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Background: The development of whole genome bisulfite sequencing has made it possible to identify methylation
differences at single base resolution throughout an entire genome. However, a persistent challenge in DNA
methylome analysis is the accurate identification of differentially methylated regions (DMRs) between samples.
Sensitive and specific identification of DMRs among different conditions requires accurate and efficient algorithms,
and while various tools have been developed to tackle this problem, they frequently suffer from inaccurate DMR

Results: We present a novel Histogram Of MEthylation (HOME) based method that takes into account the inherent
difference in the distribution of methylation levels between DMRs and non-DMRs to discriminate between the two
using a Support Vector Machine. We show that generated features used by HOME are dataset-independent such
that a classifier trained on, for example, a mouse methylome training set of regions of differentially accessible
chromatin, can be applied to any other organism'’s dataset and identify accurate DMRs. We demonstrate that DMRs
identified by HOME exhibit higher association with biologically relevant genes, processes, and regulatory events
compared to the existing methods. Moreover, HOME provides additional functionalities lacking in most of the
current DMR finders such as DMR identification in non-CG context and time series analysis. HOME is freely available

Conclusion: HOME produces more accurate DMRs than the current state-of-the-art methods on both simulated
and biological datasets. The broad applicability of HOME to identify accurate DMRs in genomic data from any
organism will have a significant impact upon expanding our knowledge of how DNA methylation dynamics affect
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Background

DNA methylation plays an important role in the regula-
tion of various cell functions including genomic imprint-
ing,  X-chromosome inactivation and cellular
differentiation [1-3]. However, analysis of DNA methy-
lation presents various challenges as the modification is
highly dynamic in space and time [4, 5]. DNA
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methylation levels vary between distinct genomic fea-
tures such as promoters, enhancers, gene bodies, trans-
posable elements, and repeat elements [6-12].
Furthermore, widespread variation in the distribution of
DNA methylation has been observed between different
cell types, cell lines, tissues, individuals and species [13—
18]. Moreover, the distribution of DNA methylation is
not uniform across all cytosines in the genome. In mam-
mals, DNA methylation predominantly occurs in the CG
dinucleotide context, however multiple studies have un-
covered the presence of non-CG (CH, where H=A, T,

© The Author(s). 2019 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to

the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver
(http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.


http://crossmark.crossref.org/dialog/?doi=10.1186/s12859-019-2845-y&domain=pdf
http://orcid.org/0000-0001-6637-7239
https://github.com/ListerLab/HOME
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
mailto:ryan.lister@uwa.edu.au

Srivastava et al. BMC Bioinformatics (2019) 20:253

or C) methylation in certain cell types including embry-
onic stem cells and brain cells [5, 9, 19, 20]. In contrast,
DNA methylation in plants occurs in all sequence con-
text, namely CG, CHG, and CHH [10]. Furthermore,
CH methylation is often found at much lower levels
compared to CG methylation, as measured by the pro-
portion of reads displaying methylation, making the ac-
curate analysis of CH DNA methylation more
challenging given the typical sequencing depth of experi-
ments to date.

High-throughput sequencing methods such as whole
genome bisulfite sequencing (WGBS) have been devel-
oped to provide detection and quantitative measurement
of DNA methylation at single base resolution through-
out whole genomes [9, 21]. Sodium bisulfite treatment
of genomic DNA converts cytosines, but not methylcy-
tosines, into uracils, and during subsequent PCR ampli-
fication of the bisulfite treated DNA the uracils are
replaced by thymines. High-throughput sequencing of
bisulfite converted DNA and alignment to a reference
genome enables the methylation level of any covered
cytosine to be computed by counting the number of
methylated and unmethylated bases in reads that cover
that cytosine position. Sensitive and accurate DMR de-
tection from such data is important in characterization
of the differences and dynamics of DNA methylation
state, exploration of potential roles in genome regula-
tion, and as disease biomarkers [22]. However, accurate
DMR detection remains a significant challenge. Most of
the existing DMR identification methods such as bsseq
[23], RADMeth [24], MACAU [25] and BiSeq [26] are
more appropriate to identify DMRs when two or more
replicates are available for each of the treatment groups
[27]. Other methods such as Comet [28] and swDMR
[29] have been developed to identify DMRs for single
replicate treatment groups. Two of the recently devel-
oped methods, DSS and DSS-single [30, 31] (referred to
as DSS hereafter), and Metilene [32] can be used for sin-
gle or multiple replicate treatment groups and have been
shown to outperform the aforementioned methods.
However, both of these methods are limited to DMR
identification between two treatment groups and can-
not be directly used for more complex experimental
designs with multiple groups and/or time points.
Moreover, multiple characteristics need to be consid-
ered for accurate prediction of DMRs, including
spatial correlation present between neighboring cyto-
sine sites, sequencing depth that takes into account
sampling variability that occurs during sequencing,
and biological variation among replicates of treatment
groups [23, 27, 33, 34]. Most of the DMR identifica-
tion tools described above do not consider either all
or some of the characteristics required for accurate
prediction of DMRs.
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To overcome these limitations we have developed
HOME, a novel DMR finder that takes into account im-
portant characteristics such as cytosine spatial correl-
ation, sequencing depth, and biological variation
between replicates for predicting accurate DMRs for
both single and multiple replicate treatment groups.
HOME utilizes high quality orthogonal datasets such as
differential ATAC-seq peaks or differentially expressed
genes that are available for samples, for which accom-
panying DNA methylome data is utilized to generate the
training data. Moreover, HOME is computationally very
efficient for predicting DMRs in the CH context, where
the number of potential sites of methylation in the gen-
ome are significantly greater than in the CG context.
Furthermore, HOME has the functionality to identify
DMRs in time-series data to accurately identify temporal
changes in DNA methylation state. A detailed compari-
son of HOME with the most commonly used method,
DSS, and a recently developed method, Metilene, dem-
onstrates that HOME achieves high performance on
both simulated and biological data. HOME outperforms
both DSS and Metilene by predicting more accurate
DMR boundaries and having lower false positive and
false negative rates.

Methods

The method developed here approaches the problem of
DMR identification from the perspective of binary classi-
fication in machine learning, classifying a region as
DMR or non-DMR using a Support Vector Machine
(SVM) classifier [35]. Features that distinguish the
DMRs from non-DMRs are used to train the classifier
for automated prediction of DMRs in unseen datasets.
Successful  employment of a  supervised or
semi-supervised learning algorithm requires access to a
high quality training dataset. Due to the lack of a bio-
logical dataset with known DMRs and non-DMRs, we
generated a training dataset using publicly available
DNA methylomes and associated complementary data-
sets from the same biological samples such as differen-
tial Assay for Transposase Accessible Chromatin
sequencing (ATAC-seq) peaks or RNA-seq data that has
been shown to have strong correlation with DNA
methylation [36]. ATAC-seq peaks mark the regions of
open chromatin which are strongly associated with low
methylation levels [36]. Therefore, differential ATAC-seq
peak locations between treatment groups can be used to
determine locations of potential DMRs, allowing selec-
tion of a training set based on orthogonal data. Similarly,
highly expressed genes are often associated with low
methylation levels and silenced genes are often associ-
ated with high methylation levels. Consequently, differ-
entially expressed gene locations between treatment
groups can be used as potential locations of DMRs. The
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regions excluding the differential ATAC-seq peaks or
differentially expressed genes can be used as potential
non-DMRs.

Training data generation

We used publicly available WGBS DNA methylation
data along with available complementary ATAC-seq or
RNA-seq data generated from the same biological sam-
ples to construct the training data [36]. We produced
two training datasets, for CG and CH methylation con-
texts, as they exhibit different methylation characteris-
tics. For the CG context, we used differential ATAC-seq
peaks between excitatory pyramidal neurons (EX) and
vasoactive intestinal peptide-expressing interneurons
(VIP) as potential DMRs (Additional file 1: Section 1.1).
To select robust and accurate training data, we used the
differential ATAC-seq peaks that exhibit high average
methylation difference (>0.3) and that were within the
size range of 500-2500 bp. For non-DMRs, we used re-
gions excluding the differential ATAC-seq peaks and
that exhibit low average methylation difference (<0.1).
Furthermore, we only selected the non-DMR regions
that lie within the size range of 500—-2500 bp. Note that
while we perform the filtering of the ATAC-seq peaks to
obtain more confident DMRs and non-DMRs for the
training set, it does not bias the training set in recogniz-
ing the DMRs and non-DMRs of any particular size or
pattern. This is because the cutoffs are applied at the re-
gion level on the entire differential and non-differential
ATAC-seq peaks and we use all the individual cytosines
within the selected regions as independent training sam-
ples for training the classifier (details in Section:
“Histogram computation”). The distribution of methyla-
tion level difference for all the cytosines in the training
dataset before and after filtering is shown in Additional
file 1: Figure S1.

For CH training data, differential ATAC-seq peaks did
not exhibit a clear methylation difference between
DMRs and non-DMRs. Therefore, we used RNA-seq
data showing differentially expressed genes between EX
and VIP neurons as DMRs. We selected differentially
expressed genes with the size range of 500—5000 bp and
average methylation difference >0.05 as DMRs. For
non-DMRs, we selected regions not containing differen-
tially expressed genes and size between 500 and 5000 bp
with an average methylation difference <0.02. The de-
tails on the number of training DMRs and non-DMRs
used for CG and CH context are provided in Additional
file 1: Tables S1 and S2, respectively. It is critical to note
that for classifier training, each individual cytosine site
(in the selected DMR and non-DMR) is an independent
training sample.

Thereafter, the important information, including the
methylation difference and the measure of significance

Page 3 of 15

for the difference in methylation level, are combined to
generate histogram features for each cytosine site in gen-
erated DMRs and non-DMRs.

Histogram computation

HOME uses novel histogram based features for identifi-
cation of DMRs. The method starts by combining the
Watson and Crick strand counts for mc and ¢ for the
CG context. For the CH context, no strand combination
is performed. Next, HOME computes the methylation
level difference between the two samples and estimates
the p-value for the difference at each cytosine. For train-
ing data, which has biological replicates within each
treatment group, p-values are computed using weighted
logistic regression to model methylation levels in rela-
tion to the treatment groups and variation between rep-
licates. More specifically, at a given cytosine site, we
model methylation level through weighted logistic re-
gression model. Logistic regression is used to estimate
the p-values for the methylation difference with a con-
tinuous predictor (methylation level) and a binary out-
come representing each treatment group.

Weighted logistic regression estimates the p-value for
the discriminatory ability of each cytosine to distinguish
between treatment groups with the chi-square test. The
test compares how well our model with intercept and
methylation level as a predictor fits the data as com-
pared to the null model that includes only the intercept.
We use z-test for p-value estimation in case of treatment
groups without replicate data. The underlying null hy-
pothesis for modeling p-values for both tests described
above is that methylation levels are the same among
treatment groups for a given cytosine. The alternative
hypothesis is that there is a difference in methylation
levels among the treatment groups. To account for un-
even read coverage, HOME uses a logistic function to
compute the weights for all cytosines for weighted logis-
tic regression. The weights are computed from ¢, such
that the range of weight is between 0 and 1 when calcu-
lating the p-value. More specifically, if the coverage is
low for a particular cytosine, its weight will be lower
compared to a cytosine with high coverage. Thereafter,
the absolute difference in methylation level at each cyto-
sine is weighted by its p-value (p) to compute a bin value
(b) as shown in Eq. 1 below.

b = |my-m,|.e17P) (1)

Where, m; and m, are the methylation levels of treat-
ment groups under comparison and exponentiation of
the 1-p allows smaller p-values to contribute more to
the produced bin value than larger (insignificant)
p-values. To account for the spatial correlation between
the neighboring cytosines, moving average smoothing
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(default: 3 cytosines) is performed for each chromosome
separately, on values of b to compute final bin value b;.
Thereafter, b, is scaled to range [0,1], for each chromo-
some, as shown in Eq. 2 below.

(bs_bs_ min)

bs - (bs, max‘bs, min)

(2)

The final bin values (b,) are then binned into a histo-
gram of 10 bins with the width of 0.1, to generate the
proposed novel histogram based features for each cyto-
sine, in generated DMRs and non-DMRs. We tested dif-
ferent bin sizes of 5, 10 and 20, and selected a bin size of
10 based on ROC curve for DMRs and non-DMR train-
ing data (Additional file 1: Figure S2 A & B). We used
DMRs and non-DMRs from chromosome 2, 4, 6, 8, and
10 for testing and remaining chromosomes for training.

The histogram feature is computed for every individ-
ual cytosine present in each DMR and non-DMR train-
ing data. For a given cytosine, to compute the histogram
feature, a fixed window of size w centered around it is
used where w is the number of cytosines in a window (w
is set to 11 for CG and 51 for CH context). We tested
different window sizes of 5, 11, 21 and 51 and selected a
window size of 11 for CG context as the ROC curve was
very similar for window sizes of 11, 21 and 51 (Add-
itional file 1: Figure S2 C and D). Similarly, we selected a
window size of 51 for the CH context. To capture the
spatial correlation between neighboring cytosine sites,
for each window, the bin values b, are binned using a
weighted voting approach such that for a given cytosine,
its contribution v to the bin is computed as a weighted
distance from the center cytosine which is normalized
by the maximum allowed distance as shown in Eq. 3
below.

‘l_lc|
y=1{1- d
0,

where, [ is the location of the cytosine being binned, /.
is the location of the center cytosine of w, and d (default:
250bp) is the normalization constant signifying the
maximum allowed distance from the center cytosine.
Consequently, the cytosines close to the center cytosine
will have higher weights and will contribute more to the
histogram feature. On the other hand, if the distance be-
tween the cytosine being binned and the center cytosine
of the window is larger than d, then that cytosine will
have zero contribution.

Next, for a given cytosine, a histogram feature is com-
puted by using b, and v for each cytosine in the window.
More specifically, b, defines the bin of the histogram in
which the contribution will be placed and v defines the
value of that contribution. Subsequently, the histogram

ili-L] < d} 5

otherwise
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feature vector is normalized such that the feature vector
sums to unity.

The schematic of the method described above is illus-
trated with an example DMR and non-DMR selected
from the training dataset in Fig. 1 (a-h). The proposed
histogram based features (Fig. 1d and h) show a clear
demarcation between DMRs and non-DMRs. In particu-
lar, the distributions of non-DMRs show low mean
values for the bins representing the higher difference in
methylation level (> 0.3), indicating low number of votes
falling in the bins that correspond to higher methylation
differences (Fig. 1i). In contrast, DMRs exhibit higher
differences in methylation level and have consistently
higher mean for bins that correspond to higher methyla-
tion differences (Fig. 1i). This indicates that the histo-
gram based features are highly discriminative between
treatment states, which makes the problem of DMR de-
tection suitable for machine learning analysis.

Training via SVM

The algorithm then uses the normalized histogram fea-
ture vectors described above to train a classifier based
on the label (DMR or non-DMR) provided for each indi-
vidual cytosine. We tested various classifiers such as
Random forest, SVM with linear kernel and SVM with
RBF kernel [37-39] and selected a linear classifier based
on the ROC curve (Additional file 1: Figure S2 E and F).
Moreover, linear SVM is computationally very efficient
and showed comparable performance to the more com-
putationally expensive non-linear RBF kernel and ran-
dom forest classifier (Additional file 1: Figure S2 E and
F). However, note that the most crucial aspect of the
training is the use of the novel highly discriminative nor-
malized histogram based feature vectors that robustly
discriminate between DMRs and non-DMRs. Hence, any
other classifier of choice can be used instead of linear
SVM without any significant changes to the proposed
method.

Testing and DMR prediction on new datasets

HOME requires input files containing basic information
of methylation, including chromosome numbers, gen-
omic coordinates, type of cytosine (CG, CHG, CHH),
and mc and t for cytosines.

Pairwise

HOME can be used to predict DMRs from methylomes
of two treatment groups with single or multiple repli-
cates. To predict the DMRs, the normalized histogram
features are computed for each cytosine on a particular
chromosome, which are then provided to the trained
SVM model to obtain the prediction scores that are nor-
malized using the logistic function from the generalized
linear model (GLM) to lie in the range [0,1]. Individual
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Fig. 1 Feature generation overview. (a) Methylation level of sample 1 (S1) and sample 2 (S2) for a DMR from the training set. The overlapping
fixed size window is used around individual cytosine (C) in the DMR for feature extraction. (b) Extracted features: p-value and difference in
methylation level for each CG site. (c) Histogram of scores computed from the extracted features and (d) histogram of normalized scores. (e)
Methylation level of ST and S2 for a non-DMR from the training dataset. The overlapping fixed size window is used around individual C in the
DMR for feature extraction. (f) Extracted features: p-value and difference in methylation level for each CG. (g) Histogram of scores computed from
the extracted features and (H) histogram of normalized scores. (i) Mean and standard deviation of histogram features for complete training data
for DMRs (blue) and non-DMRs (pink). (j) Testing and DMR prediction on new dataset

cytosines are grouped together into preliminary DMRs
based on the prediction scores (default: >0.1) and the
distance between neighboring cytosines (default: <500
bp). A low prediction score (< 0.1) from the classifier for
a cytosine site indicates low confidence in the site being
differentially methylated and a high prediction score (>

0.1) indicates high confidence in a site being methylated.
To produce the final DMRs, our method performs a
boundary refinement of the preliminary DMRs such that
boundaries are trimmed until k consecutive cytosines
(default: 3) have the value of the b (Eq.1) greater than or
equal to the defined threshold (default: 0.1).
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Time-series and multi-group comparisons

HOME can be used to predict DMRs from time-series
and multi-group studies. Given a number of time points
or treatments, n, a total of "C, pairwise combinations
are possiblee. HOME computes SVM prediction scores
for each of these pairwise combinations in the same
manner as for pairwise method described above. The
prediction scores are then normalized to lie in the range
[0,1] using the logistic function from the generalized lin-
ear model (GLM) to allow further analysis among all
pairwise comparisons. The scores are summed for each
cytosine to get a final score. The cytosines are then
grouped into DMRs.

In summary, once the SVM has been trained, the
histogram based features for new methylomes can be
computed, and HOME scans the entire methylome to
provide a prediction score (between 0 and 1) from the
SVM classifier for each cytosine site. Then, the individ-
ual cytosine sites are grouped together into DMRs based
on the user defined prediction score cutoff and the dis-
tance between neighboring cytosines. The testing and
DMR prediction on new dataset is shown in Fig. 1j.
Here, we independently applied HOME to both CG and
CH contexts, and compared its performance to two
other commonly used DMR finders, Metilene and DSS,
using both simulated and biological data. Furthermore,
we also show that HOME can be used for time-series
DMR analysis on biological data.

Results and discussion

Analysis of simulated DNA methylation data

The DMRs were simulated using the approach reported
by Dolzhenko and Smith [24]. For generation of simu-
lated data, we utilised the read coverage and CG site dis-
tribution from WGBS datasets of neuronal and
non-neuronal cell types [5]. Only the methylated reads
in the actual DNA methylation data were replaced by
the simulated reads, generated using the beta-binomial
distribution from the work of Rakyan et al. [40], as
followed by Dolzhenko and Smith. Equal numbers of
DMRs and non-DMRs (2142) were simulated with two
distinct beta binomial settings, each increasing in their
difficulty for identification. The number of Cs in simu-
lated DMRs were 49,442 and the number of Cs in simu-
lated non-DMRs were 1,395,693. The length distribution
of the simulated DMRs and non-DMRs is shown in
Additional file 1: Figure S3. For each setting two treat-
ment groups were simulated, each with three replicates
and 5 random simulations were performed to get more
accurate results. The read coverage for replicates was
taken from WGBS datasets of neuronal and
non-neuronal cell types [5]. For both settings, the
methylation level of cytosine sites in DMRs were gener-
ated from a beta distribution of (6,1.5) and a beta
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distribution of (1.5,6) for the two treatment groups, re-
spectively. For the first setting (class 1), the non-DMR
portion of the genome displayed a fixed methylation
level (0.7), with only DMRs showing variation from this
value. In the second setting (class 2), non-DMR cytosine
methylation level was simulated from beta parameters
(2,2), such that the methylation level was not fixed for
either DMRs or non-DMRs. As shown in Fig. 2a, class 1
showed no variation in methylation level for non-DMRs
between groups, and therefore DMRs are easier to iden-
tify for this class compared to class 2, which show vari-
ation both within and outside the DMR boundaries. To
demonstrate the difference between simulated class 1
and class 2 further, we plot the absolute methylation dif-
ference for both classes at the level of individual Cs
(Additional file 1: Figure S4A & B). For class 1, there is a
marginal overlap in absolute methylation difference be-
tween Cs in the DMRs and non-DMRs (Additional file 1:
Figure S4A). Whereas, for class 2 there is a significant
overlap in the absolute methylation difference between Cs
in the DMRs and non-DMRs (Additional file 1: Figure
S4B) and it is therefore much harder to detect DMRs of
class 2 than class 1.

We performed an extensive parameter search to iden-
tify settings for each DMR finder that resulted in the
best performance (Additional file 1: Section 1.2). Simu-
lated DMRs are predicted by all the DMR finders for
Class 1, however, HOME is more accurate in predicting
the boundaries, compared to DSS and Metilene. Pre-
dicted DMRs by DSS and Metilene, for class 2 DMRs,
are either fragmented or have inaccurate boundaries,
whereas, HOME identifies all DMRs with more accurate
boundaries (Fig. 2a).

Precise definition of DMR boundaries is essential
for accurate downstream analysis and biological inter-
pretation of differential methylation, for example
when associating DMRs to regulatory regions such as
promoters or enhancers to explore potential connec-
tions between methylation changes and local chroma-
tin state and transcription. Imprecise DMR boundary
identification will result in the inappropriate inclusion
in the DMR of cytosine sites that are not differen-
tially methylated, or exclusion of bona fide differen-
tially methylated cytosines. Consequently, mean
methylation levels calculated for all cytosines within a
DMR would be inaccurate, and analysis of genomic or
chromatin features at the DMR boundaries would be im-
precise. We evaluated the DMR boundary accuracy for all
three DMR finders by calculating the true positive rate
(TPR) and positive predictive value (PPV) for the range of
overlap (50-100%) between simulated and predicted
DMRs (Additional file 1: Section 1.3). TPR and PPV have
previously been used as performance metrics for compar-
ing DMR finders [32, 41]. PPV has been used instead of
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Fig. 2 Comparison of DMR detection methods (HOME, DSS and Metilene) on simulated data. (@) Browser representation showing the quality and
boundary accuracy of predicted DMRs by HOME, DSS and Metilene on two simulated classes. The horizontal bars indicate the DMRs. Simulated
DMRs (black) and the scale are the same for both classes. (b) The performance of HOME, DSS, and Metilene was assessed in terms of true positive
rate (TPR) and positive predictive value (PPV) for both classes. The plots show mean and standard deviation of TPR and PPV for 5 random
simulations. The evaluation was performed in terms of percent reciprocal overlap ranging from 50 to 100% between simulated and predicted
DMRs by HOME, DSS and Metilene for two classes

specificity as a measure of false positive rate, as methods
with high specificity may still return a large number of
false positive findings [41].

TPR is defined as the number of overlaps between
simulated and predicted DMRs out of total simulated
DMRs. PPV is defined as the number of overlaps be-
tween simulated and predicted DMRs out of all pre-
dicted DMRs. Both HOME and Metilene showed
higher TPR and PPV compared to DSS for both clas-
ses (Fig. 2b). For class 1, HOME and Metilene
showed comparable performance for both TPR and
PPV for 50-90% overlap between simulated and pre-
dicted DMRs (Fig. 2b). However, HOME outper-
formed Metilene in both TPR and PPV for 90-100%
overlap between simulated and predicted DMRs. This
demonstrates that HOME predicts more accurate
boundaries compared to DSS and Metilene. For Class
2, HOME showed higher TPR compared to DSS and
Metilene for 50-95% overlap between simulated and
predicted DMRs (Fig. 2b). HOME showed higher PPV
for all overlap ranges between simulated and pre-
dicted DMRs. Overal, HOME predicted the DMR
boundaries with very small margin of error compared
to both DSS and Metilene.

Analysis of performance on biological datasets

On biological datasets we tested the performance of differ-
ent DMR finders for pairwise comparisons (Section “Pair-
wise differential methylation analysis”) on boundary
accuracy and agreement with known biological knowledge.
For this, we used both plant and animal datasets as they
display different characteristics such as level of methyla-
tion, context, and length of DMRs. Importantly, the use of
biological knowledge to assess the performance of DMR
finders uses information from orthogonal experimental ap-
proaches that probe biological events that are highly associ-
ated with differential DNA methylation state. We consider
this to be a valuable additional approach to assess whether
DMRSs identified by different algorithms are associated with
changes in other genomic regulatory layers, in particular
for the DMRSs identified uniquely by each approach.

Pairwise differential methylation analysis

Accuracy: We compared the performance of HOME
with DSS and Metilene for the CG context on published
WGBS data [36] for two neuronal cell types: excitatory
pyramidal neurons (EX) and parvalbumin-expressing
fast-spiking interneurons (PV), each with two replicates.
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Among the DMR finders that were compared, DMRs
identified by HOME were less fragmented and exhibited
more accurate boundary detection compared to the
DMRs produced by the other finders (Fig. 3a), despite
equivalent DMR merging parameters being used for
each finder (Additional file 1: Section 1.4). DMRs pre-
dicted by HOME showed consistently higher methyla-
tion level differences inside the DMR boundaries when
compared to the other finders (Fig. 3b). For closer in-
spection of the above observation, the mean and stand-
ard deviation of the absolute methylation level difference
between analyzed samples for the 5 CG sites immedi-
ately inside and outside the DMR boundary is shown
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boundary CG site and CG sites inside the DMRs is
higher for HOME than DSS and Metilene (Fig. 3c), while
the mean methylation level difference for the CG sites
immediately outside the DMR boundaries is lower for
HOME as compared to DSS and Metilene. This demon-
strates the higher DMR border detection precision of
HOME on real biological datasets, as also observed for
the simulated WGBS data (Fig. 2b).

A more detailed comparison of the DMRs uniquely
predicted by each finder showed that DMRs uniquely
identified by HOME consistently had a higher methyla-
tion level difference for the CG sites located within the
DMRs (Fig. 3d). In contrast, DMRs uniquely predicted
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methylation difference for the CG sites within the
DMRs. Furthermore, the boundaries of the DMRs iden-
tified by HOME are more precise compared to DSS and
Metilene (Fig. 3d). To investigate the biological signifi-
cance of the uniquely predicted DMRs, we tested
whether the uniquely predicted DMRs identified by each
finder are located in the genomic regions that are relevant
to neuronal development and function. For this analysis,
phenotype and gene expression annotations provided by
the Genomic Regions Enrichment of Annotations Tool
(GREAT) were used [42]. Briefly, among the top 20 terms
produced by GREAT for gene expression and phenotype,
we counted the enrichment terms related to neuronal de-
velopment and function for uniquely predicted DMRs by
each finder. The significance of enrichment terms was
ranked according to the binomial distribution-based
P-values obtained from GREAT. A similar approach for
exploring biological functions of DMRs has been per-
formed previously [41]. The parameter details used for the
analysis are provided in Table 1. Among the top 20 terms
for phenotype annotation, 85% of terms for DMRs
uniquely predicted by HOME were directly related to
neural system functions. In contrast, terms related to
neural systems for DMRs uniquely predicted by DSS and
Metilene were 60 and 10% respectively. For associated
gene expression annotations provided by GREAT, we
found that uniquely predicted HOME DMRs were located
on or near to genes related to neuronal development and
function. Among the top 20 terms for gene expression an-
notation, 70% of terms for unique HOME DMRs were dir-
ectly related to neural system function. Terms related to
neural systems for unique DMRs by DSS and Metilene
DMRs were 35 and 15%, respectively (Table 1). The details
of phenotype and gene expression annotations are sum-
marized in Additional file 1: Figure S5.

To investigate the incidence of false positive DMRs
predicted by each finder, we permuted the labels among
the EX and PV WGBS samples to generate two artificial
datasets: (1) EX replicate 1 and PV replicate 1 (compris-
ing treatment group 1) versus EX replicate 2 and PV
replicate 2 (comprising treatment group 2), and (2) EX
replicate 1 and PV replicate 2 versus EX replicate 2 and
PV replicate 1 (comprising treatment groups 1 and 2 re-
spectively). Due to randomness in the shuffled data, it is
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expected that there will be shorter regions with contigu-
ous methylation level differences occurring by chance,
and these short regions will be identified by all methods
as DMRs. However, it is also expected that there will be
significantly fewer long DMRs in the shuffled data, be-
cause as the length of the DMRs increases the likelihood
of obtaining such DMRs due to random chance de-
creases rapidly. These shuffled datasets were analyzed
with HOME, DSS and Metilene, and as expected the
number of DMRs predicted by each method in compari-
son to the unshuffled data was significantly reduced
(Additional file 1: Figure S6 A & B). In addition, DMRs
identified by HOME in the shuffled data were smaller
and contained low number of CGs. In contrast, the
DMRs identified by DSS and Metilene were longer and
had a higher number of CGs per DMR and therefore are
more likely to be false positive DMRs (Additional file 1:
Figure S6 A & B).

To test the performance of HOME for detecting differ-
ential methylation in the CH sequence context, we used
WGBS datasets of neuronal and non-neuronal cell types
isolated from the frontal cortex of 7 week old male
mouse prefrontal cortex [5]. A genome browser view of
a representative genomic region showed that the CH
DMRs predicted by HOME between neurons (NeuN+)
and glia (NeuN-) were regions of contiguous hyper- or
hypo-methylation (Fig. 4a). The directionality of the
DMRs (hyper/hypo) are defined with respect to NeuN+
cells. We observed a high number of hyper-methylated
DMRs (429,421) in NeuN+ cells as compared to a very
low number of hypo-methylated DMRs (21,829) (Fig.
4b). These findings are consistent with previously pub-
lished results, where CH methylation accumulates to a
high level in neurons compared to glia [5, 36]. CH
DMRs predicted by HOME have accurate boundaries
with higher inter-sample methylation level difference at
and within DMR boundaries, and low methylation level
difference immediately outside the DMR boundaries
(Fig. 4b). Although the observed methylation difference
in hypo-methylated NeuN+ DMRs was very low (< 0.02),
gene ontology analysis using GREAT showed that these
DMRs were located in genomic regions related to neur-
onal development and function (Fig. 4c), suggesting that
the HOME CH DMRs are biologically relevant.

Table 1 Biological annotations of unique DMRs predicted by HOME, DSS and Metiene on the PV and EX methylome data. The top
20 terms were counted for neural system function related terms using the mouse phenotype annotation and MGI gene expression
annotation. No. of Cs refers to the minimum number of cytosines required in a DMR and delta refers to the absolute change in

methylation level

DMR Best results were obtained for below No. of DMRs after Phenotype (%) (terms counted Expression (%) (terms counted
finders threshold thresholding out of 20) out of 20)

HOME No. of Cs> 5 and delta >0.2 4721 85 70

DSS No. of Cs > 5 and delta > 0.25 3066 60 35

Metilene  delta > 0.15 2495 10 15
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To assess the generalizability of HOME performance
for species that have very distinct methylation patterns
and distributions compared to mammals, we next tested
the performance of HOME on Arabidopsis WGBS data,
comparing DNA methylation in wild-type (WT) and
CHROMOMETHYLASE 2 mutant (cmt2), a well
characterised mutant that exhibits differences in CH
methylation [43]. CMT2 is a functional non-CG methyl-
transferase, known to mediate DNA methylation at both
CHG and CHH context in vitro and in vivo [43, 44]. We
compared the performance of HOME with DSS, which

has previously been used for DMR prediction in plant
WGBS datasets [16, 45]. Note that we used the same
model that was trained on the mammalian WGBS data-
set for predicting the DMRs between ¢mt2 and WT, to
assess whether the trained model is generalizable. The
heatmap for all predicted DMRs by HOME and DSS
showed that HOME DMRs are more accurate in bound-
ary prediction than DSS, predominantly for the CG and
CHG contexts (Fig. 5a). Moreover, for the CHG context,
HOME detected a large number of DMRs (n = 13,402)
of a large median length DMRs (593 bp), whereas DSS
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only predicted small number of DMRs (n = 3083) with a
short median length (133 bp), indicating that HOME is
more sensitive for DMR detection over a greater range
of sizes. For the CHH context, the mean and standard
deviation of 5 cytosines upstream and downstream of
the predicted DMRs start and stop sites, respectively,
showed that the methylation level difference is high
within the DMR and low just outside the DMRs for
HOME (Fig. 5b). In contrast, DMRs predicted by DSS
showed similar mean and standard deviation of methyla-
tion level difference both inside and outside the DMR
boundaries (Fig. 5b). These results indicate more accur-
ate boundary prediction by HOME for all contexts.
Similarly, genome browser screenshots exemplify how
HOME DMRs are more precise than DSS DMRs for all
contexts (Additional file 1: Figure S7).

Furthermore, the heatmaps of DMRs predicted
uniquely by HOME exhibit more accurate boundaries
than DSS for all sequence contexts (Fig. 5¢). We further
examined the genomic distribution of the DMRs
uniquely predicted by HOME and DSS. Over 60% of
HOME CG DMRs were present in gene bodies, while
only a small fraction (<30%) of CHG and CHH DMRs
overlapped with gene bodies (Table 2). These results are
consistent with the distribution of DNA methylation in
plant genes, where gene bodies mainly exhibit CG
methylation [21, 43, 46]. Compared to HOME CG
DMRs, a smaller fraction (58%) of CG DMRs predicted
by DSS overlapped with gene bodies (Table 2). Non-CG
methylation plays an important role in silencing trans-
posable elements (TEs) [43]. Thus, it is expected that
most of the non-CG DMRs detected between WT and
cmt2 will overlap with TEs, given the role of CMT2 in
mediating methylating of TEs, particularly long TEs, in
the non-CG context. We found that >70% of CHG
DMRs and 50% of CHH DMRs predicted by HOME
overlapped with TEs, and only 21% of the CG DMRs
intersected with TEs (Table 2). On the other hand,
DMRs predicted by DSS showed a similar percentage
overlap with TEs to HOME for CG and CHG. However,
DSS showed significantly less overlap with TEs for the
CHG context (Table 2). Previous studies have shown
that cmt2 exhibits loss of non-CG methylation predom-
inantly at long TEs (>1kb) [43]. Hence, we further
inspected the location of uniquely predicted DMRs in
TEs. The overall genomic distribution of long TEs (> 1

Table 2 Percentage of uniquely predicted DMRs by HOME and
DSS in gene bodies and TEs for CG, CHG and CHH contexts
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kb) and short TEs (< 1 kb) in the genome is 20 and 80%,
respectively. A higher percentage of CHG and CHH
DMRs predicted by HOME overlapped with long TEs
than with short TEs (Table 3). The fraction of TEs (long
and short) that overlapped with HOME CG DMRs was
very small (<7%). For CHH DMRs both HOME and
DSS exhibited a similar overlap with TEs. Most CHG
DMRs predicted by DSS did not overlap either long or
short TEs, while a larger fraction of long TEs overlapped
CG DMRs predicted by DSS, compared to short TEs
(Table 3). Our results suggest that DMRs predicted by
HOME fit better with the known biological function of
cmt2, than DMRs predicted by DSS.

Runtime: The run time for HOME, DSS and Metilene
for all the analysis in Section: Accuracy is summarized
below. For DMR identification between neuronal cell types
(EX and PV) in the CG context, both DSS and HOME
showed very similar run time (~ 2 h), while Metilene com-
pleted in ~ 4 min. Because of a high computational runtime
requirement for both DSS and Metilene for the CH context
analysis, the run did not complete after 12 days of execu-
tion and had to be terminated, being deemed an unfeasible
analysis to undertake with compared methods given rea-
sonable timeframes for analysis. Therefore, the results for
DMR identification in the CH context (Section: Accuracy)
are only shown for HOME (runtime: 4 days). For the plant
dataset, HOME took 12 min to predict CG DMRs com-
pared to 27 min for DSS. For the CHG context DMRs, both
HOME and DSS showed similar execution times of 27 min,
while HOME was >3 times faster compared to DSS for
DMR prediction in the CHH sequence context, taking 2
and 7h, respectively. Overall, HOME showed similar or
better execution times compared to DSS and Metilene, par-
ticularly for non-CG context.

Time-series differential methylation analysis

An additional feature of HOME is the ability to predict
DMRs in time-series data. The HOME time-series ana-
lysis algorithm can be successfully used for identification
of DMRs in datasets where DNA methylation varies over
time or between development stages, for example, dur-
ing seed germination [47], cell reprogramming [48, 49],
and mammalian brain development [5]. Current

Table 3 Percentage of short (< 1kb) and long (> 1 kb) TEs that
overlap with uniquely predicted DMRs by HOME and DSS, for
CG, CHG and CHH contexts

Gene body TE Long TE (> 1 kb) Short TE (< 1 kb)
DMR finders CG CHG CHH CG CHG CHH DMR finders CG CHG CHH CG CHG CHH
HOME 67% 16.7% 29% 21% 72% 50% HOME 6% 69% 13% 0.9% 34% 8%
DSS 58% 31.7% 15% 27% 48% 52% DSS 13% 3% 12% 2% 0.3% 4%
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methods can be used to call pairwise DMRs for each
combination of groups in time-series data, and thereafter
the DMRs could be merged to obtain final predicted
time-series DMRs. However, taking this approach, the
complexity of all possible combinations increases and
becomes tedious for users, as the number of groups in-
creases in time-series data. With HOME, we provide an
easy and convenient way to compare many time points
with a single command. Moreover, the output of the
HOME time-series module contains many useful metrics
that allow users to trace methylation changes through
time and determine the stability or stochasticity of the
methylation state in the DMRs. For example, the output
summarizes the mean methylation level difference and
directionality of methylation level change, for each pair
combination in the time-series data.

We tested the performance of HOME on another
time-series dataset of mouse embryonic fibroblast (MEF)
reprogramming to induced pluripotent stem cells
(iPSCs) [50]. The dataset contains 6 time points: MEF,
day 3, day 6, day 9, day 12 and iPSCs. The browser rep-
resentations in Fig. 6, show that HOME is able to iden-
tify DMRs with gradual methylation changes effectively.

Conclusions

Here we present a novel histogram of methylation based
machine learning method to detect DMRs from single
nucleotide resolution DNA methylation data. Our
method treats the problem of DMR detection as a binary
classification problem and requires a high quality train-
ing dataset. Due to the lack of a biological dataset with
known DMRs and non-DMRs, we generated our own
training dataset using publicly available DNA methy-
lomes and complementary datasets such as differential
ATAC-seq peaks or differentially expressed genes.
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HOME showed more accurate DMR prediction and pre-
cise DMR boundary identification compared to both
DSS and Metilene. The key features of HOME are: (i)
novel histogram based features which combines import-
ant information such as methylation level difference,
measure of significance for the difference in methylation,
and distance between neighbouring cytosines; (ii) a ro-
bustly trained model that is effective for a wide variety
of species; (iii) a flexible method that can be used for
prediction of DMRs in both CG and CH contexts with
high border accuracy; and (iv) a tool that can identify
DMRs in time-series data.

The most important qualities of any DMR finder are
accurate prediction of DMR boundaries and low number
of spurious DMRs (false positives). HOME outperforms
both DSS and Metilene in both of these measures. One
of the reasons underlying the low false positive rate of
HOME is the use of biological training data for DMRs
and non-DMRs to train the classifier. In addition, the
histogram based features can robustly discriminate be-
tween DMRs and non-DMRs, thereby reducing the
probability of detecting spurious DMRs. Histogram
based features are also able to capture the information
present around each cytosine site with the use of
weighted voting, thereby, enabling accurate identification
of the DMR boundaries.

HOME accounts for biological variation present be-
tween the replicates and uneven read coverage through
weighted logistic regression while computing the
p-value. The spatial correlation present among neighbor-
ing cytosine sites is captured by moving average smooth-
ing and the use of weighted voting for histogram based
features. We demonstrate that HOME can be used to
predict accurate DMRs in both CG and non-CG (CHG
and CHH) sequence contexts for both mammalian and
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plant WGBS methylome data by using the same training
data. Although the classifier was trained on mammalian
WGBS data for CG and CH contexts, HOME can accur-
ately predict DMRs in plants and for specific non-CG
contexts (CHG and CHH), demonstrating its versatility.
However, if users wish to retrain the HOME model on
their own data, it can easily be done from the approach
mentioned above (see Methods section).

Finally, another standout feature of HOME is the pre-
diction of DMRs in time-series data. Time-series DNA
methylation experiments are commonly used to study a
wide range of biological processes such as development
[5] and stress responses [51]. HOME is an efficient
method to directly predict accurate DMRs in studies
with multiple timepoints. This added functionality of
HOME will greatly facilitate and expand the study of
epigenome dynamics in numerous biological systems
and disease models. Taken together, HOME is a highly
effective and robust DMR finder that accounts for un-
even cytosine coverage in WGBS data, accounts for bio-
logical variation present between the samples in the
same treatment group, predicts DMRs in various gen-
omic contexts, and accurately identifies DMRs among
any number of treatment groups in experiments with or
without replicates.

Additional file

Additional file 1: Contains supplementary information that includes
parameters tested for different DMR finders, Table S1 and S2, and
Figure S1 to S7. (PDF 382 kb)
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