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Background: Epithelial-to-mesenchymal transition (EMT) is an early step in the invasion-metastasis
cascade, involving progression through intermediate cell states. Due to challenges with isolating
intermediate cell states, genome-wide cytosine modifications that define transition are not completely
understood. Methods: The authors measured multiple DNA cytosine modification marks and chromatin
accessibility across clonal populations residing in specific EMT states. Results: Clones exhibiting more
intermediate EMT phenotypes demonstrated increased 5-hydroxymethylcytosine and decreased 5-
methylcytosine. Open chromatin regions containing increased 5-hydroxymethylcytosine CpG loci were
enriched in EMT transcription factor motifs and were associated with Rho GTPases. Conclusion: The results
indicate the importance of both distinct and shared epigenetic profiles associated with EMT processes that
may be targeted to prevent EMT progression.
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Epithelial-to-mesenchymal transition (EMT) is an early step in the invasion-metastasis cascade, involving pro-
gression through a number of cellular states. It is a process by which epithelial cells lose specific properties such
as apical-basal polarity detach from the basement membrane to gain mesenchymal properties such as front-back
polarity and motility [1]. Rather than being a binary conversion from an epithelial to a mesenchymal state, the EMT
encompasses a step-wise progression to a mesenchymal cell state whereby the cells could display intermediate/hybrid
phenotypes of both epithelial and mesenchymal cells [2,3]. As metastasis is responsible for the majority of deaths in
cancer patients [4,5], it is critical to understand the molecular underpinnings of EMT.

Cells that reside in an intermediate state display more plasticity than the cells on either ends of the EMT
spectrum [3,6–8]. In addition to increased plasticity, intermediate cells have been shown to harbor stem cell charac-
teristics such as self-renewal and increased expression of pluripotent genes [9–11]. Although it is evident that there
are intermediate phases when transitioning from epithelial to mesenchymal states [12–14], experimental isolation of
these specific states has proven challenging. Consequently, the molecular and functional characteristics and of the
intermediate states and their contribution to metastasis are poorly understood.

DNA methylation is a well-studied epigenetic mark, mostly known for its role in regulating gene expression.
Methylation of cytosines (5-methylcytosine [5mC]) can occur in the context of CpG dinucleotides and the
reaction is catalyzed by DNA methyltransferase enzymes (DNMTs). Ten eleven translocation (TET) enzymes
can oxidize methylcytosine to form 5-hydroxymethylcytosine (5hmC), then 5-formylcytosine (5fC) and finally 5-
carboxylcytosine (5caC) [15]. Oxidized cytosines can then be deaminated by activation-induced cytidine deaminase
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(AID), then undergo thymine DNA glycosylase-mediated base excision repair to an unmethylated cytosine. While
around 80% of mammalian CpG dinucleotides are estimated to be methylated [16,17], hydroxymethylation accounts
for a relatively modest proportion of overall cytosine modification and varies greatly with tissue type [18,19]. Although
5hmC levels are low in relation to 5mC in human tissues, it is most highly enriched in brain and breast tissues,
relative to other tissue types [20]. While a number of studies have shown the importance of DNA methylation in
EMT, these studies used traditional bisulfite treatment to measure 5mC, which does not resolve 5hmC [21–26]. 5hmC
can be estimated from comparing oxidized-bisulfite treatment to bisulfite-treated DNA [27], as traditional bisulfite
treatment does not distinguish 5mC from 5hmC. In comparison with general repression of transcription from
5mC, 5hmC is positively associated with transcriptional activity and gene expression [28,29]. Whether the association
is a consequence of passive dilution of 5mC via DNA demethylation or is due to functional actions of 5hmC is yet
unclear and is likely context dependent. However, growing evidence suggests that 5hmC contributes directly to gene
regulation in several specific contexts, aside from its role in DNA demethylation. At the chromatin level, 5hmC has
been shown to increase DNA flexibility and mechanical stability, as well as nucleosome accessibility [30]. Transcription
factors and their binding sites have been associated with being colocalized with TET and 5hmC [31–34], which
provides a possible 5hmC mechanism of gene expression regulation through transcription factor recruitment [35].

Although decreased global 5hmC is consistently observed in cancer [36–39], few studies have measured cancer-
associated 5hmC changes at nucleotide-resolution. 5hmC maintenance has been associated with protecting against
CpG island hypermethylation, which commonly occurs in cancer [40–44]. Measures of breast tissue nucleotide-
specific 5hmC revealed enrichment within breast-specific enhancers and transcriptionally active chromatin [45]. In
estrogen receptor (ER)/progesterone receptor (PR)-negative breast cancer particularly, loss of 5hmC is associated
with poor prognosis [39]. As DNA methylation alterations occur early in breast carcinogenesis and are related to
prognosis [46,47], a better understanding of 5hmC in breast cancer and EMT is needed.

In concert with DNA methylation, chromatin accessibility regulates transcription and cell reprogramming [48].
Interactions with different nuclear macromolecules such as transcription factors and histone modifications shape the
topology of chromatin [48]. Specific chromatin accessibility states have been implicated in regulating EMT. Putative
enhancers, defined by promoter-distal H3K27ac and H3K4me1 histone modifications, have been shown to recruit
key EMT transcription factors such as NF-κB and AP-1 in epithelial cells in comparison with TGF-β-treated mes-
enchymal cells [49–51]. In addition, motifs of key EMT transcription factors (AP-1, ETS) were enriched in accessible
chromatin regions of TGF-β transformed mammary epithelial cells [52]. Although transcription factors influenc-
ing EMT and metastasis-associated chromatin accessibility have been identified [53–56], gaps in the knowledge of
chromatin accessibility changes in non-TGF-β-induced EMT cells and cells in EMT intermediate/hybrid states
still remain due to challenges in isolating cells in these states. Moreover, a better understanding of the relationship
between cytosine modifications and chromatin conformation is needed.

This study provide a nucleotide-resolution genome-scale map of cytosine modifications and chromatin accessi-
bility for phenotypes spanning the EMT spectrum. It addresses gaps in the understanding of epigenomic changes
in the intermediate/hybrid states on the EMT spectrum. Using a novel model derived from ER/PR-negative breast
cancer cells to study terminal and intermediate EMT states, the authors demonstrate substantial differences in
the cytosine modification profiles of cells in intermediate EMT states, particularly increases in 5hmC enriched in
key EMT transcription factor motifs. Further, the authors utilize novel, integrative multi-component epigenetic
analysis to show cytosine modifications coordinate with chromatin accessibility, especially at promoters to regulate
transcription.

Methods
Cell culture
Single cell clones, the isolation and characterization methods of which are detailed in Brown et al. [8], were used.
To summarize, six single-cell clones were isolated from SUM149PT cells to represent different points of the EMT
spectrum. Position on the EMT spectrum was determined by cell morphology, flow cytometry analysis of CD44
and CD104 markers and mRNA expressions of ZEB1/2. Graphic representation of each clone’s position on the
EMT spectrum can be found in Figure 1. Transwell assays to measure migration and invasion were conducted and
reported for each clone in Brown et al. [8].
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Figure 1. Summary of characteristics of isolated single cell clones that reside in specific positions of the
epithelial-to-mesenchymal transition spectrum. Specific data for each clone that are summarized in this figure are
reported in Brown et al. [8]. Gene expression of epithelial markers (CDH1 and OVOL1/2) is highest on the most
epithelial-like clone and decreases sequentially as clones display more mesenchymal characteristics. Gene expression
of mesenchymal markers (VIM and ZEB1/2) is lowest in the most epithelial-like clone and increases sequentially as
clones display more mesenchymal characteristics.

DNA methylation & hydroxymethylation
DNA conversion & methylation/hydroxymethylation profiling

DNA from each clone of similar passage numbers was extracted using DNeasy Blood and Tissue kit (Catalog
ID 69504; Qiagen, Hilden, Germany). DNA was quantified with Qubit 3.0 Fluorometer (Life Technologies,
CA, USA). ∼2 μg of DNA underwent oxidative-bisulfite conversion to measure both 5mC and 5hmC using the
TrueMethyl OxBS Module (Catalog ID 0414-32; Nugen, CA, USA). Epigenome-wide DNA methylation profiling
was performed using the Infinium MethylationEPIC Bead Chips (Illumina, Inc., CA, USA) at the Norris Cotton
Cancer Center Genomics Shared Resource Core.

Quality control & processing

Raw intensity files produced from the MethylationEPIC Bead Chips were preprocessed using the minfi
R/Bioconductor analysis pipeline (v1.34.0) annotation file version ilm10b4.hg19 [57,58]. Six hundred ninety-five
technical probes and 33,360 SNP-associated probes were excluded. Quality control was performed using ENmix
R package. A total of 301,580 probes that failed to meet a detection p-value of 0.00005 in >30% of the samples
and 5% of the CpGs were excluded. The high number of CpGs that failed to pass quality control may have
been due to oxidation further damaging the DNA on top of the bisulfite treatment and signal distributions being
distorted from the oxidation measurement as the quality control measures were developed for bisulfite-converted
DNA. After these exclusions, 545,515 CpGs remained for analysis. The filtered data were then normalized using
preprocessFunnorm in minfi to remove unwanted technical variation.

Annotations of CpGs such as genomic context or relation to CpG island were provided in the Illumina
EPIC B4 manifest and UCSC hg19 reference genome files. “Promoter,” “Intergenic,” “Intron” and “Exon”
genomic contexts were defined by finding overlapping genomic regions of the CpGs and each context using
the UCSC hg19 reference genome annotation. “DNase hypersensitive site” context was defined by having a
record in the “DNase Hypersensitive NAME” in the annotation. “Gene body” transcriptional context was defined
by having a “Body” in the UCSC RefGene Group. Likewise, “3′ UTR” and “5′ UTR” regions were defined by
having “UTR3” and “UTR5,” respectively, in the UCSC RefGene Group. Relation to CpG island was defined by
“Relation to UCSC CpG Island” in the Illumina EPIC annotation file. If no record of relation to the CpG island
was indicated, the CpG was considered to be in the “Open Sea” region. For analysis testing enrichment of CpGs
measured on the Illumina EPIC array to ATAC regions, the GRCh38 annotation file from Zhou et al. was used [59].

CpGs annotated to open chromatin regions were defined by their overlap with open chromatin regions from assay
for transposase-accessible chromatin with sequencing (ATAC-seq) data. CpGs were determined to be in enhancers
if they were located in distal intergenic regions (within 10–15 kbps upstream and downstream of the gene) of the
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ATAC-seq consensus peaks. CpGs were determined to be in open promoters if they were located in promoters of
the ATAC-seq consensus peaks.

5hmC estimation

5hmC beta values were estimated using the fitOxBS function in the OxyBS package [60]. Instead of naive subtraction
of signals from oxidative-bisulfite-treated probes from bisulfite-only-treated probes, the OxyBS package uses maxi-
mum likelihood estimation of the signal intensities from the oxidative-bisulfite-treated and bisulfite-treated DNA
from the Illumina EPIC array to determine the parameters for unmethylated, hydroxymethylated and methylated
CpGs.

Analysis

Principal component analyses were performed using 5hmC and 5mC beta values using the princomp function in
R. Differential methylation and hydroxymethylated analyses were conducted using limma (v3.44.3) and qvalue
(v2.20.0) R packages in R (v4.0.2) [61,62]. Differentially methylated and hydroxymethylated CpGs were identified
by fitting into a linear regression model, testing for differences in beta values CpG-by-CpG in the groups of clones
based position on the EMT spectrum (distal vs intermediate). Linear regression models were fit by using lmFIt and
eBayes functions. E, EM1, M2 and P were considered as distal clones. The intermediate group comprised EM2,
EM3 and M1 clones. The differentially methylated CpGs were deemed to be significant at the q-value threshold
of 0.01.

Differentially hydroxymethylated and methylated CpGs were compared with the 545,515 CpGs used in analyses
to test for enrichment at specific genomic contexts using Fisher’s exact test. Functional significance of these CpGs
was assessed using the Genomic Regions Enrichment of Annotations Tool (GREAT) [63].

Assay for transposase-accessible chromatin with sequencing
ATAC-seq & preprocessing

ATAC-seq for two replicates per clone was performed as described in Buenrostro et al. [64]. Similar passage number
(+/- 1 passage) of the clones to the DNA methylation and hydroxymethylation measurements were used. The
same processing methods and detailed descriptions can be found in Brown et al. [8].

Briefly, ATAC-seq data were then processed using the publicly available ENCODE ATAC-seq pipeline (www.
encodeproject.org/pipelines/ENCPL792NWO/). Illumina adapter and transposase sequences were trimmed using
Cutadapt [65] (v1.9.1) with parameters “–minimum-length 5 -e 0.1.” Trimmed reads were aligned to hg38 human
genome using Bowtie2 [66] (v2.2.6) in “–local” mode with parameters “-X 2000 -k 2.” Duplicate reads were identified
and filtered from final alignments using MarkDuplicates (Picard Tools [67]). To account for insertion of adapter
sequences by the transposase, alignments were converted to tagAlign files and shifted +4 bp and -5 bp on the + and
– strands, respectively. MACS2 [68] (v2.1.1) callpeak command with parameters “–shift -75 –extsize 150 –nomodel
–keep-dup all –call-summits -p 1.0E-10” were used to call peaks. The peaks were filtered against the ENCODE
hg38 blacklist. The Irreproducible Discovery Rate (IDR) method was used to identify a set of reproducible peaks
across biological replicates using an IDR threshold of 0.05.

ATAC-seq analysis

Principal component analyses were performed using variance stabilizing transformed ATAC-seq counts using
the princomp function in R. Low-level regions were filtered out using filterByExpr using edgeR (v3.30.3) [69].
Open chromatin regions containing dhmCpGs were annotated using TxDb.Hsapiens.UCSC.hg38.knownGene R
annotation file package and the annotatePeak function in ChIPseeker (v1.24.0) [70,71]. Enriched biological pathways
associated with the differentially accessible regions were identified using the ReactomePA (v1.32.0) [72].

The authors tested for overrepresentation of transcription factor (TF) binding site motifs of dhmCpGs containing
consensus ATAC peaks compared with all ATAC peaks. The authors scanned these peaks for TF motif occurrences
using R package motifmatchr [73]. Position frequency matrices for human TF motifs used as input to motifmatchr
were downloaded using R packages JASPAR2020 [74] and TFBSTools [75]. Overrepresented TF motifs in each peak
set were identified through hypergeometric testing using the phyper R function, with all peaks identified in that
clone used as the background set. TF motifs with a false discovery rate (FDR)-adjusted hypergeometric p-value
< 0.05 were deemed to be overrepresented.
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RNA sequencing
RNA extraction & preprocessing
RNA was collected using the Qiagen RNeasy plus kit (Catalog ID: 74034; Qiagen, Hilden, Germany) and
quantified using a NanoDrop (Thermo Fisher Scientific – ND-2000-US-CAN). The same processing methods
and detailed descriptions can be found in Brown et al. [8].

To summarize, raw single-end RNA sequencing (RNA-seq) data were trimmed of polyA sequences and low-
quality bases using Cutadapt (v2.4) [65]. Reads were aligned to human genome hg38 using STAR (v 2.7.2b) [76] with
parameters “–outSAMattributes NH HI AS NM MD –outFilterMultimapNmax 10 –outFilterMismatchNmax 999
–outFilterMismatchNoverReadLmax 0.04 –alignIntronMin 20 –alignIntronMax 1000000 –alignMatesGapMax
1000000 –alignSJoverhangMin 8 –alignSJDBoverhangMin 1.” Quality of alignments was assessed using Collec-
tRNASeqMetrics (Picard Tools) [67] and duplicate reads were identified (but retained) with MarkDuplicates (Picard
Tools). Gene-level abundance estimates were generated using RSEM (v1.3.2) [77] using the rsem-calculate-expression
command with the parameters “–strandedness reverse –fragment-length-mean 313 –fragment-length-sd 91.”

Results
The authors utilized a previously derived model of six single cell clones from SUM149PT, a heterogeneous ER-/PR-
inflammatory breast cancer line, that represent cell states present along the EMT spectrum. The EMT state of each
clone was determined by cell morphology, flow cytometry for CD44 and CD104 markers and immunofluorescence
staining for vimentin/e-cadherin, as well gene expression of canonical EMT markers (SNAI1, ZEB1, CDH1, VIM
and others), detailed in previous work [8]. More epithelial-like clones had low CD44 and high CD104 expression,
while more mesenchymal-like clones had high CD44 and low CD104 expression. Intermediate clones had high
CD44 and high CD104 expression. VIM and ZEB1/2 increased in expression along with progressive position
on the EMT spectrum, while CDH1 and OVOL1/2 decreased in expression (Figure 1, gene expression data in
Brown et al.) [8]. These clones were ranked as epithelial (E), three distinct intermediates (EM1, EM2 and EM3)
and two unique mesenchymal-like clones (M1 and M2) and were compared here with the parental cell line (P).
Phenotypically, the intermediate clones (EM1, EM2, EM3) displayed higher migratory and invasive behavior, and
higher tumor initiation and metastasis formation potential, compared with the clones on either edges of the EMT
spectrum (E, M1, M2) (Figure 1, specific data for each clone reported in Brown et al.) [8].

The authors first measured genome-scale cytosine-specific DNA methylation (5mC) and hydroxymethylation
(5hmC) levels, using the Illumina EPIC methylation array. As expected [19], a relatively small subset of measured
CpGs were hydroxymethylated, with average 5hmC beta values much smaller than that of 5mC across all clones
(Figure 2A & B). Average 5hmC beta values and 5mC beta values were negatively correlated, at marginal significance
(R = -0.72; p = 0.071), with increased global 5hmC and decreased global 5mC abundance in intermediate clones
(EM2, EM3, M1; Figure 2B & C).

To identify which distal clone (E or M2) each clone along the EMT spectrum were similar to, the authors
compared each 5hmC profile of EM1, EM2, EM3 and M1 with the 5hmC and 5mC profile of clones on the
extreme ends of the EMT spectrum (E and M2). 5hmC profiles of EM1, EM2 and EM3 had more 5hmC profiles
similar to the 5hmC profile of E, in which the number of CpGs with little to no change was higher in E compared
with in M2 (Figure 3A). The 5hmC profile of M2 had a very similar number of CpGs with little to no change
in comparison with 5hmC profiles of E and M2. The 5hmC profiles of EM1, EM2, EM3 and M1 were all more
similar to the 5mC profile of E than to the 5mC profile of M2 (Figure 3B). The results suggest that EM1, EM2,
EM3 and M1 clones likely were derived from the most epithelial clone and provide models of states on the EMT.

Genome-wide DNA cytosine modification profiles in EMT clones
To determine associations between EMT phenotypes (migratory and invasive behavior) of clones and DNA
cytosine modifications, first, the authors analyzed correlations between global 5mC and 5hmC beta values with
average migration and invasion levels that had previously been determined in Brown et al. [8]. There were no
statistically significant correlations between global DNA cytosine modification levels and migration and invasion
levels (Supplementary Figure 1A–D).

In addition to correlations between global levels of DNA cytosine modifications, the authors conducted an
epigenome-wide association study to identify specific CpGs that are associated with high migration and invasive
properties. Migration and invasion assays from Brown et al. indicated that clones (EM1, EM2, EM3, P) with greater
than the median migration and invasion levels were determined to have high migratory and invasive properties
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Figure 2. 5-hydroxymethylcytosine (5hmC) and 5-methylcytosine (5mC) levels in the epithelial-to-mesenchymal
transition clonal cell line model. (A) Cumulative density of median 5hmC and 5mC beta values. (B) Average 5hmC and
5mC beta values per clone. (C) Pearson correlation of 5hmC beta values and 5mC beta values.

(Supplementary Figure 2A) [8]. While it was surprising that the EM1, EM2 and EM3 clones were more migratory
and invasive than the mesenchymal clones, previously established traits of mesenchymal cells did not discern between
mesenchymal and intermediate states when determining migratory and invasive behavior. It is possible that because
these cell states were not distinguished, the migratory and invasive behavior of the intermediate clones influenced
the notion that mesenchymal cells were more likely to be migratory [78]. Only one differentially hydroxymethylated
CpG was determined to be associated with high migratory and invasive cellular phenotypes under the FDR <0.1
significance level (Supplementary Figure 2B). There were no differentially methylated CpGs associated with high
migratory and invasive cellular phenotypes under the FDR <0.1 significance level (Supplementary Figure 2C).

To compare genome-scale similarity of DNA methylation profiles among all clones, the authors compared the
5hmC and 5mC beta values using principal component analysis (PCA). PCA results indicated that 5hmC and 5mC
beta values clustered into two distinct groups: one group of E, EM1, M2 and another group with EM2, EM3, M1
(Figure 4A & B). In downstream analyses for this study, EM2, EM3 and M1 were defined as intermediate clones
and E, EM1, M2 and P were defined as distal clones. These two groups were slightly different from groupings
identified by the clones’ cellular phenotypes summarized in Figure 1 and in the original development of the
model. Furthermore, the groups identified by genome-scale 5mC and 5hmC beta values were different than PCA
clustering from chromatin accessibility profiles from ATAC-seq (Supplementary Figure 3A) and gene expression
profiles from RNA-seq (Supplementary Figure 3B). Non-negative matrix factorization hierarchical clustering with
5mC, 5hmC and chromatin accessibility profiles revealed similar clustering results from RNA-seq and ATAC-seq
(Supplementary Figure 3C). Following the PCA results, distinct grouping of clones into intermediate and distal was
supported by unsupervised hierarchical clustering of the top 5% most variable CpGs (27,276 CpGs), which were
chosen based on the distribution of variances across CpGs (Supplementary Figure 4A & B). Unsupervised clustering
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identified highly distinct intermediate and distal clone clusters (Figure 4C & D) and highlighted the greater relative
abundance of 5hmC in intermediate clones compared with distal clones (Figure 2B) at the CpG-specific level.

The authors next used a candidate gene approach to investigate if EMT-associated 5hmC and 5mC loci
distinguished intermediate from distal clones. They performed unsupervised clustering on beta values of 439
CpGs annotated to epithelial genes (CDH1, CLDN1, EPCAM, ITGAB4, KRT8 and OCLN), mesenchymal genes
(CDH2, FN1, ITGB1, MMP19, MMP2 and VIM) and EMT-related TFs (SNAI1, SNAI2, TWIST1, ZEB1 and
ZEB2). Intermediate clones clustered separately from distal clones for both 5mC- and 5hmC-associated genes,
and a subset of CpGs annotated predominantly to epithelial genes (OCLN, CDH1, KRT8 and EPCAM) had high
5hmC among intermediate clones in cluster #4 (Figure 5A & B), many of which tracked to promoter regions
(Figure 5C). Together, it suggests a potential role of 5hmC in regulating epithelial genes during the EMT process.

To determine if overall 5hmC and 5mC abundance was related to expression of cytosine-modifying enzymes
(DNMTs and TETs), the authors leveraged RNA-seq to test the correlation of average methylation and gene
expression levels. Only TET1 gene expression was significantly positively correlated with global average 5hmC
beta values (R = 0.86; p = 0.024), and none were correlated with 5mC (Supplementary Figure 5A & B). 5hmC
and 5mC beta values of DNMT and TET CpGs with unsupervised clustering did not identify extensive variation
in cytosine states at cytosine modification enzyme genes (Supplementary Figure 5C). However, a small subset of
CpGs (n CpGs = 18 of 241 total), located within TETs (TET1: 33%; TET2: 28%; TET3: 17%), exhibited higher
5hmC in intermediate clones (Supplementary Figure 5C).

Together, these findings suggest there are variable patterns of genome-wide 5hmC and 5mC based on clonal
EMT status, not with clonal phenotypes.

Differential methylation & hydroxymethylation in intermediate clones
Next, the authors conducted an epigenome-wide association study (EWAS) comparing cytosine modifications at
the nucleotide level to identify differential cytosine modifications between intermediate and distal clones. Overall,
they identified 17,862 significantly differentially hydroxymethylated CpGs (dhmCpGs) (FDR < 0.01), between
distal and intermediate clones, almost all of which had increased in 5hmC in the intermediate clones (Figure 6A
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& Supplementary Table 1), including EMT-associated genes such as SNAI1 and TWIST1. There were 7903
significantly differentially methylated CpGs (dmCpGs) (FDR <0.01), most of which had decreased in 5mC in
intermediate clones (Figure 6B & Supplementary Table 2), including EMT-associated cell type markers CDH1 and
MMP19. For further downstream analyses, dhmCpGs were subset for only CpGs increasing in 5hmC. dmCpGs
were subset for only CpGs decreasing in 5mC. Among CpGs with increased 5hmC and decreased 5mC, only
33 CpGs overlapped (Figure 6C). Expanding to the gene level, 1365 genes had both dhmCpGs and dmCpGs
among intermediate clones (Figure 6D). Genomic contexts with enrichment of dhmCpGs were generally depleted
among dmCpGs (Figure 6E & Supplementary Table 3). While dhmCpGs were enriched in regulatory regions
(open chromatin regions, enhancers, 5′UTR, promoters, TSS1500, TSS200) and in the first exon, dmCpGs were
enriched within exons and introns, suggesting different cytosine modifications act on different genomic regions in
regulating the EMT process. The results suggest that while some differential cytosine modification mark may act
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Figure 5. Intermediate clones have higher hydroxymethylation among epithelial genes. (A) Heatmap of
unsupervised clustering of 5hmC and 5mC in a set of 231 CpGs within epithelial genes (CDH1, CLDN1, EPCAM, ITGB4,
KRT8, andOLCN), mesenchymal genes (CDH2, FN1, ITGB1, MMP19, MMP2, and VIM), and transcription factors (SNAI1,
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factors) and hierarchical clustering group from when height = 1.6. (B) Proportions of the genes annotated to the 40
CpGs in cluster #4 of the hierarchical clustering from the heatmap. (C) Enrichment of genomic contexts of the CpGs in
hierarchical cluster 4. 40 CpGs in cluster 4 were compared to all 231 CpGs in EMT-related genes using Fisher’s test.

on the same gene, generally the two DNA cytosine modification marks act on different regions of the genome to
coordinate EMT processes.

GREAT analyses revealed that dhmCpGs were associated with fatty acid-related molecular functions (MFs),
such as peroxisomal fatty-acyl-CoA transporter activity (fold enrichment [FE]: 19.00) and long-chain fatty acid
transporter activity (FE: 7.46), as well as RNA polymerase II TF-related molecular functions such as RNA
polymerase II TF sequence-specific DNA binding (FE: 1.18) and RNA polymerase II regulatory region DNA
binding (FE: 1.17) (Supplementary Figure 6A). Similarly, dmCpGs were associated with RNA polymerase II-related
molecular functions such as RNA polymerase II transcription coactivator binding (FE: 7.62) and cofactor binding
(FE: 6.95) (Supplementary Figure 6B). Additionally, dmCpGs were associated with metal ion transmembrane
activity (FE: 1.44). Collectively, these results support the role of differential cytosine modifications in RNA
polymerase II-related regulation of transcription to influence the intermediate EMT phenotype.
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Figure 6. Differential 5-hydroxymethylcytosine (5hmC) CpGs in intermediate clones compared to distal clones are
distinct from the differential 5-methylcytosine (5mC) CpGs. Volcano plots indicating (A) 17,862 significantly
differentially hydroxymethylated CpGs (dhmCpGs) and (B) 7903 significantly differentially methylated CpGs (dmCpGs)
under false discovery rate (FDR) q-value of 0.01, in intermediate clones in comparison with distal clones. Red dashed
lines indicate the -log10 (p-value) at FDR q-value of 0.01. Venn diagrams comparing (C) dhmCpGs versus dmCpGs and
(D) genes annotated to dhmCpGs versus genes annotated to dmCpGs. dhmCpGs were subset for only CpGs increasing
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Potential roles of 5hmC in regulating EMT
As increased hydroxymethylation and decreased methylation are traditionally associated with increased gene ex-
pression, the authors wanted to determine whether the dhmCpGs and dmCpGs were acting in regions of open
chromatin as identified by ATAC-seq. Out of 42,510 open chromatin regions containing a CpG that was measured
on the Illumina EPIC array, 12.03% of the open chromatin regions contained dhmCpGs, in contrast to 1.59%
of the open chromatin regions containing dmCpGs (Figure 7A). Interestingly, the only pathways significantly
associated with the open chromatin regions containing dhmCpGs were related to the Rho family of GTPase,
which have been extensively shown to function as cellular switches in coordinating cell polarity and migration by
regulating the cytoskeleton (Figure 7B) [79]. Expression of the majority of genes in the Rho GTPase cycle pathway
is high in EM1, EM2 and EM3 clones (Figure 7C).

To identify additional molecular processes dhmCpGs in open chromatin regions may regulate, the authors
conducted TF motif enrichment analysis. Motif enrichment analysis found 571 TFs significantly associated with
open chromatin regions with dhmCpGs in intermediate clones compared with only four TFs in distal clones under
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the FDR <0.05 threshold (Figure 7D & Supplementary Table 4). In the intermediate clones, motifs for key EMT
TFs (ZEB1 and SNAI2) were enriched among open chromatin regions with dhmCpG, implicating 5hmC in EMT
process-associated gene regulation. In addition, motifs for GRHL2, a suggested EMT pioneer TF that has been
shown to be associated with epigenetic remodeling, also were enriched in consensus open chromatin regions with
dhmCpGs, but not in consensus open chromatin regions with dmCpGs (Supplementary Table 4) [80,81]. While
not known specifically to play roles in EMT, other TF motifs, particularly motifs of GATA2 and SPI1, were also
found to be in open chromatin regions with dhmCpGs. Together, these results suggest that an increase in 5hmC
may play a regulatory role in the EMT process by acting in Rho GTPase-associated genes and acting on binding
sites of EMT-associated TFs.

Discussion
Widely used standard bisulfite conversion used to study DNA methylation is unable to distinguish between
5mC and 5hmC. Using a tandem oxidative-bisulfite treatment approach, the authors measured both cytosine
modifications to understand their unique distribution across distal and intermediate EMT states. The majority of
previous studies measuring 5hmC have been limited to global 5hmC levels in tissues of heterogeneous cell types,
including tumors, where extremely low levels of 5hmC were observed [38,82,83]. Here, identifying differences in cell-
state-specific, nucleotide-specific 5hmC is a strength of this approach. The intermediate clones in the EMT model
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system suggests that genome-wide patterns of hydroxymethylation are associated with specific EMT phenotypes,
suggesting a potential role of 5hmC in mediating EMT-related processes. Moreover, through a multi-component
approach of epigenome profiling, the authors show that EMT phenotypes are underscored by substantial epigenetic
differences.

Previous work establishing this model system has demonstrated that the intermediate clones represent a popula-
tion of tumor cells with high migratory and invasive properties. The authors identify that open chromatin regions
with dhmCpGs are particularly associated with the Rho family of GTPases, the family of GTPases that regulates
cell polarity and migration by coordinating the cytoskeleton [79]. Rho GTPases have been well documented to
play a role in EMT in tumors [84]. While Rho GTPases have been implicated in tumor progression, mutations in
Rho proteins are not common and do not favor the initiation or progression of tumors, which has called for the
study of other mechanisms in deregulation Rho proteins [85]. The present study suggests that increasing 5hmC
may be implicated in the EMT, which in turn may contribute to deregulation of Rho proteins. In addition, the
authors show that dhmCpGs are associated with motifs of key EMT TFs, which may indicate that the recruitment
of various TFs by 5hmC may be a potential mechanism regulating the intermediate clones’ high migratory and
invasive potential. These results suggest that targeting increases in 5hmC in intermediate cells may impede the
maintenance of this state and/or force lineage commitment, effects that could lead to altered metastatic propensity.

Prior literature has already indicated that DNA methylation states change during TGF-β-induced EMT [86].
Similarly, this study’s natural (non-TGF-β-induced) EMT model suggests that DNA cytosine modifications exhibit
altered genome-wide patterns during the EMT process. These results indicate that these altered patterns may
regulate the existence of cells in various EMT states, thereby enabling tumor heterogeneity. Alterations in cytosine
modifications and chromatin accessibility toward a less repressive state suggest that the multi-level epigenome is
essential in regulating the dynamics of EMT.

Finally, this study highlights the importance of multi-component measures of epigenetic states. Utilizing ATAC-
seq in combination with 5mC and 5hmC methylation array profiles allowed for the identification of the significance
of the Rho GTPases that was not evident in only DNA cytosine modification analyses. Moreover, combined datasets
allowed for the identification of the potential role of 5hmC regulating EMT-related TFs. However, the array-based
approach may not have revealed CpG loci in relevant accessible chromatin, a limitation that may be overcome with
a whole genome bisulfite, oxidative-bisulfite sequencing approach. It highlights the complex epigenetic landscape
that is required in the EMT process.

Conclusion
Our study addresses current gaps in the understanding of the roles of specific cytosine modifications (5mC
and 5hmC) in EMT and their associations with other epigenetic changes. Clones exhibiting intermediate EMT
phenotypes had distinct, more open epigenetic states with increased 5hmC, decreased 5mC and more accessible
chromatin compared with clones exhibiting more distal EMT phenotypes. Open chromatin regions containing
CpG loci with increased 5hmC enriched in motifs of key EMT TFs, ZEB1 and SNAI2, indicate the likelihood
of multi-component epigenetic regulation during EMT. Epigenetic profiles at the cytosine and chromatin levels
associated with EMT processes that contribute to gene regulation may be targeted to prevent the progression of
EMT.

Future perspective
The roles of cell-state-specific epigenomic changes, specifically in multiple DNA cytosine modification marks, in
regulating EMT are only just beginning to be identified. Utilizing multiple genome-wide epigenomic assays will
improve the understanding of how different parts of the epigenome interact to regulate EMT, which may yield
new therapeutic targets to prevent EMT. With novel epigenetic targets, therapeutic strategies to prevent cancer
progression into metastasis may be developed for clinical use.
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Summary points

• Epithelial-to-mesenchymal transition (EMT) is an early step in the invasion-metastasis cascade, involving
progression through a number of cellular states.

• Due to challenges with isolating intermediate cell states, genome-wide cytosine modification mechanisms that
define transition are not completely understood.

• This study provides a nucleotide-resolution genome-scale map of cytosine modifications and chromatin
accessibility for phenotypes spanning the EMT spectrum to address gaps in understanding epigenomic changes in
the intermediate/hybrid states during EMT.

• The study utilized a previously derived model of six single cell clones from SUM149PT, a heterogeneous estrogen
receptor/progesterone receptor-negative inflammatory breast cancer line, that represent phenotypes across the
EMT spectrum.

• Variable patterns of genome-wide 5-hydroxymethylcytosine (5hmC) and 5-methylcytosine (5mC) exist based on
clonal EMT status.

• A total of 17,862 significantly differentially hydroxymethylated CpGs, almost all of which were increased in 5hmC,
and 7903 significantly differentially methylated CpGs, most of which were decreased in 5mC, were identified in
intermediate clones.

• Some differentially hydroxymethylated CpGs and differentially methylated CpGs were in EMT-associated genes
such as SNAI1 and TWIST1 and in epithelial or mesenchymal cell markers such as CDH1 and MMP19.

• Open chromatin regions containing increased 5hmC CpGs were associated with the Rho family of GTPases,
proteins that have been extensively shown to function as cellular switches in coordinating cell polarity and
migration by regulating the cytoskeleton.

• In the intermediate clones, motifs for key EMT transcription factors (ZEB1 and SNAI2) were enriched among open
chromatin regions with increased 5hmC CpGs, implicating 5hmC in EMT process-associated gene regulation.

• The results suggest 5hmC may play a regulatory role in the EMT process.
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