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Abstract

Cost-effectiveness models are commonly utilized to determine the combined clinical and

economic impact of one treatment compared to another. However, most methods for

sample size determination of cost-effectiveness studies assume fully observed costs and

effectiveness outcomes, which presents challenges for survival-based studies in which

censoring exists. We propose a Bayesian method for the design and analysis of cost-effec-

tiveness data in which costs and effectiveness may be censored, and the sample size is

approximated for both power and assurance. We explore two parametric models and dem-

onstrate the flexibility of the approach to accommodate a variety of modifications to study

assumptions.

Introduction

Cost and effectiveness are often modeled jointly in biomedical studies, and there is typically

interest in quantities that are functions of both of these outcomes. Comparing treatments on

the basis of cost-effectiveness is increasingly important for clinical trials, and recent publica-

tions have considered approaches to assess power for cost-effectiveness studies [1–3]. Often

such power calculations assume normally distributed costs and effectiveness, which is conve-

nient as it allows for closed form formulae for sample size determination [4–6]. The bivariate

normal approach has been utilized in recent methodological work allow for novel study

designs, such as the case of large multicenter trials with or without cluster randomization,

where approaches such as maximin have been utilized to obtain optimal sample sizes for cost-

effectiveness studies [5, 6]. However, for a variety of reasons, observations are often censored,

most commonly as a result of the data originating from a survival study. Cost-effectiveness

models for survival data have recently been considered [7, 8]. The case of normally distributed

costs and effectiveness with censored cost data is discussed in [8]. However, it is well known

that costs are often skewed and gamma and log-normal distributions are used. A wide array of

cost-effectiveness models and Bayesian analysis of each is described in [9]. One of the models

they consider is a Weibull model for effectiveness and a log-normal model for costs. They then

extend the log-normal cost model to a non-parametric model. Skewness and censoring in a

cardiovascular trial is accounted for in [7]. However, to our knowledge at this point no studies
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have proposed sample size determination and power estimation for cost-effectiveness studies

with right-censored outcomes.

In this paper we seek to provide a simulation-based algorithm for determining the sample

size for a cost-effectiveness study for survival data in which both costs and effectiveness are

censored. We consider both traditional power calculations and assurance [10], and we utilize

the Bayesian paradigm for at least three reasons. First, numerous authors have noted that

when data are not normally distributed, the Bayesian approach is preferable due to the flexibil-

ity of parametric assumptions [7, 9, 11], and thus a Bayesian design is applicable. Secondly, in

most frequentist designs, nuisance parameters are considered known at the design stage. This

is true both in cases where a closed form is used or in the approach of [12] where simulation

is used. The Bayesian design approach allows prior information to be utilized to adequately

account for uncertainty in nuisance parameters, while also accounting for the uncertainty

inherent in these estimates. The simulation-based approach has been increasingly utilized for

study planning [13, 14]. Finally, the Bayesian approach allows for parameter estimation by

sampling directly from the posterior distribution using Markov chain Monte Carlo methods.

We focus our interest on the incremental net monetary benefit (INMB) but our method would

be equally useful for incremental cost-effectiveness ratio, average cost-effectiveness ratio, or

other measures. We make the code we use available in the appendix so that users would be

able to make appropriate changes for alternative criteria or parameters of interest.

We focus our sample size determination scheme on both power and assurance. Assurance,

which will be more clearly defined in Section 1, has been defined as the unconditional proba-

bility that a trial achieves a positive outcome in a statistical sense [10], such as statistical

significance, and can be useful to account for uncertainty in outcomes derived from multiple

parameters. It can be thought of as expected power over all likely values of a parameter rather

than for a fixed value under the alternative hypothesis. It has been applied in a variety of mod-

els in clinical trials [10, 15–17], including trials with time-to-event outcomes [18], but we

extend this prior work to time-to-event cost-effectiveness trials with censored data.

Our paper is organized as follows: we present the two parametric approaches for analysis in

Section 1, and we discuss Bayesian considerations to the design of cost-effectiveness studies in

Section 2. In Section 3 we discuss priors for the design stage and the algorithm for the sample

size determination. In Section 4 we consider examples to demonstrate the method, utilizing

both cost-effectiveness models from Section 1. Finally, we discuss our approach and consider

new directions for research in Section 5.

1 Methods

Cost-effectiveness models in which effectiveness is measured by survival time are generally

defined as the bivariate relationship between survival time, T, and treatment cost, C. It is of

interest to model

f ðt; cÞ ¼ f TðtÞf CjTðcjtÞ: ð1Þ

When censoring occurs survival times are not fully observed, and cost data at the time of cen-

soring underestimate the true cost had survival times been fully observed. Using censored val-

ues as replacements for fully observed survival time and costs will lead to biased estimates of

cost-effectiveness, and estimation for a model of this complexity makes a parametric form use-

ful, especially if the proportional hazards assumption is restrictive. In particular, a Bayesian

approach using Markov chain Monte Carlo (MCMC) estimation can be easily implemented to

flexibly model such a scenario. Determining clinical effectiveness in the presence of censored

survival times is common. However, accounting for the accrued costs in the presence of

Bayesian cost-effectiveness sample size
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incomplete survival time is far less common, complicated by a reliance on cost estimates con-

ditioned on latent time quantities. Fortunately the MCMC approach makes this type of estima-

tion very straightforward. Missing time values are imputed at each iteration of the chain from

the conditional posterior distribution, and the imputed observations can be used to estimate

the total costs and variability at the estimated failure time.

Here, we apply parametric models for both costs and effectiveness. We proceed under the

context of clinical trials, although the results apply generally to any cost-effectiveness study

in which treatment alternatives are being compared. We assume the ith subject is randomly

assigned to one of two protocols such that zi = 1 for treatment and zi = 0 for control. Effective-

ness is defined based on survival time, which we denote Ti, such that incremental treatment

effectiveness is E(T|Z = 1) − E(T|Z = 0). Similarly, we define cost as Ci, and the incremental

treatment cost is E(C|Z = 1) − E(C|Z = 0).

1.1 Outcome

Our focus is on the outcome of the incremental net monetary benefit (INMB), which is the

average per-patient benefit of treatment where benefit is defined in financial terms [19]. The

INMB is a function of the maximum willingness to pay for a unit of health (WTP), which var-

ies based on a payer’s financial ability and willingness. Put simply, the INMB is the price of

improved or sustained health (unit of health × WTP) minus the cost. In terms of the variables

above, we define INMB as

INMBðWTPÞ ¼ ½EðTjZ ¼ 1Þ � EðTjZ ¼ 0Þ� �WTP

� ½EðCjZ ¼ 1Þ � EðCjZ ¼ 0Þ�:
ð2Þ

If the INMB is determined to exceed 0 for a given WTP then the new treatment (z = 1) is

assumed to be cost effective compared to the alternative (z = 0). Thus, we are interested in test-

ing the hypotheses H0: INMB = 0 versus H1: INMB> 0, and we conclude that the INMB is sig-

nificant by requiring that for the posterior distribution of the INMB, Pr(INMB> 0)� 1 − ϕ,

where ϕ is the probability of falsely concluding H1 is true. Common values for ϕ include 0.05,

0.025, and 0.01.

Therefore, for the purposes of study planning, we seek the total sample size, n, to achieve 1)

a prespecified posterior power, or probability of a successful trial under the chosen alternative

hypothesis, for fixed parameter values, or 2) assurance for variable parameter values. Further-

more, we wish to vary the potential details of the study, such as study length and assumed

distribution for f(t, c), as well as incorporate the uncertainty of values such that the resulting

power conditions on a range of possible scenarios for both the parameters of the model and

values for WTP.

1.2 Model 1: The Weibull-gamma cost-effectiveness model

The first model we employ has been described previously [7]. For the joint distribution in (1),

Ti> 0 and is assumed to have a Weibull(αi, λi) distribution, where the parameterization of the

Weibull is

f TðtÞ ¼ aðt=lÞ
a� 1exp½� ðt=lÞ

a
�=l:

Furthermore, Ci conditioned on time is assumed to follow an alternately parameterized

gamma(μ(ti), νi) distribution, where Ci> 0 and the pdf of the gamma distribution is

f CjTðcjTi ¼ tiÞ ¼ ðn=mðtiÞÞ
ncn� 1exp½� ðn=mðtiÞÞc�=GðnÞ

Bayesian cost-effectiveness sample size
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such that the mean E[C|Ti = ti] = μ(ti) depends on the survival time for the ith participant ti,
and similarly Var[C|Ti = ti] = μ(ti)2/ν.

We allow for each randomization arm to have unique parameters, allowing for flexibility

in both effectiveness and cost models. For the survival/effectiveness model, we define shape

parameter

ai ¼ ð1 � ziÞa0 þ zia1

and scale parameter

li ¼ ð1 � ziÞl0 þ zil1;

where αi> 0 and λi> 0. We define the expected cost of treatment as being linearly related to

survival time, such that the conditional mean cost

mðTiÞ ¼ ½b0 þ g0Ti�ð1 � ziÞ þ ½b1 þ g1Ti�zi;

and shape parameter

ni ¼ ð1 � ziÞn0 þ zin1

where νi> 0. We constrain μ(Ti)> 0 by defining βk> 0 and γk> 0 where k 2 {0, 1}. This

somewhat unusual constraint allows us to interpret the intercept as the “start-up costs” of

treatment, and the slope as the average cost accrual of treatment per unit time (ie month, year,

etc). Costs can only accrue in a nonnegative direction as time increases.

Using this definition, (2) is redefined as

INMBðWTPÞ ¼ ½l1Gð1þ 1=a1Þ � l0Gð1þ 1=a0Þ� �WTP

� ½b1 þ g1l1Gð1þ 1=a1Þ � b0 � g0l0Gð1þ 1=a0Þ�:
ð3Þ

Our approach uses the gamma distribution to model right-skewed costs, but other distribu-

tions have been employed successfully as well, including the lognormal and inverse-gamma

distributions [9, 20]. Generally it is suggested that sensitivity analyses be performed to consider

the robustness of the results to alternate parameterizations of costs [11]. The choice of prior

distributions for survival and cost model parameters depends on the available knowledge at

the study origin. In the absence of information, we assume diffuse gamma prior distributions

on all parameters as elaborated in Section 4.

1.3 Model 2: The normal-normal cost-effectiveness model

An alternate parameterization utilizes the bivariate normal distribution for cost-effectiveness,

similar to that published in sample size determination methods for cluster-randomized and

multicenter cost-effectiveness trials [5, 6]. Although costs and effectiveness are often non-nor-

mal, the convenience of modeling and interpretability has made the bivariate normal a com-

mon and robust tool for assessing cost-effectiveness [21], particularly for large trials where

asymptotic properties can be invoked [22]. Furthermore, parameters are much more easily

interpreted, and Bayesian approaches that rely on MCMC methods for estimation are faster.

We extend the model of [8] to allow for censored costs and effectiveness. In doing so, we again

utilize (1), so that we begin with f(t, c) = f(t)f(c|t) where

Ti � NormalðmTi
; t2

Ti
Þ

Bayesian cost-effectiveness sample size
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where

mTi
¼ m0ð1 � ziÞ þ m1zi

and

t2
Ti
¼ t2

T0
ð1 � ziÞ þ t2

T1
zi:

Next, the distribution of costs given Ti = ti is

CijTi � NormalðmCi jTi
; t2

Ci
Þ

where

mCi jTi
¼ ðy1 þ y2tiÞð1 � ziÞ þ ðy3 þ y4tiÞzi

and

t2
Ci
¼ t2

C0
ð1 � ziÞ þ t2

C1
zi:

Eq (2) is thus redefined as

INMBðWTPÞ ¼ ½m1 � m0�WTP � ½y3 þ y4m1 � y1 � y2m0�: ð4Þ

The use of the normal-normal model assumes relatively bell-shaped and symmetric bivari-

ate distributions for survival times and costs. Users of the model should carefully inspect data

to ensure this is a justifiable assumption, with the added caveat that in our scenario we might

have right-censored data. Furthermore, poorly chosen simulation parameters could yield neg-

ative survival times or costs, so in our programs we omit negative values and resample the

observation in the rare event of negative times or costs. We assume diffuse normal prior distri-

butions for μ0, μ1, θ1, θ2, θ3, and θ4 and diffuse inverse gamma distributions for t2
T0

, t2
T1

, t2
C0

,

and t2
C1

. Further information is presented in Section 4.

1.4 Data likelihood

As previously presented by [7], if we define the death indicator for the ith participant di and ti
the minimum of the censoring or survival time, then the log-likelihood is the sum of

Li ¼ di
h
ln f TðtiÞ þ ln f CjTðcijtiÞ

i
þ ð1 � diÞln

Z 1

ti

f TðuÞ
Z 1

ci

f CjTðxjuÞdx
� �

du:

The normal-normal model has a similar structure, except with different underlying distri-

butions for the time and cost models.

1.5 Assurance

Traditional statistical power is an estimate of the probability of rejecting a null hypothesis

under a fixed alternative hypothesis, which in a clinical trial is usually the treatment effect.

Assurance therefore is the probability of rejecting a null hypothesis under the distribution
of likely values of a treatment effect. Therefore, the assurance is frequently described as the

unconditional power of the desired outcome because the probability of a trial success (typically

defined as rejection of the null hypothesis based on external criteria) does not assume a fixed

alternative hypothesis value [18]. Assurance is often estimated using Monte Carlo simulations

to draw a random value for the treatment effect its distribution at each iteration, which will be

explained in detail in Sections 2 and 3. For the cost-effectiveness case, we will need to consider

Bayesian cost-effectiveness sample size
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both cost and effectiveness for assurance estimates. While the approach does not necessarily

require a Bayesian data analysis, a Bayesian approach helps with the estimation of INMB

under censored observations.

2 Bayesian design

The sample size/power determination algorithm approach of Wang and Gelfand requires two

sets of prior distributions. The first set is referred to as the design (or sampling) prior. This

prior is generally concentrated on the part of the parameter space where interest lies, and it is

used to generate data in the simulation algorithm to determine the model’s operating charac-

teristics such as power. The second prior is the analysis (or fitting) prior and is used in the data

analysis of each simulation-generated data set. Typically, these are also used in the final analy-

sis when the actual data is collected. The design and analysis priors can be the same, though

often the analysis priors will be less informative than the design priors.

A common concern in Bayesian analyses regards the informativeness of the prior distribu-

tions, in this case the analysis prior, particularly regarding the level of information required to

be known prior to the conduct of the study. If prior information regarding the parameters is

available, this can easily be represented in the analysis prior distribution. However, if concerns

that subjective or biased information could guide the analytic results of the study due to overly

influential prior information, noninformative priors should be sufficient to minimize most

concerns. In the current approach, we utilize noninformative priors in the sense that they are

typically assigned means in line with the null hypothesis (i.e. zeros for regression parameters)

and with large variances to allow the data likelihood to dominate the posterior distribution,

comparable to a frequentist approach. Nothing about the method prohibits or demands non-

informative priors; this choice is available to the analyst, and full disclosure should be provided

whichever approach is chosen. The model is relatively robust to misspecification of priors

when using noninformative priors, but a misspecified informative prior could lead to posterior

means that are overly influenced or restricted by incorrect prior information.

Traditional sample size determination methods typically rely on fixed quantities rather

than design prior distributions based on available evidence. The use of design prior distribu-

tions allows for researchers to represent uncertainty about the prior evidence for the parame-

ters; furthermore, the traditional approach can be considered a special case of our proposed

method in which the design prior distribution has zero variance and all probability mass

on the chosen fixed quantity. The use of fixed values, while a common practice, may lead to

overstatement of model power due to an investigator being forced to select a value that is

unlikely to be observed in the actual study. We consider both cases here in order to directly

compare the differences. Our approach allows for more uncertainty, and in Section 4 we dem-

onstrate the difference between assurance, where we use a flexible design prior distribution,

compared to posterior power, where we use a fixed values for the design priors (i.e. zero vari-

ance distributions).

We utilize a simulation-based approach to determine the required sample size [12]. We

denote the data vector for a sample size n as dn = (t, c, z), where t = (t1, . . ., tn), c = (c1, . . ., cn),

and treatment indicator vector z = (z1, . . ., zn). We denote the vector of parameters θ = (α0, λ0,

ν0, β0, γ0, α1, λ1, ν1, β1, γ1) for the Weibull-gamma model and θ = (μ0, τT0, θ1, θ2, τC0, μ1, τT1, θ3,

θ4, τC1) for the normal-normal model.

One important assumption that is particularly applicable to the design phase that is easily

overlooked is the choice of a censoring distribution. Previous literature has demonstrated the

censoring distribution can affect the power of a chosen model [23, 24], and although inference

on the censoring distribution is rarely performed during analyses, it is crucial for the censoring

Bayesian cost-effectiveness sample size
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distribution to be realistic and relatively robust to the analytical approach. This is particularly

important because censored costs are estimated based on the data augmented survival times.

Censoring distributions with higher variances can lead to higher variability in INMB estimates,

resulting in loss of power. This is considered in Section 4.3.

Statistical assurance is the unconditional probability that a trial will yield a specified out-

come, often success [9]. We distinguish this from power by noting that assurance is the

expected power with respect to the design prior. For the present problem note that INMB is a

function of all model parameters. We seek a sample size n for our study, incorporating uncer-

tainty about the paramter values, that yields an effect size of INMB that is desired to detect

success (Pr(INMB> 0)) with power π(θ). The power function is then defined as π(θ) = P(R|θ)

where R denotes rejection of the hypothesis. Assurance is then the unconditional probability

of rejection

PðRÞ ¼ EðpðyÞÞ;

where this expectation is with respect to the design priors. Unlike power which generally goes

to 1 as the sample size increases, assurance is dependent on the design prior, and depending

on the informativeness and location of the sampling prior, the maximum assurance that a

model can attain is less than 1.

3 Description of sample size determination algorithm

The sample size determination method uses a Monte Carlo simulation approach to generate

data randomly selected from the design priors for a fixed n and to analyze the data using the

proposed model. This is repeated for multiple sample sizes and in most cases the smallest sam-

ple size for which some optimality criteria has been achieved is selected as the preferred sample

size. In our case, we focus on the probability that the INMB for our active treatment exceeds

the control at a statistically significant threshold, such as 95% posterior probability, at a pre-

specified WTP value, Pr(INMB> 0|WTP)> 0.95. In our simulation, we would look for this

threshold to be met or exceeded 80% or more for datasets generated from our design priors.

The smallest sample size that meets these conditions will be chosen, as detailed below.

Prior to beginning the algorithm, specify the design priors, analysis priors, censoring distri-

bution, and the WTP values of interest. Furthermore, being a simulation-based algorithm, a

reasonable set of possible sample sizes should be preidentified to explore the properties of the

model given n. Then, execute the following steps for the sample size determination algorithm.

1. Generate values for θ from the design priors. This is particularly important for assurance,

but when the desired outcome is power, the parameters are usually fixed.

2. For a reasonable sample size n, generate values for t and c of length n from the distributions

with θ generated in step 1. Generate censored observations as appropriate, and when cen-

soring exists, segregate censored observations for time and cost from the fully observed

times and costs.

3. Fit the Bayesian model defined by Eqs 3 and 4 to the simulated data generated in steps 1 and

2 using the analysis priors and approximate the posterior distribution of the INMB, particu-

larly the appropriate alternative hypothesis posterior probability Pr(INMB> 0|WTP)> 0.95

for each WTP value. Code for fitting each of the models discussed in the paper in WinBUGS/

OpenBUGS are presented in the Appendix.

4. Repeat steps 1–3 B times at each sample size value under consideration.

Bayesian cost-effectiveness sample size
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5. Calculate the probability of rejecting the null hypothesis r(n) by calculating the proportion

of the B iterations where the posterior Pr(INMB> 0|WTP)> 0.95 via the formula

rðnÞ ¼ 1=B
XB

k¼1

IfPrðINMB > 0jWTP; dðn;kÞÞ > 0:95g:

When the design priors are fixed, r(n) is equal to the power, and when the design priors are

variable, this proportion is the assurance.

6. Finally, repeat steps 1–5 for a range of sample sizes and plot r(n) by WTP and n to find a

sample size that achieves a desired level of power or assurance. We approach this two ways

in our examples.

In our case we wish to obtain n� such that Pr(Pr(INMB> 0|n�)� 0.95)� 0.8; that is, at

least 80% of simulated data sets yield an INMB with at least 95% posterior probability density

greater than 0, which is roughly analogous to 80% power or assurance. Our choice for B was

300, although reduced Monte Carlo error can be achieved at with higher values of B, at the

expense of time. Alternate values of posterior probability than 0.95 can easily be substituted in

steps 3, 5, and 6.

4 Results

As a demonstration of the method, we organize the results section as follows: in Section 4.1 we

assume the data arise from the Weibull-gamma model using fixed quantities for design param-

eters, which allows for estimation of posterior power; in Section 4.2 we assume the data arise

from the Weibull-gamma model using variable quantities for design parameters, which allows

the determination of assurance; in Section 4.3 we modify the assumed censoring distribution

to determine the impact of an altered censoring distribution on model power; and finally, in

Section 4.4 we modify the parametric form of the study to explore the normal-normal cost-

effectiveness model for both design and analysis.

We generated 300 iterated data sets for each sample size using R v2.12.2, and we fit the data

in WinBUGS using the R2WinBUGS library. For each data set, we generated 3 chains using

a 2000 iteration burn-in and keeping a 10, 000 iteration sample. Of primary interest was Pr
(INMB> 0|c, t) for an array of different WTP quantities ranging from $100k to $350k by $50k

increments. The following examples demonstrate the performance of the method, and we fur-

ther show how modifications to the study design impact the power and sample size, including

the duration of the study and the assumed censoring distribution. The proposed method is

extremely flexible and, being simulation-based, is far more adaptable to a variety of inputs

than standard closed-form methods. The WinBUGS/OpenBUGS code is available in the

appendix as S1 and S2 Files, while the R programs used to simulate the data are presented as

appendix S3 and S4 Files.

4.1 Bayesian power using the Weibull-gamma cost-effectiveness model

For the determination of power, we assume fixed quantities for the design priors. We present

the chosen parameter values in Table 1 for both the design and analysis portions. We consider

two potential lengths for the trial; first, we assume that censoring times are distributed uni-

formly from 2.5 to 3.5 years, which would be realistic for a study with a 12-month recruitment

period that accrues survival times for an average of 3 years with a maximum of approximately

3.5 years. The second scenario assumes that censoring times are distributed uniformly from

3.5 to 4.5 years, which is realistic for a study with a 12-month recruitment period that accrues

Bayesian cost-effectiveness sample size
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survival times for an average of 4 years and no more than 4.5 years. It is expected that a longer

study will allow for a more precise estimate of INMB due to fewer censored observations,

although whether the added effort yields superior power is answered by the simulation results.

These same parameter values are used for the first three examples, and based on the chosen

parameter values in each case the benefit expectation E[INMB|WTP] = 1.93 ×WTP − 150.

In Fig 1 we present the posterior power for detecting INMB> 0 presented as functions of

sample size grouped by WTP values and alternately as WTP values grouped by sample size.

We observe that the power for a trial of longer duration yields higher posterior power due to

the reduced proportion of censored observations, and that the chosen WTP can have a very

large impact on the preferred sample size, with larger WTP values requiring smaller sample

sizes to achieve 80% power. However, we know that these values could potentially overstate

our knowledge of the randomization effect, particularly if prior data are ambiguous or absent.

We feel it is appropriate to place less stringent assumptions on our knowledge of cost-effective-

ness by contrasting these results to those of an assurance analysis.

4.2 Bayesian assurance using the Weibull-gamma cost-effectiveness model

In the second example we modify the previous simulation except we utilize the variable design

priors to provide estimates of assurance for which traditional fixed value inputs are utilized.

Estimation of assurance can furthermore demonstrate the inflation in power if we naïvely

assume fixed values are “correct” rather than providing variable quantities to capture our

uncertainty about the true state of nature. For the subsequent output, we repeat the scenarios

from Section 4.1 with the sole exception that at each iteration of the program, we generate a

design prior value for each parameter from the distributions indicated in the “Assurance

Design Priors” column of Table 1.

We observe the posterior assurance output in Fig 2. There is a marked reduction in poste-

rior assurance compared to the power output in Fig 1. Importantly, we can quantify the pen-

alty for using more stringent assumptions in Section 4.1. For example, in the upper half of Fig

2, corresponding to a trial of 3 years, the power for $250k WTP at n = 200 is approximately

70%, while in Fig 1, the posterior power is approximately 80%. Our added uncertainty about

the true value of the input parameters that combine to produce the INMB has led to a 10%

reduction in the probability a successful trial, and to achieve 80% assurance, a larger sample

size is required than for 80% power. Furthermore, we note that in Fig 1 the curves clearly

asymptotically approach 1.0, while in Fig 2 the asymptotic trend seems to be toward a value

somewhat less than 1.0.

Table 1. Design and analysis prior distributions for Weibull-gamma models in Sections 4.1, 4.2, and 4.3.

Parameters Power Design Priors Assurance Design Priors Analysis Prior Distribution

α0 0.75 normal(0.75, 0.12) gamma(0.1, 0.1)

λ0 0.9 normal(0.9, 0.12) gamma(0.1, 0.1)

ν0 1.2 normal(1.2, 0.152) gamma(0.1, 0.1)

α1 0.5 normal(0.5, 0.052) gamma(0.1, 0.1)

λ1 1.5 normal(1.5, 0.22) gamma(0.1, 0.1)

ν1 3 normal(3, 0.22) gamma(0.1, 0.1)

β0 50 normal(50, 102) gamma(10, 0.1)

γ0 75 normal(75, 152) gamma(10, 0.1)

β1 100 normal(100, 182) gamma(10, 0.1)

γ1 60 normal(60, 152) gamma(10, 0.1)

https://doi.org/10.1371/journal.pone.0190422.t001
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4.3 Effects of modified censoring distribution on Weibull-gamma power

We modify the simulation in Section 4.1 to allow for a different censoring function. Most

survival studies experience censored observations due to the study conclusion and due to

non-death attrition prior to the study termination. To accomodate this, we allow for a

minority of participants to withdraw from the study prior to the termination of the study. In

our case, for each participant, we generate a binary indicator with probability 0.8 such that a

1 indicates the censoring value is generated as described in Section 4.1 and a 0 indicates the

participant was participant’s censoring distribution is randomly sampled from a uniform

distribution from 0 to 2.5 or 3.5, depending on whether the mean study duration is 3 years

or 4 years, respectively. If the observed death time is greater than the generated censoring

time, then the participant is considered censored at the censoring time. This is a far more

variable censoring distribution than in Section 4.1; it is much more likely to censor individu-

als at relatively small follow-up times (i.e. T< 1 yr). The net result is that we can compare

the power to that of Section 4.1 and determine how sensitive our model is to the assumptions

governing the censoring distribution.

In both the cases for the 3 year proposed study and 4 year proposed study, as seen in Fig 3,

the added variability of the exponential censoring function slightly reduces the power com-

pared to the censoring mechanism in Section 4.1. This is important because all other

Fig 1. Posterior power estimates for Section 4.1. Average censoring time is 3 years for upper figures and 4 years for lower.

https://doi.org/10.1371/journal.pone.0190422.g001
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components are the same; increased variability in censoring times lead to reduced power.

While this finding is expected, we can quantify the impact of different censoring types; for

studies in which participants may drop from participation prior to the completion of the

follow-up time, we can quantify the difference this type of censoring as opposed to the type

defined in Section 4.1.

4.4 Bayesian power using the normal-normal cost-effectiveness model

The final approach assumes that costs and survival times are distributed bivariate normal as

proposed in Section 1.3, except in this case time is defined as months rather than years. The

outcome of interest is Bayesian power or sample size, and thus design priors are assumed to be

fixed quantities. The design and analysis priors are presented in Table 2, which corresponds to

a bivariate normal distribution for treatment Z = 0 of

T0

C0

 !

� N
33:5

700

 !

;
8:52 0:4ð8:5Þð101:5Þ

0:4ð8:5Þð101:5Þ 101:52

 ! !

Fig 2. Posterior assurance estimates for Section 4.2. Average censoring time is 3 years for upper figures and 4 years for lower.

https://doi.org/10.1371/journal.pone.0190422.g002
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and for treatment Z = 1

T1

C1

 !

� N
25:0

130

 !

;
8:52 0:3ð8:5Þð30Þ

0:3ð8:5Þð30Þ 302

 ! !

:

Fig 3. Posterior power estimates from Section 4.3. Average study duration time is 3 years for upper figures and 4 years for lower.

https://doi.org/10.1371/journal.pone.0190422.g003

Table 2. Design and analysis prior distributions for normal-normal model in Sections 4.4.

Parameters Power Design Prior Values Analysis Prior Distribution

μ0 25.0 normal(0, 10 000)

t2
T0

8.52 InvGamma(0.01, 0.01)

μ1 33.5 normal(0, 10 000)

t2
T1

8.52 InvGamma(0.01, 0.01)

θ1 103.5 normal(0, 10 000)

θ2 1.06 normal(0, 10 000)

t2
C0

28.62 InvGamma(0.001, 0.001)

θ3 539.9 normal(0, 10 000)

θ4 4.78 normal(0, 10 000)

t2
C1

93.02 InvGamma(0.001, 0.001)

https://doi.org/10.1371/journal.pone.0190422.t002
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The values for the cost model parameters in Table 2 are conditional on T. For the fourth example,

based on the chosen parameter values the benefit expectation E[INMB|WTP] = 8.5 ×WTP − 570.

For this simulation, we generate censoring values from a normal distribution with mean 36

months and standard deviation 2.4 for the top row of plot in Fig 4 and with mean 48 and stan-

dard deviation 2.4 for the bottom row, corresponding to censoring times of an average of 3

years and 4 years, respectively (although the data were generated with survival in months

rather than years). We observe the prior information used in both the design and analysis

phase in Table 2. While a direct comparison with the Weibull-gamma approach is not valid

due to the differing parameterization of this model compared to preceding sections, the

parameters were selected to at least mimic the previous models, and the data were generated

ensuring no negative values existed for time or costs.

5 Discussion

The Bayesian power and sample-size determination approach for cost-effectiveness studies

with censored data offers key advantages over existing cost-effectiveness power calculation

methods. Users can represent unknown quantities as design prior distributions with variances

rather than fixed quantities; survival times and costs can be fully simulated to calculate the

INMB rather than relying on previous INMB estimates; and the method is extremely flexible

Fig 4. Posterior power estimates from Section 4.4. Average censoring time is 3 years for upper figures and 4 years for lower.

https://doi.org/10.1371/journal.pone.0190422.g004
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and adaptable for a variety of distributions and assumptions, utilizing freely available statistical

software packages.

The motivating example was inspired by clinical trials in which there is a high death rate,

such as cancer or heart failure. Subsequent applications in which there is a lower censoring

rate should monitor the imputed observations to ensure the distributional assumptions do

not yield unrealistic estimates. Most participants expired prior to censoring in our motivating

examples, but in scenarios in which both event times and censoring times can be highly vari-

able, such as incident cardiovascular disease, WinBUGS or OpenBUGS can easily provide pos-

terior estimates of the censored participants’ failure time distributions left-truncated at the

censoring time. Furthermore, the current work focuses on simple parallel randomized con-

trolled trials, but future work should consider alternate design approaches including cluster

randomized trials and minmax designs.

Supporting information

S1 File. The first OpenBUGS program was used to produce INMB estimates for the

gamma-Weibull cost-effectiveness model.

(TXT)

S2 File. The second OpenBUGS program was used to produce INMB estimates for the nor-

mal-normal cost-effectiveness model.

(TXT)

S3 File. The wg_simulation.r program was used to simulate data for the Weibull-gamma

cost effectiveness models.

(R)
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cost effectiveness models.
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