 1D). No biotinylation signal was detected in cells not given exogenous biotin.

These biotinylated proteins represent possible interacting proteins of DGAT2.

To identify possible DGAT2 interacting proteins, BioId/DGAT2 was expressed in HEK-

293T cells. Expression was confirmed by immunoblotting with anti-Myc. The ~77 kDa fusion

protein was detected in cells transfected with BioId/DGAT2, but not in untransfected cells (Fig

2A). When samples were immunoblotted with streptavidin-HRP, multiple biotinylated pro-

teins were detected in BioId/DGAT2 expressing cell lysates that had been incubated with

50 μM biotin (Fig 2B). There was minimal biotinylation in untransfected cells or cells not

exposed to exogenous biotin.

Biotinylated proteins were isolated from solubilized cell extracts using magnetic beads cou-

pled to streptavidin. Several biotinylated proteins were detected in the streptavidin immuno-

precipitates from cells expressing BioId/DGAT2 that had been incubated with biotin (Fig 2C).

There was no obvious difference in the biotinylation pattern of cells treated with or without

oleate. Biotinylated proteins from cells treated with oleate were separated by SDS-PAGE and

stained with Coomassie blue (Fig 2D). Several unique proteins were observed in BioId/

DGAT2 expressing cells treated with biotin, that were absent from the controls. These bands

were excised, trypsinized and peptides were identified by mass spectrometry.

Mass spectrometry identified 512 unique BioId/DGAT2 proximal proteins that were not

detected in the control samples (S1 Table). The candidate DGAT2 interactors were selected

using the criteria of a false discovery rate of less than 1% and the detection of at least two

unique peptides.

Several studies have established a comprehensive list of proteins present in the lipid droplet

proteome. We compared these to our data set and identified 48 known lipid droplet proteins

(~9%) (S2 Table). This observation provides additional evidence that DGAT2 interacts with

lipid droplets and is proximal to proteins associated with this organelle. Interestingly, DGAT2

has not been identified in the numerous lipid droplet proteome studies from mammalian cells

and tissues.
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Fig 1. BioId/DGAT2 localizes to the ER and lipid droplets. (A) Murine DGAT2 was fused, in frame, to the C-

terminus of Myc-tagged biotin ligase. The resulting fusion protein is ~ 77 kDa. Detection of BioId/DGAT2 by

immunofluorescence microscopy. (B) COS-7 cells transfected with BioId/DGAT2 and was detected with anti-Myc

(red). ER was visualized by co-transfection of cells with FL-DGAT2 (green). (C) Cells expressing BioId/DGAT2 (red)

were treated with or without 0.5 mM oleate for 12 h. Lipid droplets were visualized with Bodipy 493/503 (green). (D)

Detection of biotinylated proteins. COS-7 cells expressing BioId/DGAT2 were cultured as described in (C) with or

without 50 μM biotin for 12 h. BioId/DGAT2 was detected with anti-Myc (red) and biotinylated proteins were

detected with streptavidin-488 (green). Scale bar = 10 μm.

https://doi.org/10.1371/journal.pone.0210396.g001
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Analysis of Reactome pathways with WebGestalt (http://www.webgestalt.org/option.php)

revealed that approximately 40 DGAT2-interacting proteins were overrepresented in both

membrane trafficking (R-HSA-199991; P value = 3.37 x 10−8) and vesicle-mediated transport

(R-HSA-5653656; P Value = 8.57 x 10−9) pathways (S3 and S4 Tables). Proteins involved in

both COPI and COPII coatomer mediated protein trafficking were identified. Protein traffick-

ing utilizing both pathways has been implicated in the movement of proteins to lipid droplets

[17–19].

We also identified 21 DGAT2 interactors that were overrepresented in the KEGG protein

processing pathways in the ER (HSA-04141; P value = 6.75e-09) (S5 Table). A cluster of pro-

teins in this network, that includes HSPA1A, DNAJB1, HSPH1, NGLY1, NPLOC4 and VCP,

are involved in ER-associated degradation. This is consistent with the findings that DGAT2 is

degraded via the proteasome in a ubiquitin-dependent manner [20, 21].

Fig 2. Affinity purification of proteins biotinylated by BioId/DGAT2. HEK-293T cells expressing BioId/DGAT2

were incubated with or without 50 μM biotin for 12 h. Cell lysates were immunoblotted with (A) anti-Myc and (B)

streptavidin-HRP to detect BioId/DGAT2 and biotinylated proteins, respectively. Control: cells expressing LacZ. (C)

HEK-293T cells expressing BioId/DGAT2 were incubated with or without 50 μM biotin and with or without 0.5 mM

oleate for 12 h. Biotinylated proteins were captured with magnetic streptavidin beads, separated by SDS-PAGE and

detected with streptavidin-HRP. (D) Separation of biotinylated proteins for in-gel digestion and mass spectrometry.

Biotinylated proteins from (C) were stained with Bio-Safe Coomassie Brilliant Blue G-250 stain.

https://doi.org/10.1371/journal.pone.0210396.g002
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Calnexin interacts with DGAT2

Our BioId screen identified calnexin as a DGAT2 interacting protein (Table 1). Calnexin, in

addition to calreticulin, are ER chaperones that were also overrepresented in the KEGG path-

way described above. Calnexin assists in the proper folding of glycoproteins in the ER and

modulates calcium homeostasis [22]. Calnexin was of interest as it is an integral membrane

protein that, like DGAT2, has been found to be associated with lipid droplets and is enriched

in mitochondrial associated membranes [2, 23, 24].

The interaction of DGAT2 with calnexin was confirmed by two additional independent

methods. Using co-immunoprecipitation and mass spectrometry, six unique calnexin peptides

were identified in FL-DGAT2 immunoprecipitates from HEK-293T cells expressing

FL-DGAT2 (Fig 3A and Table 2). Calnexin was not identified in the control sample, which

was an anti-FLAG immunoprecipitate of Myc-DGAT2 expressed in HEK-293T cells. Calnexin

was also detected with an anti-calnexin antibody in the anti-FLAG immunoprecipitates from

cells expressing FL-DGAT2, but not Myc-DGAT2 (Fig 3B). Unlike calnexin, another resident

ER protein, protein disulfide isomerase, was not detected in the anti-FLAG

immunoprecipitates.

The DGAT2/calnexin interaction was also confirmed in situ using a proximity ligation

assay [25]. COS-7 cells expressing either FL-DGAT2 or Myc-DGAT2 were fixed, permeabi-

lized and then incubated with mouse anti-FLAG and rabbit anti-calnexin antibodies. Modified

secondary antibody probes were then added that will interact if they are in close proximity,

producing a red fluorescent signal. A fluorescent interaction signal was only detected when

FL-DGAT2, and not Myc-DGAT2, was expressed, indicating that DGAT2 and calnexin were

in close proximity to each other (< 40 nm) (Fig 3C). These data confirm our BioId and co-

immunoprecipitation experiments and provide additional evidence that DGAT2 and calnexin

interact in intact cells.

Calnexin levels increase during adipocyte differentiation

The interaction between calnexin and DGAT2 suggested that calnexin may have an under-

appreciated role in lipid metabolism, including adipocyte differentiation. The differentiation

Table 1. Calnexin (Q16094) peptides identified by BioId/DGAT2 biotinylation.

Sequence Observed Mass Actual MH+ Charge Peptide Score

(K)AEEDEILNR(S) 544.766 1088.522 2 16.3

(K)TGIYEEK(H) 420.211 839.414 2 13.7

(R)EIEDPEDR(K) 501.723 1002.437 2 15.7

(R)KPEDWDERPK(I) 433.884 1299.633 3 15.4

(R)PVIDNPNYK(G) 530.278 1059.547 2 13.5

(R)CESAPGCGVWQR(P) 703.802 1406.594 2 9.3

(K)AADGAAEPGVVGQ(M) 571.278 1141.548 2 8.5

(K)RPDADLK(T) 407.726 814.442 2 8.4

(K)TYFTDK(K) 387.6887 774.367 2 12.1

(K)TDAPQPDVK(E) 485.7463 970.484 3 11.9

(K)AKKDDTDDEIAK(Y) 450.2275 1348.659 3 9.2

(K)GLVLMSR(A) 388.2291 775.449 2 11.4

(K)TPELNLDQFHDK(T) 486.2428 1456.707 3 10.7

(K)HHAISAK(L) 382.2144 763.421 2 10.1

(K)AEEDEILNRSPR(N) 503.5648 1428.708 3 13.7

https://doi.org/10.1371/journal.pone.0210396.t001
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Fig 3. Identification of calnexin as a DGAT2 interacting protein by co-immunoprecipitation and mass

spectrometry. (A) HEK-293T cells were transfected with either FL-DGAT2 or myc-DGAT2. FL-DGAT2 was

immunoprecipitated with anti-FLAG agarose from detergent solubilized material. Immunoprecipitates (IP) were

separated by SDS-PAGE and were then probed with anti-DGAT2. (B) Calnexin, but not PDI, was detected in anti-

FLAG immunoprecipitates by immunoblotting. HC; heavy chain. (C) Interaction of DGAT2 and calnexin was

detected in situ using a proximity ligation assay. COS-7 cells expressing either FL-DGAT2 or Myc-DGAT2 were

stained with mouse anti-FLAG and rabbit anti-calnexin antibodies. Interaction signals (red) were detected using a

Duolink detection kit. Nuclei were stained with DAPI (blue). Scale bar = 10 μm.

https://doi.org/10.1371/journal.pone.0210396.g003
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of 3T3-L1 cells into adipocytes involves significant changes in gene expression, lipid and mem-

brane synthesis and the cellular proteome [26–29]. We examined calnexin abundance during

adipocyte differentiation. After 7 days of differentiation calnexin protein levels increased

~4-fold (Fig 4).

Cells lacking calnexin have altered lipid droplet morphology

To determine if the ER chaperone has a role in lipid droplet formation, wild-type (Cnx+/+)

mouse embryonic fibroblasts (MEFs) and calnexin-deficient MEFs (Cnx–/–) (Fig 5A) [11] were

incubated with 0.5 mM oleate to stimulate lipid droplet formation. While there was no differ-

ence in total lipid droplet number, there was a noticeable absence of large lipid droplets

(>3 μm2 area) in Cnx–/– cells (Fig 5B–5D). Instead, these cells had an increased number of

smaller lipid droplets (<0.3 μm2 area).

The decrease in lipid droplet size suggested that the TG content of cells lacking calnexin

would be reduced as well. Indeed, calnexin-deficient cells had a ~ 33% reduction in TG levels

compared to wild-type cells cultured with 0.5 mM oleate (Fig 5E). The decrease in intracellular

levels of TG could not be accounted for by altered DGAT activity. In vitro DGAT1 and

DGAT2 activities were not affected by the absence of calnexin (Fig 5F).

The subcellular localization and stability of DGAT2 are not altered by the

absence of calnexin

Calnexin may function as a chaperone for DGAT2 facilitating its localization to MAM and/or

lipid droplets. To test this, calnexin was silenced in HEK-293T cells using RNA interference.

HEK-293T cells transduced with shRNAs for calnexin led to an ~80% decrease in calnexin

abundance, compared to the non-targeted control (Fig 6A). Subcellular fraction experiments

showed that DGAT2 was enriched in the crude mitochondrial fraction relative to the micro-

somal fraction, indicating that its localization to MAM is not calnexin-dependent (Fig 6B).

Similarly, DGAT2 was localized to lipid droplets in calnexin knockdown cells (Fig 6C).

DGAT2 is rapidly degraded in cells by the proteasome in a ubiquitin-dependent manner

[21]. We observed that FL-DGAT2 was present at higher levels in calnexin knockdown cells

suggesting that DGAT2 degradation may be impaired in the absence of calnexin (Fig 6A and

6B). To determine if calnexin has a role in DGAT2 degradation, we examined DGAT2 stability

in calnexin knockdown cells. After blocking new protein synthesis with cycloheximide, we

found no difference in the rate of DGAT2 degradation in the presence or absence of calnexin

(Fig 6D and 6E).

Table 2. Calnexin (Q16094) peptides identified by co-immunoprecipitation of DGAT2.

Sequence Observed Mass Actual MH+ Charge Peptide Score

(K)AEEDEILNR(S) 544.7694 1088.522 2 15.3

(R)KIPNPDFFEDLEPFR(M) 621.9829 1863.928 3 13.7

(R)IVDDWANDGWGLK(K) 744.8631 1488.712 2 18.2

(K)IPDPEAVKPDDWDEDAPAK(I) 703.3335 2107.982 3 18.3

(R)GTLSGWILSK(A) 531.3033 1061.599 2 18.2

(K)APVPTGEVYFADSFDR(G) 590.9529 1770.833 3 16.7

https://doi.org/10.1371/journal.pone.0210396.t002
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Fig 4. Calnexin protein abundance during mouse 3T3-L1 adipocyte differentiation. Cell lysates were prepared from

3T3-L1 cells at different days of adipocyte differentiation. Protein samples were separated by SDS-PAGE and

immunoblotted for calnexin and GAPDH. Data are the mean of three experiments. �, p<0.01, Day 0 versus Days 4 and 7.

https://doi.org/10.1371/journal.pone.0210396.g004
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Discussion

In this study, proximity-dependent biotin labeling (BioId) was used to identify proteins that

interact with DGAT2. Of the candidate DGAT2-interacting proteins identified, calnexin was

of interest as it is an integral membrane protein that, like DGAT2, has been found to be associ-

ated with lipid droplets and is enriched in MAM [2, 23, 24, 30–33]. MAM is a specialized ER

subdomain in physical contact with the outer mitochondrial membrane. This close apposition

Fig 5. Reduced lipid droplet size in calnexin-deficient MEFs. (A) Immunoblot showing that calnexin was not detectible in Cnx2–/–

MEFs. (B) Cnx2+/+ and Cnx2–/– MEFs were incubated with 0.5 mM oleate for 12 h and then stained with Bodipy 493/503 and DAPI.

Scale bars, 10 μm. Lipid droplet number (C) and area (D) were quantified using ImageJ (National Institutes of Health, rsb.info.nih.

gov/ij). �, p<0.001, Cnx2+/+ versus Cnx2–/– MEFs. Mean lipid droplet number per cell and lipid droplet area were calculated from 17

to 25 cells. (E) Lipids were extracted from Cnx2+/+ and Cnx2–/– MEFs treated with or without 0.5 mM oleate for 12 h. Data are the

mean of three experiments performed in duplicate. �, p<0.001, Cnx2+/+ versus Cnx2–/– oleate-loaded MEFs. (F) In vitro DGAT1 and

DGAT2 activities from Cnx2+/+ and Cnx2–/– cell extracts. Data are the mean of two experiments performed in triplicate.

https://doi.org/10.1371/journal.pone.0210396.g005
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Fig 6. The subcellular localization and stability of DGAT2 is not altered in the absence of calnexin. (A) Immunoblot with anti-

calnexin showing the efficient silencing of calnexin in HEK-293T cells with shRNAs (top panel). The control (NT) refers to HEK-

293T cells transduced with a non-targeting shRNA. The bottom panel shows non-targeted and calnexin knockdown cells transiently

transfected with FL-DGAT2 (2 right lanes). Untransfected cells (Untrans.) are the 2 left lanes. (B) Total cell extracts (TCE), crude

mitochondria (Cr. Mito.) and microsomes (Micro.) were separated by SDS-PAGE and immunoblotted with anti-FLAG, anti-PDI

and HSP70 antibodies. (C) Non-targeted and calnexin knockdown cells were transfected with FL-DGAT2 and treated with 0.5 mM

oleate for 12 h. After fixation and permeabilization, cells were stained with anti-FLAG and BODIPY 493/503 to visualize lipid

droplets. Scale bars: 10 μm. (D) 100 μg/mL CHX was added to the culture medium of HEK-293T (non-targeted and calnexin
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of membranes is believed to facilitate the intracellular transport of lipids between the ER and

mitochondria [34–36]. The calnexin-DGAT2 interaction was confirmed by co-immunopre-

cipitation and proximity ligation assay.

Calnexin is most well-known for assisting in the proper folding of glycoproteins in the ER

[22]. It also monitors the assembly of transmembrane domains in the ER membrane and

binds to misfolded regions in a glycan-independent manner [37]. Calnexin has more recently

been proposed to have functions unrelated to protein folding as it interacts with several cyto-

plasmic proteins involved in signaling and lipid metabolism [38–40]. For example, PTP-1B is a

tyrosine phosphatase that is tightly bound to the ER membrane via a hydrophobic domain

reminiscent of DGAT2 [3, 41]. The interaction of PTP-1B with the ER is dependent on cal-

nexin [40]. Interestingly, PTP-1B was present in our BioId/DGAT2 data set providing addi-

tional evidence that DGAT2 is found in close proximity to calnexin.

Calnexin also interacts with a cytosolic N-myristoyltransferase retaining it at the ER mem-

brane [39]. The co-translational attachment of myristate to the N-terminal glycine of a protein

has been implicated in a diverse array of processes including cell signaling, protein-membrane

and protein-protein interactions [42, 43].

The interaction of calnexin with DGAT2 suggested that this ER chaperone has a role in

modulating DGAT2 function, especially since they are both localized to MAM and lipid drop-

lets. Our experiments showed that in the absence of calnexin, the number of large lipid drop-

lets in mouse embryonic fibroblasts was decreased, with a corresponding decrease in

intracellular TG. However, DGAT2 activity was not altered, suggesting that calnexin does not

directly modulate DGAT2 activity. Our experiments to show that calnexin had no role in local-

izing DGAT2 to lipid droplets and MAM, or in DGAT2 degradation, were also negative. How-

ever, it is possible that other ER chaperones partially compensate for the absence of calnexin.

Human T lymphoblastoid cell lines lacking calnexin have modest increases in BiP and calreti-

culin protein levels [44]. Both of these proteins were also identified as possible DGAT2 interac-

tors (Table 1).

The changes in TG metabolism and lipid droplet morphology that we observed in Cnx2–/–

MEFs may have been caused by the accumulation of misfolded proteins [11]. Cnx2–/– MEFs

have increased constitutively active ER stress and proteasomal activity which most likely

results in the chronic alteration of metabolic pathways resulting in decreased TG levels [11]. In

adipocytes, pharmacological induction of ER stress activated lipolysis with a corresponding

reduction in lipid droplet size [45, 46]. Alternatively, the absence of calnexin may have affected

the biochemical reactions of the TG biosynthetic pathway upstream of DGAT2 leading to

reduced TG synthesis.

Unfortunately, we were not able to determine the significance of the interaction of calnexin

with DGAT2 in this study. Going forward, it will be important to map the regions of DGAT2

and calnexin that interact, since most of DGAT2 is present in the cytosol, while most of cal-

nexin is in the ER lumen [3, 4, 47]. It will also be important to determine if the dynamics of

this interaction is altered during oleate-stimulated lipid synthesis. This is something that our

experiments did not address. In conclusion, calnexin is dispensable for lipid droplet formation,

although in its absence lipid droplet morphology is altered.

knockdown) cells expressing FL-DGAT2. Cells were harvested 0, 1 and 3 h after the addition of CHX. The amount of FL-DGAT2

and calnexin present after CHX treatment was determined by immunoblotting. (E) Quantification of the data in Fig 6E. Data are the

mean of three independent experiments, performed in triplicate.

https://doi.org/10.1371/journal.pone.0210396.g006
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