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Abstract

Receptive ano-rectal intercourse is a major cause of HIV infection in men having sex with men and in heterosexuals. Current
knowledge of the mechanisms of entry and dissemination during HIV rectal transmission is scarce and does not allow the
development of preventive strategies. We investigated the early steps of rectal infection in rhesus macaques inoculated
with the pathogenic isolate SIVmac251 and necropsied four hours to nine days later. All macaques were positive for SIV.
Control macaques inoculated with heat-inactivated virus were consistently negative for SIV. SIV DNA was detected in the
rectum as early as four hours post infection by nested PCR for gag in many laser-microdissected samples of lymphoid
aggregates and lamina propria but never in follicle-associated epithelium. Scarce SIV antigen positive cells were observed
by immunohistofluorescence in the rectum, among intraepithelial and lamina propria cells as well as in clusters in lymphoid
aggregates, four hours post infection and onwards. These cells were T cells and non-T cells that were not epithelial cells,
CD68+ macrophages, DC-SIGN+ cells or fascin+ dendritic cells. DC-SIGN+ cells carried infectious virus. Detection of Env singly
spliced mRNA in the mucosa by nested RT-PCR indicated ongoing viral replication. Strikingly, four hours post infection colic
lymph nodes were also infected in all macaques as either SIV DNA or infectious virus was recovered. Rapid SIV entry and
dissemination is consistent with trans-epithelial transport. Virions appear to cross the follicle-associated epithelium, and also
the digestive epithelium. Viral replication could however be more efficient in lymphoid aggregates. The initial sequence of
events differs from both vaginal and oral infections, which implies that prevention strategies for rectal transmission will
have to be specific. Microbicides will need to protect both digestive and follicle-associated epithelia. Vaccines will need to
induce immunity in lymph nodes as well as in the rectum.
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Introduction

Receptive rectal intercourse with an HIV+ individual carries a

per act risk of transmission of 0.5% to 1.7% [1–3]. This is three to

five-fold higher than receptive vaginal intercourse [3,4]. In 2009

Men having Sex with Men (MSM) represented 59.5% of all new

HIV infections in the USA [5], and 39.8% in Canada [6]. In

males, MSM represent 78.4% of newly acquired infections in the

USA [5], and 59.5% in Canada. MSM are the population group

with the highest risk of acquiring HIV worldwide, including

developing countries [7]. Rectal intercourse practiced in hetero-

sexual relationships [2,8–10] increases several fold the male to

female transmission risk [11–13].

Additionally, an increase in severity of disease for MSM with

respect to intravenous transmission has been noted in most but not

all cohorts [14–31]. This phenomenon could be due to the
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prevalence of specific opportunistic pathogens in that population

[31], such as HHV-8 [29,30]. Alternatively, entry by the rectal

route could modify the initial immune response and worsen the

clinical course of HIV infection [14].

HIV can cross the rectal epithelium by several mechanisms:

open lesion with direct access to blood leukocytes [32,33],

productive infection of epithelial cells [34–37], transcytosis by

epithelial cells [38,39] and/or M cells [40,41], opening of tight

junctions [42–44], and capture by intraepithelial dendritic cells

(DC) [45–48]. Transport of the virus out of the mucosa to lymph

nodes can be due to free virions in the lymph, infected cells or

virions bound to DCs [49], the C-type lectin DC-SIGN being then

a prime candidate for binding the virus [50–52].

For ethical reasons, in vivo data on viral entry and

dissemination can only be obtained in animal models. Experi-

mental infection of macaques with SIV currently represents the

best animal model for HIV infection [53,54]. Earlier work on

rectal infection in rhesus and pigtail macaques showed that viral

dissemination is rapid [55–59], proceeds in five stages with wide

animal to animal variation in terms of kinetics [55,56] and differs

from intravenous entry [55,56]. To our knowledge, no information

was gained on the pathway followed by the virus for rectal entry. A

good understanding of the mode of entry and of dissemination is

important for the development of preventive strategies, whether

chemical or vaccine based [44,60]. We decided to address this

question in the rhesus macaque (Macaca mulatta) following rectal

infection with the pathogenic isolate SIVmac251. We used free

virions as inoculum. Current data does suggest that during sexual

HIV transmission the source virus more likely originates from free

viral particles than from infected cells in seminal plasma [61,62].

We show here that SIV is present in lymphoid aggregates as

well as in the lamina propria of the rectum at least four hours post

infection (pi). Replication appears to be initiated mostly in

lymphoid aggregates. SIV disseminates away from the mucosa in

less than four hours after rectal infection. The first target cells of

SIV include T cells, but virus is also found associated with DC-

SIGN+ cells. Presence at both sites (lymphoid aggregates and

lamina propria) suggests entry via digestive epithelium as well as

via follicle-associated epithelium. Prevention strategies will there-

fore have to cover these two sites.

Results

Experimental design
Rectal infections were performed with one hundred rectal

Animal Infectious Dose 50 (rAID50). This corresponds to 7.78 log

copies of viral RNA, for a final concentration of 7.31 log copies/ml

of viral RNA. This is commensurate with the highest viral loads

reported in human semen of 7 to 8.5 log copies/ml of viral RNA

[63–70]. Macaques were necropsied four hours (R-H4.1 and R-

H4.2), sixteen hours (R-H16.1, R-H16.2 and R-H16.3), twenty-

four hours (R-H24.1 and R-H24.2), two, three and four days (R-

D2.1, R-D2.2, R-D3.1, and R-D4.1) post infection and viral

distribution was analyzed by nested PCR, nested RT-PCR,

immunohistochemistry and co-culture with indicator cells. Plasma

viral load was below detection for R-H16.1, R-H24.1, R-H24.2,

R-D2.1, R-D2.2, R-D3.1 and R-D4.1. It was not measured for R-

H4.1, R-H4.2, R-H16.2 and R-H16.3 as it was assumed to be

below detection considering the early time point at which the

macaques were necropsied.

The macaque rectum is 7 cm long, 6 cm circumference [71].

Most often the entire rectum was prepared for morphology (with

alternate segments embedded in paraffin and frozen for cryosec-

tionning). For some macaques alternate segments (representing

one half of the rectum) were chemically and enzymatically

disrupted to obtain cell suspensions enriched for epithelial cells

(R-H4.1, R-H24.1, R-D2.2, R-D4.1) or for lamina propria cells

(R-H16.3).

Peripheral blood mononuclear cells (PBMC) were purified by

density centrifugation.

Individual colon-draining mesenteric lymph nodes were either

processed for morphology (some embedded in paraffin and others

frozen for cryosectionning) or were mechanically disrupted to

obtain a suspension of mononuclear cells. Axillary lymph nodes

were usually separated in two, which were processed for

morphology or mechanically disrupted to yield mononuclear cells.

Three macaques were sacrificed five (R-D5.1), seven (R-D7.1)

and nine (R-D9.1) days pi. This allowed us to determine that the

100 rAID50 dose leads to viral dissemination pattern similar to

those previously observed with ten rAID50 (Text S1, Figure S1).

Controls included macaques infected with heat-inactivated virus

and sacrificed four (M-H4.1), sixteen (M-H16.1) and twenty-four

(M-H24.1) hours post inoculation, as well as two healthy rhesus

macaques. Control rhesus macaques gave negative results in all

assays for SIV.

SIV enters intraepithelial cells but is not amplified in
rectal epithelia

Rare SIV antigen positive (SIV+) intraepithelial cells were

observed by immunohistofluorescence (IHF) four, sixteen and

twenty-four hours pi (Figure 1, Text S1, Table S1 and Figure S2A).

Some of these cells were confirmed to be T cells (Figures 1A–D). In

contrast, IHF did not show SIV+ epithelial cells at any time point.

The presence of SIV+ intraepithelial cells indicates that the virus

could have crossed the digestive epithelium in less than four hours.

We never found SIV+ cells by IHF in the follicle-associated

epithelium. We also never found viral DNA amplified by PCR in

laser microdissected follicle-associated epithelium (microdissection

described in Text S1 and Figures S3A and S3B).

The epithelial cell fraction contains cells from the digestive

epithelium, with less than 0.1% of cells coming from the follicle-

associated epithelium [72]. Very little, if any, cell-associated virus

was found in cells isolated from the rectal epithelium (Figure 2E),

indicating that there was no viral amplification in cells of the

epithelium. Cell-associated virus could correspond to infected

intraepithelial T cells.

SIV reaches mucosal lymphoid aggregates as early as
four hours post infection

Four hours pi and onwards, we detected viral DNA in

microdissected lymphoid aggregates in all macaques (Figure 2A,

example of microdissected area in Figures S3C and S3D). Over

60% of lymphoid aggregates were positive for SIV DNA at four

and sixteen hours pi (Figure 2A). Moreover, at least one third of

these positive aggregates contained more than one copy of SIV

DNA (with up to 20/20 PCR positive for SIV DNA, Table S2).

The number of copies of SIV DNA in microdissected samples was

below the detection limit of real-time PCR, preventing more

accurate quantification. The majority of lymphoid aggregates

remained positive for SIV at later time points (Figure 2A). In

addition, lymphoid aggregates could contain SIV DNA in several

serial sections suggesting local foci of infection (Table S2). The SIV

DNA load of lymphoid aggregates appeared stable from four to

forty-eight hours pi (Text S1, Figure S4A).

The presence of virus in lymphoid aggregates was confirmed by

IHF detection of capsid (p27) and envelope (gp130) proteins. Rare

clusters of adjoining cells showed labeling for SIV proteins in

Rectal SIV: Fast and Furious
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infected macaques four hours to two days pi (Figures 2C and 2E–

H, Table S1, Figure S2B), the latest time point examined. The

labeling was cytoplasmic, and appeared more punctate four hours

pi (Figure 2C, dashed circle) than at later time points (Figures 2E–

H). A control antibody of the same isotype as the antibodies to p27

and gp130 failed to bind on serial sections, demonstrating that

binding is specific (Figures 2I–L). The number of SIV+ cell clusters

in the lymphoid aggregates appeared to increase slightly at days

one and two pi (Text S1, Table S1 and Figure S2B).

SIV+ cells were phenotyped. Both CD3+ and CD32 cells were

found positive for SIV antigens in the clusters (Figures 2B, 2D, 2F

and 2H). SIV+ CD32 cells were negative for fascin, a marker for

mature DCs (Figure 2B) and for a macrophage-specific epitope of

CD68 (Figure 2D). Early targets of SIV include therefore T cells as

well as unidentified cells which do not appear to be mature DCs or

macrophages.

The presence in lymphoid aggregates of viral DNA and cells

positive for SIV antigens as early as four hours pi is a strong

indication that entry can occur through follicle-associated epithe-

lium. The slight increase over time suggests local viral replication.

SIV also reaches the lamina propria four hours post
infection

The lamina propria was infected as early as four hours pi as

shown by detection of viral DNA (Figures 3A and S4B) in laser-

microdissected samples (Figures S3E and S3F). Lamina propria

Figure 1. SIV is present in the rectal epithelium as early as four hours post infection. Serial paraffin sections of R-H4.1 (sacrificed four hours
pi; A and B) and R-H16.2 (sacrificed sixteen hours pi; C and D) were labeled by IHF for gp130 (Alexa-546, A and C), CD3 (TRITC, B and D) or fascin
(Alexa-488, B and D) and nuclei were stained with DAPI (A–D). CR, crypt; LP, lamina propria; RL, rectal lumen. Arrows on serial sections point to
intraepithelial T lymphocytes positive for SIV antigens. Cell-associated virus in the epithelial cell fraction was assayed by co-culture of cells isolated
from the rectum. Results are expressed as TCID50 per million cells. The viral load does not increase over the first four days of infection; + the TCID50

could not be calculated due to small number of wells positive for SIV antigen (E).
doi:10.1371/journal.pone.0019493.g001

Rectal SIV: Fast and Furious
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Figure 2. SIV is present in lymphoid aggregates of the colo-rectal mucosa starting from four hours post infection. SIV DNA is amplified
by nested PCR for gag in most lymphoid aggregates microdissected from paraffin sections of macaques sacrificed four hours to two days pi (A); ratios
indicate the number of lymphoid aggregates positive for SIV DNA relative to the total number of lymphoid aggregates tested for each macaque.
Clusters of SIV-antigen positive cells are observed in paraffin embedded sections of the colo-rectal mucosa of R-H4.1 (sacrificed four hours pi; B, C and

Rectal SIV: Fast and Furious
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samples were positive for SIV in 40% of individual microdissected

sample in the first day pi (Figure 3A). In contrast with lymphoid

aggregates, the ratio of positive PCRs never exceeded 3/10 in the

lamina propria (data not shown).

Infection of lamina propria was confirmed by IHF. Individual

SIV+ cells were occasionally detected four hours to two days pi the

latest time point examined (Figures 3B and 3C). Of note, about

half of these cells were confirmed to be T cells (Figures 3B and

3C). The others were not T cells (CD32), DCs (fascin2) or

macrophages (negative for a macrophage-specific epitope of

CD68) (Figures 3B and 3C and data not shown). The number

of SIV antigen positive lamina propria cells appeared to decrease

over time (Figure S2C).

The presence of virus in the lamina propria could indicate that

the virus crossed the basement membrane in addition to the

digestive epithelium in less than four hours.

SIV mRNA production proceeds at a low level
We assayed for the presence of SIV Env singly spliced mRNA in

tissues of all macaques sacrificed between four hours and three

days pi (except R-H24.2). As RT-PCR could not be performed on

microdissected samples, the entire mucosa was used for detection

of spliced mRNA. It is therefore not possible in this assay to

discriminate between lymphoid aggregates and lamina propria.

Singly spliced mRNA was evidenced by nested RT-PCR in the

rectal mucosa of R-H4.1, R-H16.2 and R-D3.1 (Table 1). It was

never detected in control macaques. Detection of SIV Env singly

spliced mRNA in the tissues of infected macaques shows that

transcription and splicing proceed during the first days of rectal

SIV infection.

Heat-inactivated virus does not lead to detection of SIV
in the mucosa

Free viral DNA contained in viral stocks [73] could lead to false

positive PCR results at early time points. In order to ascertain that

the viral DNA detected in the mucosa of SIV inoculated macaques

was due to infection, we inoculated three macaques with a

quantity of heat-inactivated virus corresponding to 100 rAID50.

We necropsied them four, sixteen and twenty-four hours after

inoculation (macaques M-H4.1, M-H16.1 and M-H24.1 respec-

tively), and analyzed the rectal mucosa. No SIV DNA was ever

found in those samples despite performing over 220 individual

PCR for M-H4.1, 250 for M-H16.1 and 280 for M-H24.1 at

various dilutions to rule out PCR inhibition in the samples. This

indicates that free viral DNA cannot enter the rectal mucosa.

Therefore, the viral DNA observed four hours pi in the infected

macaques is indeed due to ongoing viral replication in the rectal

mucosa.

D, serial sections, dashed circle indicates the same area in the three micrographs), R-H16.1 (sacrificed sixteen hours pi; E, F enlargement of area boxed
in E), and R-H24.1 (sacrificed twenty-four hours pi; G, H enlargement of area boxed in G). These clusters of SIV+ cells are not observed in serial sections
of R-H16.1 (I, J enlargement of area boxed in I) or R-H24.1 (K, L enlargement of area boxed in K) labeled with an irrelevant antibody of the same
isotype. These clusters contain T cells but not CD68+ macrophages or fascin+ DCs. Sections were labeled by IHF for gp130 (Alexa-546, C), p27 (Alexa-
488, E, F, G and H), CD3 (TRITC, B, D–H, K and L), fascin (Alexa-488, B), CD68 (Alexa-488, D), irrelevant antibody (Alexa-488 I–L) and nuclei were stained
with DAPI (B–L). CR, crypt; LP, lamina propria; TA, T cell area of mucosal lymphoid aggregate; BF, B cell follicle.
doi:10.1371/journal.pone.0019493.g002

Figure 3. SIV is present in the colo-rectal lamina propria as early as four hours post infection. SIV DNA is amplified by nested PCR for gag
in some lamina propria samples microdissected from paraffin sections four to twenty four hours pi (A); ratios indicate the number of lamina propria
sites positive for SIV DNA relative to the total number of lamina propria sites tested for each macaque. Serial paraffin sections of R-H16.3 (sacrificed
sixteen hours pi; B and C) were labeled for p27 (Alexa-488, B) and CD3 (TRITC, C) and nuclei were stained with DAPI (B and C). CR, crypt; LP, lamina
propria. Arrows on serial sections point to a lamina propria T lymphocyte positive for SIV antigen.
doi:10.1371/journal.pone.0019493.g003
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IHF for SIV antigens performed on macaques inoculated with

heat-inactivated virus did not show SIV+ cells in the rectum of

these macaques (four to six different segments were extensively

sampled for each macaque). This indicates that the SIV+ cells

observed in infected macaques correspond to live virions

internalized by cells or to infected cells.

We also did not find evidence for the presence of spliced mRNA

by nested RT-PCR in the macaques inoculated with heat-

inactivated virus, indicating that the detection of singly spliced

viral mRNA in infected macaques requires exposure to live virus.

Mucosal DC-SIGN+ cells interact in vivo with SIV
As DC-SIGN can bind SIV, we localized and phenotyped DC-

SIGN-expressing cells by IHF early in infection. DC-SIGN+ cells

were observed in lymphoid aggregates (Figure 4A) and in the

lamina propria (Figures 4B–D), but we never could detect

DC-SIGN+ intraepithelial cells. Almost all DC-SIGN+ cells co-

expressed a macrophage-specific epitope of CD68, indicating that

they are macrophages (Figure 4D). Most DC-SIGN+ cells also

co-express PM-2K, marking them as mature macrophages

(Figure 4C). A few DC-SIGN+ cells co-expressing MHC class II

could carry out antigen presentation (Figures 4A and 4B).

We tested interaction of SIV with DC-SIGN+ cells on the rectal

collagenase fraction of macaque R-H16.3 (Figure 5). The enriched

DC-SIGN+ cell fraction (Figure 5B) carried a 20-fold higher viral

load (Figure 5D) than the DC-SIGN2 cells (Figures 5C and 5D)

from the same macaque. Nevertheless, we never observed by IHF

cells positive for both SIV and DC-SIGN.

SIV rapidly disseminates from the mucosa to the lymph
nodes

Viral DNA was detected as early as four hours pi in colic lymph

nodes but not prior to two days pi in axillary lymph nodes

(Table 2). Cell-associated virus was found in colic lymph nodes in

more than half of the macaques, and as early as four hours pi

(Table 3). In contrast it was only transiently detected twenty-four

hours pi in axillary lymph nodes (Table 3). Viral transcription was

below detection in colic and axillary lymph nodes (Table 1).

Viral DNA was however detected as early as twenty-four hours

pi in PBMC (Table 2). Cell-associated virus was also found in

peripheral blood as early as four hours pi, albeit at a lower level

(Table 3).

These data suggest that SIV disseminates in draining lymph

nodes at four hours pi and to axillary lymph nodes at later time

points.

Discussion

Despite the importance of rectal infection in the AIDS

epidemic, current knowledge regarding HIV rectal entry is limited

to in vitro work, which does not reproduce fully the complexity

and specificity of the rectal milieu. An understanding of HIV

mucosal entry would be of considerable help in the design of

microbicides and vaccines. We addressed the question of rectal

entry in the rhesus macaque infected by SIVmac251, the animal

model closest to the human infection by HIV [53,54]. In order to

increase our chances to detect virus during early acute infection,

we chose a viral dose ten times higher than in our previous work

[55,56]. This dose is in the low range of the doses used for studies

of vaginal transmission [74–78]. It is commensurate with the

highest viral loads reported in the semen of HIV+ men [63–70].

This one hundred rAID50 dose does not affect the dissemination

profile.

SIV entry is massive. If we consider our sampling to be

representative of the entire rectum, one can estimate the viral

DNA in the rectum of each macaque four hours pi to be on the

order of 55,000 copies in lymphoid aggregates and on the order of

290,000 in the lamina propria (see Text S1 for details). As we

could not find SIV DNA in mock-infected macaques, this suggests

that approximately 36105 viral particles were able to cross the

rectal epithelia and undergo reverse transcription, representing

close to 1% of input viral particles. Some of these copies must be

integrated as spliced mRNA could be found in the rectum as early

as four hours pi. The much lower number of cells positive for SIV

antigens (on the order of 103–104 per macaque, Figure S2) suggests

that most copies of SIV DNA correspond to defective particles

undergoing abortive infection. Cells positive for SIV antigens can

be productively infected or have merely internalized viral antigens.

As, in vivo, the average life cycle of SIV is under 10 hours [79], it

is likely that the cells positive for SIV antigens observed sixteen

hours pi and onwards are infected cells in which translation

proceeds. The fraction of these cells which will go on to produce

virus is currently not possible to estimate.

SIV entry is a very rapid process, as infection is established in

the lamina propria, in lymphoid aggregates and in more distal sites

at least at four hours pi, the earliest time point assessed. Viral entry

after vaginal inoculation was shown, by in situ acidic inactivation,

to be complete in less than 30 minutes [77], with reverse

transcription completed as early as two hours pi [78]. The reverse

transcriptase inhibitor tenofovir applied rectally two hours after

rectal infection protected only one third of inoculated macaques

[80], indicating that reverse transcription can be completed in less

than two hours. This is faster than expected from in vitro work.

However, one should note that gut lymphocytes are inflammatory

but hyporesponsive [81], and that this may accelerate the viral

cycle. It was not possible to narrow down further the time

necessary for virus to be imported from the inoculum as, in our

hands, acidic inactivation was toxic by the rectal route.

SIV entry could involve trans-epithelial transport of SIV. Early

reports of HIV in rectal epithelial cells of HIV+ patients [82–84]

have not been confirmed. Many now accept that infected

epithelial cells are not found in vivo [44,85]. In our previous

work we had not observed infected rectocytes [56]. In the present

work we could never observe infected epithelial cells either by IHF

or by ISH. We did find virus at distal sites as early as four hours pi.

Trans-epithelial transport is a likely explanation for this rapid

Table 1. Env singly spliced mRNA is detected earlier in the
colo-rectal mucosa than in lymph nodes.

Macaque
Colorectal
mucosa

Colic lymph
nodes

Axillary lymph
nodes

R-H4.1 + 2 2

R-H4.2 2 2 2

R-H16.1 2 2 2

R-H16.2 + 2 2

R-H16.3 2 2 2

R-H24.1 2 2 2

R-D2.1 2 2 2

R-D2.2 2 2 2

R-D3.1 + 2 2

The singly spliced mRNA for the Env gene was detected by nested RT-PCR in the
indicated tissues.
doi:10.1371/journal.pone.0019493.t001
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dissemination, as viral production in situ is unlikely over such a

short period of time. Indeed, the estimated mean intracellular

phase of the life cycle for HIV in vivo is 14.4 to 21.6 hours [86]. It

is shorter for SIV, with a mean life cycle of 9.4 hours [79]. The

trans-epithelial transport of SIV does not appear to involve

capture by DC processes extending into the rectal lumen through

tight junctions. Indeed, we never observed intraepithelial DCs at

early time points of infection using classical DC markers (DC-

SIGN, fascin). The presence of SIV in both lymphoid aggregates

and digestive mucosa four hours pi argues in favor of transcytosis

of virions by both the digestive epithelium and the follicle-

associated epithelium. One should note that entry appears more

efficient across the follicle-associated epithelium. However the

surface of the digestive epithelium is much larger than that of the

follicle-associated epithelium, and the amount of virus entering

through this route could be greater.

SIV structural proteins are found intracellularly by IHF in

intraepithelial cells (including T cells), in lamina propria cells

(T cells and non-T cells), and in T cell-containing clusters in

lymphoid aggregates. The non-T cells are neither macrophages

nor mature DCs as they do not express CD68, DC-SIGN or

fascin. The SIV antigen positive clusters probably correspond to

the infection of a single cell by virus from the inoculum. Secondary

diffusion of SIV antigen to neighboring cells could occur by

infection (a possibility for macaques infected sixteen hours and

onwards) or by cell-cell fusion. In favor of the former is the fact

that lymphoid aggregates often contain several copies of SIV DNA

(Table S2). SIV+ cells are scarce and the detection of Env singly

Figure 4. DC-SIGN+ cells are macrophages in the colo-rectal mucosa during the first sixteen hours of infection. DC-SIGN+ cells are
observed in lymphoid aggregates of R-H4.2 (sacrificed four hours pi; A) and lamina propria of R-H4.1 (sacrificed four hours pi; C) and R-H16.3
(sacrificed sixteen hours pi; B and D). DC-SIGN+ cells express only occasionally MHC-II molecules (A and B, arrows), but co-express PM-2K (C) and CD68
(D) marking them as macrophages. Frozen sections of colo-rectal mucosa were labeled for DC-SIGN (Alexa-488), CD3 (Alexa-350, A, B and D), MHC-II
Mamula-DR (Alexa-546, A, B and C) or PM-2K (Alexa-350, C), CD68 (Alexa-546, D) and nuclei were stained with TO-PROH-3 (A–D). The computer-
generated merged images are shown. CR, crypt; LP, lamina propria; S, submucosal connective tissue; TA, T cell area of mucosal lymphoid aggregate;
HEV, high endothelial venule.
doi:10.1371/journal.pone.0019493.g004
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spliced mRNA is rare. These observations suggest that SIV

replication is initiated in very few cells of the rectal mucosa at early

stages of infection. We have no evidence for viral production in the

digestive part of the mucosa. In contrast, the presence of SIV+ cell

clusters suggests that viral production occurs in lymphoid

aggregates.

During the first day of infection at least, rectal DC-SIGN+ cells

have an overall distribution pattern similar to healthy human and

macaque rectum [52,87]. They appear less abundant in the

lamina propria, but more abundant in lymphoid aggregates than

Jameson et al. observed in healthy rhesus macaque mucosa [87].

They all express macrophage markers, as was described in healthy

human rectum [52]. In contrast to healthy mucosa [52,87], in

early SIV infection rectal DC-SIGN+ cells do not all express MHC

class II. DC-SIGN+ cells bind infectious virions, as infectious virus

is enriched in the DC-SIGN+ cell fraction. The number of virions

bound by each cell is presumably small as these cells are not

positive by IHF.

SIV dissemination is rapid as cell-associated virus could be

recovered from draining lymph nodes and from the peripheral

blood as early as four hours pi. This indicates that virus-carrying

cells have left the mucosa to percolate through the colic lymph

node chain and reach the circulation in less than four hours. The

very early presence of viral DNA in draining lymph nodes strongly

suggests that infected cells are one means of viral dissemination

from the mucosa. Virus could also travel as cell-bound virions.

This is one explanation of the discrepancy observed between co-

culture results and nested PCR results, the other one being a

Figure 5. Rectal DC-SIGN+ cells can bind SIV sixteen hours post
infection. Flow cytometry analysis of cells from the rectal collagenase
fraction of R-H16.3 (sacrificed sixteen hours pi) shows enrichment of
DC-SIGN+ cells from total cells (A) in the DC-SIGN+ fraction (B) and
depletion in the DC-SIGN2 fraction (C); left dot plots show side scatter
(SSC) versus forward scatter (FSC) and gate in which expression of DC-
SIGN is analyzed; right histograms show expression of DC-SIGN and
percentage of DC-SIGN+ cells (bar on histogram); gray filled histogram
in A corresponds to isotype control. Cell-associated viral load (expressed
as TCID50 per million cells; D) shows that over twenty-fold more cell-
associated virus is found in the DC-SIGN enriched cell fraction than in
the DC-SIGN depleted cell fraction (D).
doi:10.1371/journal.pone.0019493.g005

Table 2. Viral DNA is detected in colic lymph nodes prior to
peripheral blood and axillary lymph nodes.

Macaque Colic lymph nodes Axillary lymph nodes PBMC

R-H4.1 2 2 2

R-H4.2 + 2 2

R-H16.1 2 2 2

R-H16.2 + 2 2

R-H16.3 + 2 2

R-H24.1 + 2 +

R-H24.2 2 2 +

R-D2.1 +* +* +

R-D2.2 + 2 +

R-D3.1 + +* 2

R-D4.1 + +1 +

The presence of viral DNA was assayed on cell suspensions, on OCT-frozen
samples (*) or on paraffin sections (1). +: viral DNA detected; 2: no viral DNA
detected. PBMC: peripheral blood mononuclear cells.
doi:10.1371/journal.pone.0019493.t002

Table 3. Cell-associated virus is detected rapidly in lymph
nodes and peripheral blood.

Macaque Colic lymph nodes Axillary lymph nodes PBMC

R-H4.1 2 2 2

R-H4.2 1 2 1

R-H16.1 4 2 2

R-H16.2 * 2 2

R-H16.3 2 2 *

R-H24.1 2 * 2

R-H24.2 13 * 2

R-D2.1 2 2 2

R-D2.2 9 2 *

R-D3.1 2 2 1

R-D4.1 2 2 2

Results are expressed as TCID50 per million cells.
*at least one well was positive for SIV antigen, but the TCID50 could not be
calculated due to small number of SIV antigen positive wells. 2 no SIV antigen
positive well in the experiment. PBMC: peripheral blood mononuclear cells.
doi:10.1371/journal.pone.0019493.t003
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stochastic effect at very low viral loads. Finally, one cannot exclude

transport as free virions in the lymph draining the rectum. To

determine whether this occurs, one would have to cannulate

lymph from the colon under prolonged anesthesia. This not only

raises technical and ethical concerns, but could also modify

exchanges between lymphoid tissues.

Rectal infection appears to involve rapid entry and reverse

transcription, as has been noted for the vaginal [77,78] and oral

routes [88] but there are clear differences with these entry pathways.

Dissemination after rectal entry is possibly more rapid than after

oral entry, where SIV DNA is found in many lymphoid tissues

twenty-four hours pi [88]. It is also more rapid than following

vaginal entry, where SIV DNA could be found at very low-levels in

draining lymph nodes eighteen hours pi and in some lymphoid

tissues twenty-four hours pi [77]. We found that a high proportion

of virus crosses the epithelium upon rectal inoculation. This is

similar to oral infection [88], but contrasts with vaginal entry where

only a very small proportion of the total inoculum enters the vaginal

mucosa [78]. We show that T cells, but not fascin positive DCs or

macrophages, are among the first targets of SIV during rectal

transmission. This is not the case during vaginal transmission where

fascin positive DCs are the first cells associated with SIV [77] or

during oral infection where macrophages are infected [88].

The rapid kinetics of rectal entry and dissemination has

important consequences for the development of preventive

strategies. Rhesus macaques can be protected from rectal infection

by tenofovir applied locally prior to inoculation [80]. Protection is

not observed if the plasma concentration of tenofovir is below

75 ng/ml. This is in contrast with what is observed for vaginal

infection, where protection is observed with plasma concentrations

of tenofovir as low as 11 ng/ml [89]. This suggests that protection

from rectal infection (and possibly not from vaginal infection)

requires inhibition of reverse transcription in distal sites such as

lymph nodes and not exclusively in the rectum. One cannot exclude

that routine use of reverse transcriptase inhibitors with such plasma

concentrations will lead to side effects and present risks of selection

for resistant reverse transcriptase mutants. Therefore, there is a use

for microbicide preparations for rectal use aiming to prevent virion

interaction with the epithelium (digestive as well as follicle-

associated) and entry into cells. This would complement (or replace)

preparations aiming to block reverse transcription.

In conclusion, we show that SIV crosses in less than four hours

both the digestive epithelium and the follicle-associated epithelium.

We propose that entry occurs by transcytosis at both sites, with

rectocytes and M cells being the most likely candidates to carry out

transcytosis of virions. Following entry, SIV infects T cells as well as

non-T cells in the mucosa. SIV initiates replication locally in the

rectal lymphoid aggregates, and to a lower extent in the lamina

propria. Virus is rapidly transported to distal sites as infected cells, as

virions associated with cells possibly expressing DC-SIGN or as free

virions present in the lymph. Reverse transcription occurs in the

rectal mucosa during the first hours of infection. Reverse transcription

may also occur in draining lymph nodes. To be effective against rectal

transmission of HIV, a vaccine will have to induce immunity at the

rectal surface, but also in distal lymphoid sites.

Methods

Macaques and tissue collection
Macaques were housed at the L3 animal facility of the Pasteur

institute (France) in accordance with the European Community

guidelines (Journal Officiel des Communautés Européennes,

L358, December 18, 1986). C. Butor was granted for this

protocol the authorization to experiment on live non-human

primates number 006322 by the Ministère de l’Agriculture et de

la Pêche in 1994, then the authorization to experiment on live

non-human primates number 78-76 by the Préfecture des

Yvelines in 2005. A. Couëdel-Courteille was granted the

authorization to experiment on live non-human primates

number 007304 by the Ministère de l’Agriculture et de la

Pêche in 1997, then the authorization to experiment on live

non-human primates number 75-1068 in 2005. Several steps

were taken to improve animal welfare according to the

recommendations of the Weatherall report. Animals were

housed in individual cages to prevent viral transmission, but

up to twenty animals were housed in a single room allowing

sight and sound contact with each other. Diet was supplemented

with a variety of fresh fruit. All manipulations of animals were

performed under ketamine anesthesia, according to regulations

in France. Macaques were sacrificed by a lethal dose of

pentothal under ketamine anesthesia. In addition, the tissues

obtained after necropsies are currently used for another study in

order to reduce the total number of animals used. Nineteen

adult male rhesus macaques (Macaca mulatta) were used in this

study. Fourteen macaques were inoculated atraumatically by the

rectal route with 100 rAID50 [90] and otherwise as previously

described [55,56]. This corresponds to 18,000 TCID50 and 7.78

log copies of viral RNA [91] for a final concentration of 7.31 log

copies/ml of viral RNA. The SIVmac251 viral stock originally

obtained from R Desrosiers was a kind gift of A-M Aubertin.

Macaques were sacrificed four hours (animals R-H4.1 and R-

H4.2), sixteen hours (R-H16.1, R-H16.2 and R-H16.3), twenty-

four hours (R-H24.1, R-H24.2), two days (R-D2.1, R-D2.2) and

three, four, five, seven and nine days (R-D3.1, R-D4.1, R-D5.1,

R-D7.1 and R-D9.1) pi. Three animals were inoculated with an

identical volume of the viral stock after heat inactivation (56uC
for 30 min) and euthanized four, sixteen or twenty-four hours

post inoculation (M-H4.1, M-H16.1 and M-H24.1 respectively).

Two healthy rhesus macaques were used as controls. Peripheral

blood was collected on heparin or EDTA prior to euthanasia.

Lymph nodes, colon and rectum were collected separately under

sterile conditions and processed as previously described [56],

omitting the Percoll gradient on the epithelial and collagenase

fractions.

Titration of cell-associated virus
Titrations were performed as previously described [55,56]. For

macaques R-H4.1 R-H4.2, R-H16.2 and R-H16.3 we used the

commercial kit ÆÆInnotestH HIV Antigen P24ææ (Innogenetics,

Gent, Belgium) which cross-reacts with the SIV p27 capsid protein

instead of our homemade ELISA. The TCID50 was calculated

according to Reed and Muench [92].

In situ hybridization
ISH was performed as previously described [56] using either

INT-BCIP or NBT-BCIP as substrate for alkaline phosphatase.

Immunohistofluorescence
Five mm-thick formaldehyde-fixed paraffin-embedded sections

collected on glass slides were deparaffinized and rehydrated.

Antigen retrieval was performed by pressure cooking the sections

for 10 min in 0.01 M buffered sodium citrate solution (pH 6).

Sections were then rinsed with calcium free Dulbecco’s phosphate

buffered saline (PBS). Seven mm-thick cryosections were fixed for

10 min in cold acetone and rinsed in PBS.

Both types of sections were incubated for 30 min with blocking

buffer (2% normal goat serum and 5% bovine serum albumin in

PBS), incubated for 60 min with primary antibodies, washed in
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PBS 0.5% Tween20 (Sigma, St. Louis, MO), incubated with

secondary antibodies for 30 min, washed, counterstained with 4,6-

diamidino-2-phenylindol (DAPI) (Molecular Probes, Cergy Pon-

toise, France, paraffin sections) or TO-PROH-3 iodide (Invitrogen,

Cergy Pontoise, France, cryosections) and mounted in Fluoro-

mount-G (Southern Biotechnology, Birmingham, AL).

Primary antibodies were polyclonal rabbit anti-CD3 (DAKO,

Trappes, France) mouse monoclonal antibodies to fascin (clone

55K-2, IgG1, DAKO), SIV gp130 envelope protein (clone

KK46, IgG1, obtained from the NIH), SIV p27 capsid protein

(IgG1, Advanced Biotechnologies Inc Columbia, MD), Aspergil-

lus niger glucose oxidase (isotype control, IgG1, clone DAK-

GO1, DAKO), HLA-DR (clone TÜ36, IgG2b, BD Biosciences),

DC-SIGN (clone 120612, IgG2a, R&D Systems, Lille, France),

DC-SIGN (clone 120507, IgG2b, R&D Systems), CD68 (clone

KP1, IgG1, DAKO, Trappes, France), and tissue macrophage

(clone PM-2K, IgG1, AbD Serotec, Düsseldorf, Germany).

Secondary antibodies were TRITC-conjugated goat anti-rabbit

antibody (Southern Biotechnology) and isotype-specific (IgG1,

IgG2a and IgG2b) goat anti-mouse secondary antibodies

(Molecular Probes) conjugated to Alexa 350, Alexa 488 or

Alexa 546.

Image capture and analysis
IHF sections were examined under an inverted epifluorescence

microscope Axiovert 200 M (Zeiss), equipped with a HBO flexible

fluorescence lamp, a black and white CCD camera (Roper

Scientific Coolsnap HQ) and coupled to video imaging using the

Axiovision 4.4 software (Zeiss). ISH sections were examined under

a DMRB (Leica) with a DC300F camera (digital module R, Leica)

and the IM1000 software (Leica). Images were digitally acquired

with a 206or a 406 objective, then we used both the Axiovision

software and the Photoshop software (Adobe Systems Incorporat-

ed) to analyze the different stainings.

Laser capture microdissection of rectal mucosa
Microdissection was performed on an automated system for

diode ultraviolet laser cutting and infrared laser capture of tissue

samples, mounted on a Nikon Eclipse TE2000 inverted

microscope equipped with a color CCD camera and coupled to

video imaging. Formaldehyde-fixed paraffin-embedded 5-mm-

thick sections were mounted on a polyethylene foil slide (SL

Microtest GmbH, Jena, Germany) and counterstained with

hematoxyline. Sections were observed on a screen using a 106
or a 206objective. An incision path was drawn on the screen and

multiple overlapping laser pulses dissected the selected tissue

area. The target tissue was removed from the slide with isolation

caps. The efficiency of the laser capture microdissection was

assessed by examining the tissue harvested under the microscope.

DNA was extracted by adapting the DNeasy blood and tissue kit

protocol from QIAGEN (Courtaboeuf, France) for small DNA

amounts.

Detection of SIV viral DNA
DNA was extracted from 56106 cells in suspension using the

DNeasy blood and tissue kit (QIAGEN) and from paraffin

sections using the DNeasy tissue kit (QIAGEN) according to the

manufacturer’s instructions. To assess the quality of the extracted

DNA (presence of cellular DNA, lack of PCR inhibitor), we

performed a PCR for actin using sense (59 GGG TCA GAA

GGA TTC CTA TG 39) and antisense (59 GGT CTC AAA CAT

GAT CTG GG 39) actin primers (Genset, Paris, France). To

assess the presence of viral DNA, we used either a semi-nested

PCR protocol as previously described [55,93] or a single PCR

protocol with primers F-GAG-Ni-59-CCG TCA GGA TCA

GAT ATT GCA and R-GAG-Ci-59-TTC GTA CCC AGC

CCC TTC AGC in 2.5 mM MgCl2. Ten to twenty individual

PCRs were performed on mucosa samples. Negative PBMC and

lymph node samples were tested at varying dilutions to rule out

potential inhibition of the PCR due to suboptimal ratios between

the DNA and the primers in the sample. The detection threshold

was one to two copies as assessed with serial dilution of gag

containing plasmids in different volumes of DNA extracts

obtained from PBMC or from microdissected tissues of

uninfected macaques.

Purification of DC-SIGN-expressing cells from the rectum
DC-SIGN-expressing cells were enriched using anti-phycoery-

thrin (PE) magnetic beads (Miltenyi Biotec) according to

manufacturer’s recommendations. Briefly lamina propria rectal

cells were stained with an anti-DC-SIGN-PE antibody (clone

120507, R&D Systems), washed in MACS buffer (Miltenyi Biotec),

incubated with anti-PE beads, then separated in a LS column

(Miltenyi Biotec). The column was washed with MACS buffer and

DC-SIGN-expressing cells were eluted. Both positive and negative

fractions were washed, analyzed by flow cytometry and used to

quantify cell-associated virus. Flow cytometry was performed on a

FACSCalibur or a FACSCanto (BD Biosciences) and analyzed

with FlowJo 8.8.6 software (TreeStar).

Detection of Env singly spliced mRNA
Messenger RNA was extracted with the MicroPoly(A) Purist

kit (AMBION, Courtaboeuf, France) according to manufactur-

er’s instructions from samples of colorectal mucosa, colic and

axillary lymph nodes (1 mm3) frozen in OCT. To assess the

presence of Env singly spliced mRNA, we used a nested RT-

PCR protocol. After a reverse transcription step, cDNAs were

first PCR amplified with primers LTR-SIV-SD-59-CGA CGG

AGT GCT CCT ATA AA (located before the splice donor in

the long terminal repeat region in 59) and V1V2-Out3-59-GAA

GAG ACC ACC ACC TTA GAA (located before the Rev

response element). A second PCR was performed on the initial

PCR products with primers V1V2-In5-59-AGG ATG TAT

GGC AAC TCT TTG A and V1V2-In3-59-CAC AAG ACT

CTT GGA TAA CAG AA. All PCRs were performed in

3.5 mM MgCl2 with 10 minutes initial denaturation at 95uC,

then 35 cycles of 30 seconds at 94uC, 30 seconds at 60uC, and

5 minutes at 72uC.

Supporting Information

Figure S1 SIV dissemination after high dose rectal
infection reaches colon draining lymph nodes prior to
axillary lymph nodes. Cell-associated virus in tissues expressed

as TCID50 per million cells shows more than one log difference

between draining lymph nodes and other lymphoid tissues; + the

TCID50 could not be calculated due to small number of wells

positive for SIV antigen (A). SIV DNA amplified by nested PCR

for gag is always found in draining lymph nodes, but not in other

lymphoid tissues of R-D9.1: + viral DNA amplified, 2 no viral

DNA amplified (B). Infected cells are detected by in situ

hybridization for SIV in colic lymph node of R-D5.1 (C), rectal

mucosa of R-D7.1 (D) and central mesenteric lymph node of R-

D9.1 (E). C, INT-BCIP substrate, no counterstain; D and E NBT-

BCIP substrate, eosin counterstain. Arrows point to infected cells

in lymph nodes (C and E) and in the T cell area of mucosal

lymphoid aggregates (D) and arrowheads to infected cells in the

lamina propria (D). CR, crypt; LP, lamina propria; S, submucosal
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connective tissue; TA, T cell area of mucosal lymphoid aggregate;

GC, germinal center; FM, follicular mantle; BF, B cell follicle; PC,

parafollicular cortex.

(TIF)

Figure S2 SIV-antigen positive elements during the first
two days of infection. SIV-antigen positive intraepithelial cells

(A), clusters in lymphoid aggregates (B) or lamina propria cells (C)

were counted on sections labeled by IHF. Total values were

computed per macaque.

(TIF)

Figure S3 Laser capture microdissection allows separate
sampling of follicle-associated epithelium, lymphoid
aggregates and lamina propria. Figure shows paraffin sections

counterstained with hematoxylin and micrographed with an Eclipse

TE2000 inverted microscope before (A, C, E) and after (B, D, F)

laser capture microdissection. The red dashed line corresponds to

the laser pattern. The area microdissected in A and B was follicle

associated epithelium (FAE), in C and D lymphoid aggregate (LA)

and in E and F lamina propria (LP).

(TIF)

Figure S4 Number of copies of SIV DNA during the first
two days of infection. The presence of SIV DNA was measured

by semi-quantitative PCR on microdissected lymphoid aggregates

(A) and lamina propria (B). See text for details of calculations.

(TIF)

Table S1 Number of SIV antigen positive cells or cell
clusters in colo-rectal segments during the first two days
post infection.

(DOC)

Table S2 PCR analysis of SIV DNA on serial sections of
colo-rectal lymphoid aggregates.

(DOC)

Text S1

(DOC)
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