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Introduction 

Protamine is a diverse family of small arginine-rich 
proteins that are synthesized in the late-stage spermatids 
of many animals and plants, including PRM1, PRM2, 
PRM3 in most species (1). PRMs bind to DNA leading to 
condensation of the spermatid chromatin and a genetically 
inactive status (1). Generally, the binding process is initiated 

by the genome-wide histone hyperacetylation and followed 
by the loading of spermatid-specific histone variant, H2A.
L.2 onto the nucleosomes, and PRMs subsequently bind 
to DNAs to form an ultimately condensed sperm head 
through cooperating with transition proteins (TPs) (2,3). 
In certain species, a special type of protein also participates 
in the histone-protamine replacing process which is known 
as protamine-like proteins. The protamine-like proteins 
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Figure 1 General view of three domains for PRM1 protein. Amino acids represented by letters: A, alanine; C, cysteine; H, histidine; M, 
Methionine; P, proline; Q, glutamine; R, arginine; S, serine; T, threonine; Y, tyrosine; This diagram does not represent the spatial structure 
of the protein. PRM1, Protamine 1. 
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are the most heterogeneously sperm-basic nuclear proteins, 
possess higher amount of lysine and arginine residues 
than those of histones, and are larger than true protamine 
proteins (4,5). Structural analysis of the protamine-like 
proteins indicated that protamines are evolved from H1-
like histones by a frameshift mutation in the carboxy-
terminal end of the lysine-rich sperm-specific H1 histone 
(6-11). Compared with histones and protamine-like 
proteins, mature protamines are typically short proteins 
(50–100 amino acids) with higher amount of arginine 
(up to 70%) and two structural elements identified in all 
vertebrates. One element which contains multiple arginine 
or lysine amino acids, acts as small “anchoring” domains for 
DNA binding. The other element is comprised of multiple 
serine and threonine residues which are phosphorylation 
sites. Furthermore, in some species, a third domain exists 
with cysteine residues which can be oxidized to disulfide 
bridge to link them together and stabilize the chromatin 
complex (12). 

Generally, primates and rodents express two types of 
protamines: PRM1 and PRM2. PRM1 is approximately 
49–51 amino acids length and contains all the above-
mentioned, highly evolutionary conserved domains  
(Figure 1). Whereas, protamine 2 (PRM2), with a species-
specific expression manner, contains higher number 

of amino acids than PRM1 and presents in particular 
species. The human PRM1 and PRM2 genes co-locate 
in a tight cluster on chromosome 16 at 16p13.2 and the 
expressions of them are precisely regulated at transcription, 
translation, post-translation, and epigenetics levels (13,14). 
Noteworthily, transcription and translation of PRMs 
(PRM1 and PRM2) in mammalians, are temporarily 
uncoupled in the round spermatid stage and the late stage 
of spermatogenesis, respectively. This stage-specific pattern 
of gene expression is essential for the correct histone-
protamine exchange and complete differentiation of round 
spermatids into mature spermatozoa. 

So far, researches on male infertility have revealed that 
aberrant expression of PRM1 or ratio of PRM1/PRM2 
created disrupted sperm shape or impaired sperm function 
which are responsible for male infertility (1,15), Besides, 
PRM1 is currently under investigation in various areas. 
For instance, the expression of PRM1 which belongs 
to the cancer-testis antigen (CTA) family (known as 
CT94.1), is upregulated in colorectal cancer (CRC) and 
chronic leukemia (CLL). Researches disclosed the cellular 
function of PRM1 in promoting CRC cell proliferation 
and metastasis, also detected the immunogenicity of PRM1 
in CLL (16-18). Moreover, biofunction of PRM1 on cell 
growth is thought to be intricate. It has been reported 
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that the increased rate of tumorigenesis was observed by 
subcutaneous injection of protamines (subtracted from 
salmon sperm), as well as the impaired proliferation of 
Hela cells and E. coli by repeated transfection of PcDNA-
PRM1 (19-24). Additionally, due to the high affinity to 
DNA, PRM1 has been applied in various biomedicine 
fields such as transgenic animal research, development of 
drug delivery system, and gene therapy (20,25). Spermatid-
like structures of somatic cell nucleus have been observed 
after heterologous expression of PRM1, which facilitates 
somatic cell nucleus transfer (SCNT) (19-21). Moreover, 
researchers applied peptide-derived approaches using 
PRM1 as a nucleic acid vector to protect and facilitate the 
delivery of siRNA or mRNA to specific cell populations 
(25-28). Within the scope of this review, we will illustrate 
the essential roles which PRM1 plays during mammalian 
spermatogenesis, and summarize the current research 
concerning PRM1 in other areas, aiming to broaden our 
present understandings of the biological significance of 
PRM1 and inspire further studies in tumor diagnosis, 
transgenic animal research, and novel drug delivery system 
in the future.

We present the following article in accordance with the 
Narrative Review reporting checklist (available at https://
dx.doi.org/10.21037/tcr-21-1582).

Biological function of PRM1

Pre-fertilization stage

Generally, during spermatogenesis, the mRNA of TPs and 
PRMs are stored in ribosomal protein granules of cytoplasm 
after transcription, followed by translation into proteins, 
and participate in sperm prolongation and spermatid 
differentiation (29,30). In mammalian spermatocytes, 
chromatin condensation is initiated by TPs and completed 
by PRMs (PRM1 and PRM2). During spermatogenesis, 
among the plenty mRNAs which expressed in round 
spermatids, the testis specific center and junction histone 
subtype expressed first, which possesses low affinity to 
DNA, leading to the nucleosome instability after post-
translational modification. Subsequently, the acetylated 
histone is identified by bromodomain testis-specific proteins 
(Brdt), providing conditions for the coming TPs which 
work together with topoisomerase to relieve torsional stress. 
Translation of PRM1 is activated in elongating spermatids, 
simultaneously with the initiation of the final stage of 
chromatin condensation (29). Guided by TPs, individual 

PRM1 molecule binds to 10–11 bps of DNA, and PRM2 
binds to a slightly larger segment of DNAs (around 15 bps) 
because the negative charge along the DNA backbone can 
be neutralized by PRM1 and PRM2, enabling adjacent 
DNA molecules to pack close together (3,31). Specifically, 
in the major groove, PRM1 wraps around the DNA helix, 
and one molecule being bound per turn of DNA helix. 
With the intra- and inter- molecular disulfide crosslinks 
formed by cysteine residues in PRM1, the characteristic 
toroidal structures are created and each contains roughly 
50 kb of DNAs. This binding between PRM1, PRM2 and 
DNA backbone leads to the remarkable compression of 
approximately 85% of chromatins which are finally stored 
in the sperm head, and a small proportion of histones is 
retained which plays important roles after fertilization (32-34). 
These processes guarantee the unharmed transferring of the 
paternal genetic information to the oocyte and assure that 
the genetic information can be properly accessed by the 
developing embryo (1). 

Post-fertilization stage

PRM1 is not only an essential protein in spermatogenesis, 
but the timely removal of PRM1 from DNA also affects the 
early development of embryo after fertilization. In human, 
it is reported that a programmed protamine-to-histone 
exchange occurs immediately after the paternal chromatin 
enters in the egg (35-37). Remarkably, the tightly packed 
chromatin from sperm is rapidly decondensed in assistance 
of proteins released from the oocyte nucleus. During this 
process, the chromatin from the parental side rapidly loss 
PRMs and testis specific histones, and is remodeled into 
the nucleosome structure with the help of histones from 
the mother. Recently, researchers have proposed and 
illustrated in detail the specific mechanism of protamine-
to-histone exchange in the fertilized egg. In that report, 
the phosphorylation of PRM1 by SR (serine/arginine-rich 
domain) family of splicing factors protein kinase 1 (SRPK1) 
from the maternal side is essential for paternal chromatin 
decondensation and reprogramming (35). Noteworthily, 
the protamine-histone exchange has inspired more and 
more researches of PRM1 in other areas, such as transgenic 
animal research and drug delivery system development 
which will be illustrated later in this review. 

Regulation mechanism of PRM1 expression 

As early-described, PRMs participate in critical processes 
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during spermatogenesis, and any abnormality of PRMs 
expression may affect the sperm parameter, and impair 
the shape or motility of sperm, finally leading to infertility 
(15,38,39). Therefore, the correct PRMs expression is 
believed to be a kind of chromatin checkpoint during 
sperm development. So far, accumulating studies have been 
carried out to survey the mechanism of PRM1 expression 
regulation in human which can be categorized into four 
levels.

Transcription level

So far, several mechanisms involved in the transcriptional 
regulation of PRM1 have been revealed, including 
association with nuclear matrix attachment regions 
(MARs), and binding of trans-acting factors to the 
promoter region (40,41). Firstly, MARs, located in the 5' 
and 3' regions around PRM1 genes, acts as cis-regulatory 
units in attachment of DNA to the protein scaffolding 
of the nuclear matrix. Research of MARs-knockout 
mouse models demonstrated that 3'-MAR can effectively 
promote gene activation (41). Pygopus family PHD 
finger 2 (PYGO2), belonging to a family of evolutionarily 
conserved PHD finger proteins, acts as co-activators of 
Wnt signaling. However, mice containing hypomorphic 
alleles of pygopus 2 revealed that mice are infertile with 
drastically spermatogenic defects and the expressions of 
Prm1, Prm2, Tnp2 and H1 fnt reduced remarkably (42). 
Transcription factor cAMP response element modulator 
(CREM), which is highly expressed in male germ cells, 
participates in regulation of many genes expression during 
spermatogenesis (43). Deletion of CREM gene in mice 
caused loss of TNPs and PRMs, and mice with camk4 
gene deletion have been reported to display impaired 
spermatogenesis (44,45). Besides, TATA-box protein 
(TBP) and Y-box proteins are also important regulators 
of PRM1 expression during spermatogenesis. TBP over-
expression is observed in mice between 18 and 28 days, 
corresponding to the period of the transcription of genes 
in haploid cells. Specifically, TBP-like factor (TLF), 
similar to TBP in sequence, may both activate and repress 
protamine transcription, and the TLF null mice were 
reported to have abnormal heterochromatin organization, 
which may affect histone-protamine exchange, chromatin 
condensation and even induces sperm apoptosis (46-48). 
Another important regulator of gene expression is Y-box 
protein, which binds both DNAs and RNAs to up-regulate 
transcription and down-regulate translation generally. So 

far, several Y-box proteins have been identified to regulate 
expression of PRM1. For instance, Contrin and its mouse 
orthologue have been reported to be associated with the 
PRMs expression. Contrin serves as a co-activator of PRMs 
transcription and can bind to the Y-box element in the gene 
promoter region. Additionally, Contrin polymorphism 
in population has been reported to be related to male 
infertility (49,50).

Translation level

Although PRM1 and PRM2 are transcribed in the round 
spermatid stage, their mRNAs are stored in translationally 
repressed ribonucleoproteins (RNPs) in the early haploid 
cells and activated in elongated spermatids (51,52). It is 
well-accepted that the expression of PRM1 and PRM2 
are mainly under translational control, which is essential 
for correct sequential nucleoprotein exchange and 
complete differentiation of round spermatids into mature 
spermatozoa. Till now, the specific mechanism of PRM1 
and PRM2 translational regulation is still yet to be fully 
illustrated. It is reported that the Y-box proteins Contrin 
and Translin which are mentioned above, also involve in 
PRM1 translational regulation (53). They are essential for 
RNP transportation to the cytoplasm and responsible for 
delayed translation (53-58). Specifically, Y-box protein 2 
(YBX2) was identified to be responsible for repressed PRM1 
mRNA translation because the depletion of YBX2 in Ybx-2 
null mice aberrantly activates Prm1 translation prematurely 
in early spermatids (53). Additionally, transgenic animal 
research revealed that mice carrying a targeted disruption 
of Tarbp2 were sterile and severely oligospermic, proposing 
PRBP as a requisite for properly translational activation of 
the mRNAs encoding protamines (54,59,60). 

Post-translation level

Different from PRM2 which is translated as a precursor 
demanding further splicing, PRM1 is translated as a mature 
protein without any cleavage, but rapid phosphorylation 
occurs soon after translation before binding to chromatin. 
As PRM1 and other PRMs are extended members of 
the SR family (61-63), they are regulated by the well-
known evolutionarily conserved SRPKs (64,65). Among 
them, SRPK1, which is ubiquitously expressed in sperm 
cells, phosphorylates PRM1 at Ser10 and Ser8 soon 
after translation before entering the nucleus, which is 
essential for correct binding of PRM1 to DNA (35,66). 
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Additionally, researchers also reported another significance 
of phosphorylation of SRPK1 after fertilization that it 
enhances and facilitates the removal of PRM1 from DNA 
after fertilization, which is a prerequisite for paternal 
chromatin decondensation in the fertilized egg and 
subsequent zygotic development (35). 

Epigenetics level

JmjC-domain containing histone demethylase 2A 
(JHDM2A) is a H3K9 demethylase which is highly 
expressed in round spermatids. As reported by Okada et al., 
during mouse spermatogenesis, JHDM2A directly binds to 
the promoter regions of PRM1 and TNP1, and controls 
their expression by removing H3K9 at their promoters (67).  
Moreover, transgenic mice with Jhdm2a-deficient 
exhibit post-meiotic chromatin condensation defects and 
polymorphisms in exon 12 and exon 24 of JHDM2A gene 
are associated with male infertility (67-69).

Clinical utilization of PRM1

Being a famous molecular in spermatogenesis and 
fertilization, researches of PRM1 are accumulating. 
Abnormal expression of PRM1 is responsible for male 
infertility, and researchers also attempted to introduce 
PRM1 expression to somatic cells which inspired several 
studies concerning tumorigenesis, transgenic animal 
research, and drug delivery system (Figure 2).

Male infertility

Infertility is a global issue affecting approximately 15% 
of heterosexual couples, and male infertility factors 
accounts for 50% couples’ infertility (70). Generally, 
etiologies of male infertility can be categorized to four 
aspects: spermatogenic quantitative defects; ductal 
obstruction or dysfunction; hypothalamic-pituitary axis 
disturbances and spermatogenic qualitative defects (71). 
Since protamine proteins participate in the late stage 
of spermatogenesis, abnormality of PRM1 expression 
is responsible for spermatogenic qualitative defects. 
Accumulating studies have revealed the relationship 
between the abnormal mRNA levels or ratio of PRM1/
PRM2 and sperm dysfunctions. It is reported recently 
that PRM1 and PRM2 mRNA copy numbers in the 
semen samples from teratozoospermic patients were 
much lower than normozoospermic patients and a normal 

PRM1/PRM2 mRNA (0.8–1.0) ratio was correlated with 
successful intracytoplasmic sperm injection cycles (72). 
Moreover, abnormal expression and ratio of PRM1/
PRM2 were also observed in patients whose partners 
suffered the unexplained recurrent miscarriages (73). 
It is known that any single nucleotide polymorphism 
(SNP) in the coding or non-coding areas of PRM1 genes 
may lead to significant abnormalities in its expression, 
further impact the spermatogenesis processes and the 
products, which will ultimately lead to spermatogenesis 
dysfunction and male infertility (74). So far, researchers 
have screened PRM1 gene polymorphisms in infertility 
patients from different countries and districts (75-77). 
Collecting these studies, we find some variations related 
to male infertility, including the c.-109G>C, c.102G>T 
and c.119G>A in oligozoospermic men (78), c.-191C>A 
in oligozoospermic and asthenozoospermic men (79), 
and 230C>A in teratozoospermic infertile men (77). 
However, a recently published meta-analysis by Nemati 
et al. analyzed all the published articles about PRM1 and 
PRM2 polymorphisms, and evaluated the association with 
susceptibility to male infertility. By analysis, one previously 
reported type of PRM1 polymorphism as protective 
factors against Asian infertility was ruled out, and a subset 
of PRM1 polymorphisms was identified to be associated 
with elevated risk of male infertility (74).

Effect on tumorigenesis

The unique expression pattern in spermatid justifies PRM1 
as a member of CTA family, which was first identified in 
CLL and CRC patients (16,18). PRM1 mRNA expression 
was detected in 11/41 (26.8%) early CLL patients, 
furthermore, high titers PRM1 IgG antibodies were also 
detectable in nearly half CLL patients but not in healthy 
donors (16). Additionally, analysis of CRC tissues also 
revealed increased expression level of PRM1 and explored 
the oncogenic function of PRM1 (18). However, the 
detailed biological functions of PRM1 in cancer are yet to 
be fully illustrated. Previous study has used subcutaneous 
injection of protamines exacted from salmon to detect 
the tumorigenesis rate in inbred rats which were given 
carcinogen dimethylhydrazine (DMH). The increased 
incidence of bowel tumor was observed in protamines 
treated group compared with heparin or 5-fluorouracil 
treated groups (23). Furthermore, researchers are inspired 
by the special histone-protamine exchange process which 
leads to chromatin condensation and transcriptional 
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Figure 2 Traditional utilization of PRM1 in the past and future new possibilities of application. 
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termination in spermatids. For instance, Günther et al. 
analyzed the protamine-mediated chromatin condensation 
in somatic cancer cell line (22). Through repeat transfection 
of PcDNA-PRM1 or PcDNA-PRM2, they observed the 
impaired proliferation in two fast-growing cell systems, 
E. coli and Hela cells, and detected the foci of PRM1 
and PRM2 distributed within the nucleus of Hela cells. 
Collectively, as a CTA, PRM1 possess a highly tissue-
specific expression pattern, and induce certain immune 
response. The above-mentioned results may inspire future 
researches to investigate PRM1 expression and functions as 
a novel CTA in other human malignancies. 

Application in transgenic animal research

Although SCNT is a promising technology in transgenic 
animal research, the full implementation is still on hold 
because of the low efficiency (80,81). The strategies 
targeting nuclear reprogramming include the RNAi-
mediated downregulation of Xist, the depletion of H3K9 
and H3K27 methyltransferases in somatic cells, and 
modulation of DNA methylation by dCas9-Tet/Dnmt 
before nucleus transfer (NT) (82-85). Recently, Iuso et al. 
have developed a novel protocol aiming to facilitate the 
SCNT procedures. The protocol is to introduce PRM1 
expression into adult somatic cells through transfection 
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methods, overexpression of PRM1 was observed in somatic 
cells. When the overexpressed PRM1 protein entered 
the nuclei, histone-protamine exchange occurred in the 
chromatin which was formed into condensed station, 
a spermatid-like structures. Subsequently, researchers 
introduced the spermatid-like somatic cell nuclei into 
enucleated oocytes, and observed the reversible remodeling 
process which resulted into normally developed embryos 
in vitro. Now this protocol is believed to be simpler, easily 
readable by the oocytes, and ultimately improve SCNT 
efficiency (19-21). 

Novel vector for drug delivery system

Due to the high affinity to DNA backbone, the positive-
charged PRMs, especially PRM1, is found to be great 
help in facilitating the development of novel gene carriers 
to selected cell populations (25-28,86-88). Lately, Weide  
et al. developed a more feasible and safe method to deliver 
tumor vaccine. The protamine-mRNA vaccine coding 
tumor-associated antigens was constructed to induce 
antitumor immune responses, and has achieved satisfactory 
effects on melanoma patients (26). Meanwhile, utilization 
of the small interfering RNAs (siRNAs)-targeted certain 
oncogenic genes or proteins might turn out a promising 
anticancer therapy to retard cancer cell growth and 
metastasis. However, the efficient delivery of siRNA into 
cancer cells in vivo remains frustrating, and many strategies 
have been applied to improve the efficacy in several 
malignancies (89-91). Researchers took advantage of the 
reversible binding process of PRMs to nucleic backbone, 
and developed fusion proteins of single-chain fragmented 
antibodies and protamine-derived peptides, which is used 
to deliver siRNAs into specific target cells and proved to 
be more effective methods than conventional delivery (28). 
Moreover, protamine-derived peptide has been widely used 
to develop efficient biodegradable non-viral carrier for gene 
transfection, in conjugation with other materials, which has 
promising prospect in nanotechnology (86,92,93). 

Conclusions

Spermatogenesis and fertilization are the primary assurance 
of life development. Sperm at fertilization transfers not 
only its genetic but also epigenetic information. PRM1 and 
PRM2 play important roles in these processes, which have 
been proposed as a suitable biomarker for estimating male 
sperm quality, especially for male infertility. Therefore, 

although PRM1 is a well-known protein in andrology 
research, further studies are extremely expected which will 
reveal the underlying mechanism of PRM1 in chromatin 
remodeling and explore the clinical significance in male 
infertility.

On the other hand, PRM1 belongs to CTA family, 
which is aberrantly expressed in some malignancies and 
induces specific humoral immune response. It will be rather 
promising to develop PRM1-based tumor diagnosis and 
treatment strategies. Besides, the high-titers of PRM1-
specific IgG in CLL patients also expands our horizon of 
its employment in more translational clinical researches 
as well as the nucleic acid delivery vector or transgenic 
animal research. Till now articles are limited concerning 
the expression and biological function of PRM1 in cancer 
or other diseases, partly due to the facts of heterogenous 
expression pattern of CTA and the special remodeling 
change of chromatin after exogenous overexpression of 
PRM1 which may poses obstacles for conventional research 
of PRM1 in tumors. In conclusion, PRM1 represents not 
only an essential checkpoint for sperm chromatin quality 
control but also a novel target for tumor diagnosis and 
biotherapy. Future studies are long expected to clarify the 
underlying mechanism in spermatogenesis and illustrate 
detailed cellular functions of PRM1 in tumorigenesis and 
metastasis. 
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